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Position of the problem: cancer disease and its modelling	

  in the perspective of theoretical treatment optimisation	




A general framework to optimise cancer therapeutics: 
designing mathematical methods along 3 axes 	


     1. Modelling the behaviour of growing cell populations on which drugs act (the targeted 
cell populations):  proliferating tumour and healthy cell populations, including describing 
molecular or functional targets for physiological or pharmacological control	


	

     2. Modelling the external control system, i.e., fate of drugs in the organism, at the 

molecular and whole body levels by molecular pharmacokinetics-pharmacodynamics:           
PK-PD (ideally WBPBPKPD = whole body physiologically based...) or by functional 
representation of drugs in use: cytotoxic, cytostatic or differentiating agents	


     3. Optimising the therapeutic control: dynamically optimised control of theoretical	

      drug delivery flows, representing time-dependent objectives and constraints, using                     

known or hypothesised differences between cancer and healthy cell populations	

     	

      (JC Math Mod Nat Phenom 2009; Pers Med 2011; Springer book chapters 2013, 2014; Lorz et al. 2013, 2014)	




Relative importance of cancer as one of the major 
killer chronic diseases worldwide	


WHO source (2005): http://www.who.int/chp/chronic_disease_report/full_report.pdf	


Background: basic facts about cancer	




Cancer, a major public health problem in Europe	


2 major killers in Western Europe:	

Cardio-vascular diseases: 35% of deaths by disease, and Cancer: 25%	

(precise data according to zones and countries: http://www.euro.who.int)	

	


Estimated incidence of main cancers in the European Union in 2004,  from Boyle & Ferlay, Ann. Oncol.  2005	


Background: basic facts about cancer	




In France, cancer (now 1st) and cardiovascular diseases 
(2nd) are by far the 2 major killers among all diseases	


(Bulletin available online: http://www.invs.sante.fr/beh/2007/35_36/index.htm) 
Bulletin Épidémiologique Hebdomadaire (BEH) de l’INVS, 18/09/2007	


Background: basic facts about cancer	




The same trend (Cancer 1st) is also true in the USA	


(from Jemal et al.,  CA Cancer J Clin 2007)	


Background: basic facts about cancer	




Persistence of a very slow decrease in cancer mortality	


From Siegel et al.,	

Cancer statistics 2014	

CA Cancer J Clin 2014 	


in the US	


Background: basic facts about cancer	




Tissues that may evolve toward malignancy 	


…are the tissues where cells are committed to fast proliferation	

(fast renewing tissues):	

	

- epithelial cells+++, i.e., cells belonging to those tissues which 	

  cover the free surfaces  of the body (namely epithelia): gut (colorectal cancer),	

  lung, cervix, glandular coverings (breast, prostate), skin,…	

	

- liver cells in situations where the liver is called for renewal (e.g., surgery)	

  or, in pathology, hepatocellular carcinoma	

	

- cells belonging to the different blood lineages, daily produced in	

  the bone marrow: liquid tumours, or malignant haemopathies	

	

- others (rare: gliomas, sarcomas, neuroblastomas, dysembryomas…) 	


Background: basic facts about cancer	




Natural history of cancers: from genes to bedside	


•  Control on entry in the cell cycle for quiescent (=non-proliferating) cells	

•  Control on cell cycle phase transitions and apoptosis for proliferating cells	

•  Normal inability to use anaerobic glycolysis (selective advantage for cancer cells)	

•  Contact inhibition by surrounding cells (cell adhesion, cell density pressure)	

•  Normal inability to stimulate new blood vessels from the vascular neighbourhood	

•  Normal linking to the extracellular matrix (ECM) fibre network and basal membranes	

•  Recognition (friend or foe) by the immune system 	


Gene mutations: an evolutionary process which may give rise to abnormal DNA 
when a cell duplicates its genome, due to defects in tumour suppressor or DNA	

repair (BER, NER) genes (Yashiro et al. Canc Res. 2001; Gatenby & Vincent, Canc. Res. 2003)	


 Resulting genomic instability allows malignant cells to escape control on 	

 proliferation at different levels: subcellular, cell, tissue and whole organism:	


Cancer invasion is the macroscopic result of breaches in these control mechanisms	


Background: basic facts about cancer	




Evading proliferation and growth control mechanisms	


(Hanahan & Weinberg, Cell 2000)	


…but just what is cell proliferation?	


(Hanahan & Weinberg, Cell 2011)	




Cell population growth in proliferating tissues	


One cell divides in two: a controlled process at cell and tissue levels	


(from Lodish et al., Molecular cell biology, Nov. 2003) 	


Background: basic facts about cancer	




Cyclin D	


Cyclin E	
Cyclin A 

Cyclin B	


S	

G1	


G2 
M

At the origin of proliferation: the cell division cycle 

Physiological or therapeutic control 
exerted on:	

- transitions between cell cycle phases	

   (G1/S, G2/M, M/G1)	

- death rates (apoptosis or necrosis) 	

   inside cell cycle phases	

- velocity of progression of cell      
populations in cell cycle phases 	

	


S:=DNA synthesis; G1,G2:=Gap1,2; M:=mitosis	

	


Mitosis=M phase	


(from Lodish et al., Molecular cell biology, Nov. 2003)	


Background: basic facts about cancer	




Exchanges between proliferating (G1SG2M) and quiescent (G0) cell compartments	

are controlled by mitogens and antimitogenic factors in G1 phase	


From Vermeulen et al. Cell Prolif. 2003	

Most cells do not proliferate physiologically, even in fast renewing tissues (e.g. gut) 	


Proliferating and quiescent cells	


R	
Restriction point	

(in late G1 phase)	


before R:	

mitogen-dependent	

progression through G1	

(possible regression to G0)	


after R:	

mitogen-independent	

progression through G1 to S	

(no way back to G0)	


(Pardee 1974	

 Zetterberg & Larsson 1985)	


Background: basic facts about cancer	




Phase transitions, apoptosis and DNA repair	


Repair or apoptosis 

S!
G1!

G2!
M!

- Sensor proteins, e.g. p53, detect defects 
in DNA, arrest the cycle at G1/S and G2/M 
phase transitions to repair damaged 
fragments, or lead the whole cell toward 
controlled death = apoptosis	


- p53 expression is known to be down-
regulated in about 50% of cancers	


- Physiological inputs, such as circadian 
gene PER2, control p53 expression; 
circadian clock disruptions (shiftwork) 
may result in low p53-induced genomic 
instability and higher incidence of cancer	


Repair or apoptosis 

p53	


p53	


(Fu & Lee, Nature Rev. 2003)	


Background: basic facts about cancer	




Invasion: local, regional and remote	

1) Local invasion by tumour cells implies loss of 
normal cell-cell and cell-ECM (extracellular matrix) 
contact inhibition of size growth and progression in the 
cell cycle. ECM (fibronectin) is digested by tumour-
secreted matrix degrading enzymes (MDE=PA, MMP) 
so that tumour cells can move out of it. Until 106 cells 
(1 mm δ) is the tumour in the avascular stage.	

	

2) To overcome the limitations of the avascular stage, 
local tumour growth is enhanced by tumour-secreted 
endothelial growth factors which call for blood vessel 
sprouts to bring nutrients and oxygen to the insatiable	

tumour cells (angiogenesis, vasculogenesis)	

	

3) Moving cancer cells can achieve intravasation, i.e., 
migration in blood and lymph vessels (by diapedesis), 
and extravasation, i.e. evasion from vessels, through 
vascular walls, to form new colonies in distant tissues. 
These colonies are called metastases.	

	

	


Proliferating rim	


Quiescent layer	


Necrotic core	


(Images thanks to A. Anderson, M. Chaplain, J. Sherratt, and Cl. Verdier)	


Background: basic facts about cancer	




Interactions with the immune system	


Tumours are antigenic, i.e., recognisable as foes by the immune system:	

	

Innate immunity:   Cytokines, macrophage-produced molecules to protect intact cells 	

(non specific)             (e.g. interferon) 	
 	
 	
 	
      	
 	


	
 	
 	
   	

	
 	
  NK Lymphocytes = cells which sense foe antigens (receptors are	

	
 	
 	
 	
     modifications of cytoskeleton), migrate	

	
 	
 	
 	
     into blood and tissues to kill antigenic cells	


	

Adaptive immunity: B Lymphocytes produce specific antibodies (immunoglobulins)	

(specific: immune memory)	


	
 	
     Helper T-Lymphocytes produce cytokines (e.g. interleukins)	

	
 	
 	
 	
 	
which boost the immune response	

	
 	
     Cytotoxic T-Lymphocytes kill specific antigenic cells	


(after P. Lollini, 2005)	


Background: basic facts about cancer	




I. Mathematical models of healthy and cancer tissue growth	




Mathematical models of tumour growth and therapy ���
A great variety of models, depending on what one intends to describe���

	

•  In vivo (tumours) or in vitro (cultured cell colonies) growth? In vivo (diffusion in 

living organisms) or in vitro (constant concentrations) growth control by drugs?	


•  Scale of description for the phenomenon of interest: subcellular, cell, tissue or whole 
organism level? … may depend upon therapeutic description level	


•  Is space a relevant variable? [Not necessarily!] Must the cell cycle be represented?	

	

•  Are there surrounding tissue spatial limitations? Limitations by nutrient supply or 

other metabolic factors? 	


•  Is loco-regional invasion the main point? Then reaction-diffusion equations (e.g. 
KPP-Fisher) are widely used, for instance to describe tumour propagation fronts	


•  Is cell migration to be considered? Then chemotaxis [=chemically induced cell 
movement] models (e.g. Keller-Segel) have been used 	


A reference: A. Friedman. ‘A hierarchy of cancer models and their mathematical challenges’, DCDS-B 2004	




Models of tumour growth 1	

Macroscopic, non-mechanistic models: the simplest ones:	

exponential, logistic, Gompertz	


	


Exponential model: relevant for the early stages of tumour growth only	

	

[Logistic and] Gompertz model: represent growth limitations (S-shaped curves with 
plateau=maximal growth), due to mechanical pressure or nutrient/space scarcity 	

	

[Used to describe therapeutic control by adding a drug action term -ϕ (d, x) on the RHS]	


x= tumour weight	

or volume, proportional	

to the number of cells,	

or tumour cell density	


t	


x	


Ordinary differential equations 	




Models of tumour growth 2: Gompertz revisited	

ODE models a) with 2 cell compartments, proliferating and quiescent,	

or b) varying the tumour carrying capacity xmax in the original Gompertz model	


Avowed aim: to justify global Gompertz-like growth	


However, a lot of cell colonies and tumours do not follow Gompertz growth	

Refinements: Hahnfeldt et al., Canc. Res 1999; Ergun et al., Bull Math Biol 2003	


	


(Gyllenberg & Webb, Growth, Dev. & Aging 1989; Kozusko & Bajzer, Math BioSci 2003)	


Tumour burden	


time	


Gompertz model	


Data	

d9	


d8	


d12	

d14	


Example of non-Gompertz	

tumour growth:	

(GOS) in a population of	

mice, laboratory data	


Ordinary differential equations 	




a) ODE models with 2 exchanging cell compartments, 	

proliferating (P) and quiescent (Q)	


(Gyllenberg & Webb, Growth, Dev. & Aging 1989; Kozusko & Bajzer, Math BioSci 2003)	

where, for instance:	


r0 representing here the rate of	

inactivation of proliferating cells,	

and ri the rate of recruitment from	

quiescence to proliferation	


Initial goal: to mimic Gompertz growth	


Cell exchanges	


Ordinary differential equations 	




b) ODE models with varying carrying capacity 	

Ordinary differential equations 	


Hahnfeldt et al., Cancer Res. 1999	

Ergün et al., BMB 2003	


Used by U. Ledzewicz et al. to optimise combined delivery of 	

cytotoxic and antiangiogenic drugs, acting on pt and et, respectively	




Models of tumour growth 3	

Physical laws describing macroscopic spatial dynamics of an avascular tumour	


	

- Fractal-based phenomenological description of growth of cell colonies and tumours,	

  relying on observations and measures: roughness parameters for the 2D or 3D tumour 	

  	

 Findings: - all proliferation occurs at the outer rim	


	
  - cell diffusion along (not from) the tumour border or surface	

	
  - linear growth of the tumour radius after a critical time (before: exponential)	


(A. Bru et al. Phys Rev Lett 1998,  Biophys J 2003)	

	

	

Individual-based models:	

 - cell division and motion described by	

   stochastic algorithm then continuous limit	

 - permanent regime = KPP-Fisher-like	

   (also linear growth of the tumour radius) 	

(D. Drasdo, Math Comp Modelling 2003; Phys Biol 2005) 	


Individual-based models	




Models of tumour growth 3	

Mechanical models of macroscopic spatial dynamics involving pressure 	


Multiphase models with moving boundaries:	

proliferating cells, quiescent cells, necrotic cells, surrounding healthy cells…	


	
 	
 	
 	
 	
 	
 	
(see Preziosi et al.)	

	

Simplified models with only intra-tumour cell pressure p and cell velocity v:	


(from H. Byrne & D. Drasdo JMB 2009) 	


Simplified models involving pressure p and nutrient concentration c (ρ=cell density):	

(from Perthame-Quiroz-Vazquez Arch Rat Mech Anal 2014)  	


Partial differential equations 	




Models of tumour growth 4	

Macroscopic reaction-diffusion evolution equations (travelling wave fronts)	


1 variable c = density of tumour cells): KPP-Fisher equation	


D(x) = diffusion (motility) in [brain] tissue, ρ  (reaction)=growth of tumour cells	

1D x and c instead of c(1-c): used to represent [brain] tumour radial propagation	

(K. Swanson & J. Murray, Cell Prolif 2000; Br J Cancer 2002; J Neurol Sci 2003)	


2 or more variables: ex.: healthy cells N1, tumour cells N2, excess H+ ions L	


(Gatenby & Gawlinski, Canc. Res. 1996)	
 Prediction: interstitial cell gap between tumour 
propagation and healthy tissue recession fronts	


Partial differential equations 	




PDE models of tumour growth: invasion	

Macroscopic reaction-diffusion equations to represent invasion front	


1-dimensional variable c = density of tumour cells): KPP-Fisher equation	


D(x) = diffusion (motility) in brain tissue, 	

ρ (reaction)=growth of tumour cells, x spatial 
variable (1-d, 2-d or 3-d) and c: density of 
tumour cells, used to represent brain tumour 
radial propagation from a centre. If D(x) = D,	

then v= 2.sqrt(ρD) is the front propagation speed	

	

(K. Swanson & J. Murray, Cell Prolif 2000;	

 Br J Cancer 2002; J Neurol Sci 2003)	


Partial differential equations 	




PDE models of tumour growth: invasion as competition	

Macroscopic reaction-diffusion equations to represent invasion / recession fronts	


2 or more variables: ex.: healthy cells N1, tumour cells N2, excess H+ ions L	


(Gatenby & Gawlinski, Canc. Res. 1996)	
Prediction: interstitial cell gap between tumour	

propagation and healthy tissue recession fronts	


N1	

N2	


L

Partial differential equations 	




PDE models for moving tumour cells in the ECM	

Chemotaxis: chemo-attractant induced cell movements	


Keller-Segel model	


p = density of cells	

w = density of chemoattractant	


(Originally designed for movements of bacteria, with w=[cAMP])	

(Keller & Segel, J Theoret Biol 1971) 	

Anderson-Chaplain model for local invasion by tumour cells in the ECM	


n = density of cells	

	

f = ECM density	

	

m = MDE (tumour	

     metalloproteases)	

	

u = MDE inhibitor	


(Anderson & Chaplain, Chap 10 in Cancer modelling and simulation, L. Preziosi Ed, Chapman & Hall 2003)	


Partial differential equations 	




Models of tumour growth 5	

Models of Lotka-Volterra type, phenotype-structured, with built-in growth limitation	


(mentioned in Billy & Clairambault, DCDS-B 2013); see also Delitala & Lorenzi’s papers 	

or:	


(mentioned in Billy & Clairambault, DCDS-B 2013); see also Delitala & Lorenzi’s papers 	


where	
 is the total cell population or, more generally, 
a [total] cell population-dependent 
environment variable = growth limitation	


Integro-differential models	




Models for angiogenesis	

VEGF-induced endothelial cell movements towards tumour	


- Biochemical enzyme kinetics	

- Chemical transport (capillary and ECM)	

- “Reinforced random walks”	

- Cell movements in the ECM	


Models by Anderson  and Chaplain, 
Levine and Sleeman	

(Levine & Sleeman,Chap. 6 in Cancer modelling and 
simulation, L. Preziosi Ed, Chapman & Hall 2003)	


Partial differential equations 	




A multiscale angiogenesis model 	

Interacting cell populations	
 Proliferating cancer cell population	


F. Billy et al., J. Theor. Biol. 2009	


Coupling by oxygen concentration, 	
acting on actual commitment of cells	

into the division cycle (passing the restriction point)	

	

Aim: assessment of an antiangiogenic treatment by endostatin	


Partial differential equations 	




Modelling the cell cycle 1 (single-cell models)	

Ordinary differential equations to describe progression in the cell cycle	


C	


X

M	


A. Golbeter’s minimal model for the « mitotic oscillator » 	


C = cyclin B, M = Cyclin-linked cyclin dependent kinase, X = anticyclin protease	


Switch-like dynamics of kinase cdk1, M	

	

Adapted to describe G2/M phase transition, 	

which is controlled by Cyclin B	


(A. Goldebeter Biochemical oscillations and cellular rhythms, CUP 1996)	


Ordinary differential equations 	




Including more phase transitions in the cell cycle model?	

Hint: an existing model for G1/S and G2/M synchronisation	

(recalling the minimum mitotic oscillator (C, M, X) by A. Goldbeter, 1996, here 	

duplicated to take into account synchronisation between G1/S and G2/M transitions)	


Changing the coupling strength may lead to:	


 i=1:	

G1/S	


 i=2:	

G2/M	


Romond, Gonze, Rustici, Goldbeter, Ann NYAS, 1999	


Ci=Cyclin	

Mi=CDK	

Xi=Protease	


Ordinary differential equations 	




Modelling the cell cycle 2 (single-cell models)���
Detailed ODE models to describe progression in the cell cycle	


Phase transitions:	

-G1/S	

-G2/M	

-Metaphase/anaphase	

	

…due to steep variations	

of  Cyc-cdk concentrations	

(bifurcation parameter=cell mass)	


(Novak, Bioinformatics 1999)	
 (Tyson, Chen, Novak, Nature Reviews 2001)	


Ordinary differential equations 	




Modelling the cell cycle 2: single cell (continued) ���
Even more detailed ODE models to describe progression in the cell cycle	


39 variables. Growth factor, rather than cell mass	

(as in Tyson, Chen & Novak) is the driving parameter for	

bifurcations	

	

A simplified model has been proposed, with 5 variables	

	
   C. Gérard & A. Goldbeter, PNAS 2009; Interface Focus 2011	


   C. Gérard, D. Gonze & A. Goldbeter, FEBS Journal 2012	


Ordinary differential equations 	




Modelling the cell cycle 3���
PDE models for age-structured cycling cell populations	


(after B. Basse et al., J Math Biol 2003)	


In each phase i , a Von Foerster-McKendrick-like equation:	


di , K i->i+1 constant or 
periodic w. r. to time t 
(1≤i≤I, I+1=1)	


ni:=cell population 
density in phase i 
di:=death rate	

K i->i+1:=transition rate 
(with a factor 2for i=1)	


Flow cytometry may help quantify	

proliferating cell population repartition	

according to cell cycle phases	


Death rates di and phase transitions K i->i+1 are targets	

for physiological (e.g. circadian) and therapeutic (drugs) control 

Partial differential equations 	




 General case (N phases): by the Krein-Rutman theorem (infinite-dimensional form	

 of the Perron-Frobenius theorem), there exists a nonnegative first eigenvalue λ and, 	

 if                                           ,  Ni , bounded solutions to the problem (here vi(a)=1) :	


(the weights ϕi being solutions to the dual problem); this can be proved by using 
an entropy principle (GRE). Moreover, if the control (di  or Ki->i+1) is constant, or 
if it is periodic, so are the Ni , with the same period in the periodic case.	

	


with a real number ρ such that the asymptotics of 	
 	
 	
       follow:	


Ph. Michel, S. Mischler, B. Perthame, C. R. Acad. Sci. Paris Ser. I (Math.) 2004; J Math Pures Appl 2005 	
      JC, 
Ph. Michel, B. Perthame, C. R. Acad. Sci. Paris Ser. I (Math.) 2006; Proc. ECMTB Dresden 2005, Birkhäuser 2007	

	


   ρ.	




In summary: proof of the existence of a unique growth exponent λ, the same for all 
phases i, such that the                                       are bounded, and asymptotically 
periodic if the control is periodic	


Example of control (periodic control case): 2 phases, control on G2/M transition by 
24-h-periodic CDK1-Cyclin B (from A. Goldbeter’s minimal mitotic oscillator model)	


 ψ=CDK1   All cells in G1-S-G2 (phase i=1)  All cells in M (phase i=2)	

	

  Entrainment of the cell division cycle by ψ= CDK1 at the circadian period	


  	


λ: a growth exponent governing the cell population behaviour	


time t 

“Surfing on the 
exponential growth curve”	

	

(= the same as adding	

an artificial death term	

+λ to the di)	


Partial differential equations 	




Details (1): 2 phases, no control on G2/M transition	


The total population of cells	

	

	

inside each phase follows	

asymptotically an exponential	

behaviour	


Stationary state 
distribution of cells 
inside phases 
according to age a: 
no control, hence 
exponential decay	




 Details (2): 2 phases, periodic control  ψ  on G2/M transition	


The total population of cells	

	

	

inside each phase follows	

asymptotically an exponential	

behaviour tuned by a periodic 
function	


Stationary state	

distribution of cells	

inside phases	

according to age a: 
sharp periodic 
control, hence sharp 
rise and decay 	




The simplest case: 1-phase model with division	


(Here, v(a)=1, a* is the cell cycle duration, and τ(<1)  is the time	

during which the 1-periodic control ψ is actually exerted on cell division)	

	

Then it can be shown that  the eigenvalue problem:	

	

	

	

	


	
 	
 	
 	
 	
 	
 	
  has a unique positive	

1-periodic eigenvector N, with a positive eigenvalue λ, solution, if d(t)=d, K(t,a)=K(a)	

of Lotka’s (=Euler’s) equation:	


Partial differential equations 	




Experimental measurements to identify transition kernels Ki_i+1	


(and simultaneously experimental evaluation of the first eigenvalue λ)	

In the simplest model with d=0 (one phase with division) and assuming K=K(x)	

(instead of indicator functions              , experimentally more realistic transitions):	


Interpreted as: if τ is the age in phase at division, or transition:	

	


With probability density (experimentally identifiable):	


with	


Whence (by integration 	

along characteristic lines):	


i.e.,	


Partial differential equations 	




Experimental parameter identification for this cell cycle	

model with 2 phases G1 / S-G2-M using FUCCI reporters 	


FUCCI=Fluorescent Ubiquitination-based Cell Cycle Indicator	




FUCCI: a movie (Sakaue-Sawano 2008), HeLa cells	




Another FUCCI movie (C. Feillet, IBDC Nice), NIH3T3 cells	




FUCCI reporters + individual cell tracking (non trivial...):	

Measuring time intervals: G1 and total division cycle durations	


Data from Bert van der Horst’s lab, Erasmus University, Rotterdam, processed  by Frédérique Billy at INRIA 	




Phase durations (hence transitions, using 	
 	
  ) in age x	

Pdfs f(x) fitted from data on 50 NIH 3T3 proliferating cells	


	
 	
 	
 	
 	
 	
(mouse embryonic fibroblasts)	

 	


FUCCI data in NIH3T3 cells, that are healthy mouse fibroblasts tracked in liquid medium	


Density of duration of G1 phase	
 Density of duration of SG2M	




Fitting probability density functions to data and computing λ:	

Gamma p.d.f.s were best fits and yielded simple computations	


2-phase Lotka’s equation simply reads:	

	

... which yields here λ = 0.039 h-1	


(and yields mean doubling time Td =17.77 h, and mean cell cycle time Tc =17.95 h)  	


(Billy et al., Math. Comp. Simul. 2014) 	




Phase transitions w.r.t. age x:	

Transition rates K(x) from pdfs f(x) on NIH 3T3 healthy cells	


and resulting population evolution without control on transitions	


G1 to S	
 M to G1	


G1 to S	
 S/G2/M to G1	


G1	


S/G2/M 	


(cell synchronisation “by hand”)	
 Asynchronous theoretical cell growth	


Exponential growth of theoretical total 	

cell population: here, λ=0.039 h-1 	


One complete observed cell cycle	


Recalling that in the model	

f = p.d.f. of phase duration time	

and K = phase transition kernel:	




More single cell data to build population data���
from IBDC (F. Delaunay, C. Feillet) in Nice  	


•  117+150 single NIH3T3 cell data stained by FUCCI, plus a RevErb-α track	


•  117 in 10% Fœtal Calf Serum (FCS) and 150 in 15% FCS (150 out of many; 
only the ones with a robust RevErb-α circadian clock were kept)	


•  Results: evaluation of phase transition rates in a 2-phase model of the cell cycle 
in the two concentration media	


	

•  Increasing FCS from 10 to 15%  reduces standard deviation of both phase 

durations, suggesting increased synchrony between cell cycle phases	


•  Good agreement of the model behaviour with the data, evidencing higher 
velocity v in cell cycle progression with 15% FCS	


•  v: 15% FCS cell population grows approximately 10% faster than the 10% FCS	




More on FUCCI to identify cell cycle phase durations:	

Effects of growth factors on NIH3T3 cell populations	


117 cells	

in 10% FBS	


150 cells	

in 15% FBS	


G1	


G1	


S/G2/M	


S/G2/M	


F. Billy et al. Math BioSci Eng 2013	




Descriptive statistics: influence of growth factors on m and sd ���
	
   Coefficient of variation	


 (sd/m)	

	


       G1:     0.53  / 0.40	

	

S/G2/M:     0.21 / 0.20	


   Coefficient of variation	

 	
(sd/m)	

	

       G1:    0.34  / 0.25	

	

S/G2/M:    0.16 / 0.15	


F. Billy et al. Math BioSci Eng 2013	


Measured	


Using	

model	

parameters	




(F. Billy et al., Math Biosci. Eng. 2013)	




Taking into account different progression velocities in the cycle	

•  The complete model, with speed of progression v (in age x w.r.t. time t):	


•  ... or, choosing a constant speed v independent of age x:	




Setting free the parameter v = speed of progression	

in the cell cycle for 15% FCS cells (with basis	

v=1 in the 10% FCS cell population) yielded	

v=1.095 in the 15% FCS cell population and	

better fit of model to experimental data	

(with Td=15.4 h instead of 18.1 h in 15% FCS	

compared with Td=20.8 h in 10% FCS)	


(F. Billy et al., Math Biosci. Eng. 2013)	


Results: better fit with evaluation of varying speed v	


v=1.095 in 15% FCS  



One cell divides in two: a physiologically controlled process at cell and tissue levels	

in all healthy and fast renewing tissues (gut, bone marrow) that is disrupted in cancer:	

	

Is cell cycle phase synchronisation a mark of health in tissues? 	


(from Lodish et al., Molecular cell biology, Nov. 2003) 	


A possible application to the investigation of	

synchronisation between cell cycle phases  	




A working hypothesis that could explain differences in 
responses to drug treatments between healthy and cancer tissues	


Healthy tissues, i.e., cell populations, would be well synchronised	

w. r. to proliferation rhythms and w. r. to circadian clocks, whereas…	

	

...tumour cell populations would be desynchronised w. r. to both, and such	

proliferation desynchronisation would be a consequence of an escape	

by tumour cells from central circadian clock control messages, just as	

they evade most physiological controls, cf. e.g., Hanahan & Weinberg:	

  	

	
 Question: 	


is cell cycle phase	

desynchronisation 
another hallmark of 
cancer in cell 
populations? 	




A mathematical result: λ increases with desynchronisation   	

where desynchronisation is defined as a measure of phase overlapping at transition	


 	


i.e.,for a given family (fi) of p.d.f.s with second moment σi, λ is increasing with each σi   	


(also shown in Billy et al., Math. Comp. Simul., 2014)	




Simple age-structured PDE models representing	

exchanges between proliferation and quiescence	


p=density of proliferating cells; q=density of quiescent cells; γ,δ=death terms;	

K=term describing cells leaving proliferation to quiescence, due to mitosis;	

β=term describing “reintroduction” (or recruitment) from quiescence to proliferation	


Partial differential equations 	




Delay differential models with two cell compartments,	

 proliferating (P)/quiescent (Q): Haematopoiesis models 	


(obtained from the previous model with additional hypotheses and integration in x along characteristics)	


(from Mackey, Blood 1978)	


Properties of this model: depending on the parameters, one can have positive	

stability, extinction, explosion, or sustained oscillations of both populations	


	
 	
 	
(Hayes stability criteria, see Hayes, J London Math Soc 1950)	

Oscillatory behaviour is observed in periodic Chronic Myelogenous Leukaemia	

(CML) where oscillations with limited amplitude are compatible with survival, 	

whereas explosion (blast crisis, alias acutisation) leads to AML and death	

 (Mackey and Bélair in Montréal; Adimy, Bernard, Crauste, Pujo-Menjouet, Volpert in Lyon)	


(delay τ = cell division cycle time)	


Delay differential equations 	




Modelling haematopoiesis	

for Acute Myeloblastic Leukaemia (AML)	

…aiming at non-cell-killing therapeutics	

by inducing re-differentiation of cells using	

molecules (e.g. ATRA) enhancing differentiation	

rates represented by Ki terms	


 

 

 

where ri and pi represent resting and proliferating	

cells, respectively, with reintroduction term βi=βi(xi) 
positive decaying to zero, 	

with population argument:	

	


and boundary conditions:	


From Adimy, Crauste, ElAbdllaoui J Biol Syst 2008 (see also: Özbay, Bonnet, Benjelloun, JC MMNP 2012)	




Modelling leukaemic haematopoiesis (Mackey/Adimy) : ���
proliferation advantage?	


‘Stem-like’ cells CD34+/CD38-	


Committed cells CD34+/CD38+	


TK (flt3-ITD) mutation	


Blood/ bone marrow sampling	

in AML patients	

Cell sorting (magnetic beads)	

	

FACS for cell cycle phases 	

Self-renewal: critical penomenon	

Measuring apoptosis and cell	

division in each population should lead to model identification	




An age[a]-and-cyclin[x]-structured PDE model	

with proliferating and quiescent cells	


(exchanges between (p) and (q), healthy and tumour tissue cases: G0 to G1 recruitments G from q to p differ)	


Healthy tissue 
recruitment G: 
homeostasis	


Tumour recruitment G:	

(α2>0) exponential growth	


F. Bekkal Brikci, 
JC, B. Ribba,     	

B. Perthame	

J Math Biol 2008;	

Math Comp Mod	

2008; 	

M. Doumic-
Jauffret, MMNP 
2007	


N=p+q: 
total number 
of cells                         
L: leak term 
from p to q     
F: mitosis	


λ>0	

for small Ν	

λ<0	

for large N	


λ>0	

for all Ν	




i.e., “It is appropriate to the model to testify for the phenomena, 	

 and to the phenomena for the model”	

	

(in Aristotle’s Περί  Ουρανού [Sky], from which I freely translate λόγος by model)	


To conclude this first part, quoting Aristotle: 	

	
 	
	




II. Introducing weapons and targets in proliferation models	




Cancer therapeutics summed up���
	
•  Surgery: 	
    highly localised	


•  Radiotherapy:     localised, kills all renewing cells… including tumour cells	


•  Chemotherapy: - usually general, adapted to diffuse and metastatic cancers;	

	
 	
 	
    acts on all renewing cells at the subcellular level (degrading 

	
 	
    DNA, blocking phase transitions, inducing apoptosis), at the 
	
 	
    cell and tissue level (antiangiogenic drugs), or at the whole 
	
 	
    organism level	


	
 	
 	
   - but: new molecules = monoclonal antibodies (xxx-mab) 
	
 	
    directed toward tumours or tumour-favoring antigenic sites	


•  Immunotherapy: - injection of cytokines (interferon, interleukins) = boosters	

	
 	
 	
    - use of engineered macrophages or lymphocytes directed 

	
 	
      toward specific targets: future?	




Some pitfalls of cancer therapeutics	

•  Surgery: - (partly) blindfold	

	
 	
      - not feasible when tumour is adherent to vital blood vessels (liver)	


     To overcome these drawbacks: - radio-guided surgery, possibly using DTI	

	
 	
 	
 	
             - previous use of radio- or chemotherapy	


	

•  Radiotherapy: not enough localised or not enough energetic 	
    

Recently proposed: hadrontherapy = particle beam therapy (protons, neutrons 
and helium, carbon, oxygen and neon ions instead of photons): better 
localisation, possibility to deliver higher doses without unwanted damage 	


•  Chemotherapy: - toxic to all fast renewing tissues (including healthy ones: 	

	
    	
    gut and other digestive epithelia, skin, bone-marrow)	


	
 	
 	
   - induces development of drug resistance by selecting 	

	
   	
     resistant clones among cancer cells	


      Proposed: optimisation of treatment to reduce toxicity and drug resistance	

	

…..New molecules: xxx-mab, e.g. EGFR inhibitors (cytostatic drugs)	

	
 	
 	
 - monoclonal antibodies are mouse antibodies!-> HAMA	

	
 	
 	
                                          	
	




DNA synthesis 

Antimetabolites 

DNA 

DNA transcription DNA duplication 

Mitosis 

Alkylating agents 

Spindle poisons 

Intercalating agents 

Examples of drugs and targets at the subcellular level: 
chemotherapy for liver, pancreatic or biliary cancers 

• 5-FU 
• MTX 
• OH-urea 

• CDDP 
• Oxaliplatin 
• CPM 

• Vinorelbine 
• Docetaxel, 
  paclitaxel 

• Irinotecan 

• Doxorubicin, epirubicin 

(Image thanks to F. Lévi, INSERM U776)	




S	

(2-6h) G2	


(2-32h)	


M	

(0.5-2h) 

Alkylating	

agents 

G1	

(2-∞h)	


G0 

Vinca alkaloids	


Mitotic inhibitors 

Taxoids 

Antimetabolites	


Cell cycle phases as targets for chemotherapy agents 
Antibiotics	


	


(Image thanks to F. Lévi, INSERM U776)	




Different viewpoints to represent tumour therapies	

1. At the molecular level:	

Hitting specific molecular targets in cancer cells by “targeted therapies”	

Presently the most popular point of view among cancer biologists	

Achievements: imatinib in chronic myelogenous leukaemia (CML),	

ATRA+anthracylins in acute promyelocytic leukaemia (APL)	

Problems: (often very) relative specificity; toxicity to healthy tissues;	

not taking into account emergence of drug resistance	

	

2. At the cell and molecular level:	

Taking into account all intracellular molecular pathways involved in proliferation,	

cell death and [de-]differentiation: a biocomputer scientist's point of view	

Problems: scores of reaction networks, hundreds of parameters to estimate,	

not taking into account emergence of drug resistance	

	

3. At the cell population level:	

Defining functional targets for drugs in qualitative population dynamics models	

with added external control: PDEs or IDEs (integro-differential equations). 	

Advantages: the right level to take into account population level effects	

(in particular emergence of drug resistance) and to design optimisation strategies	

Problems:  attributing specific functional effects to given drugs	




Examples: macroscopic models of the action of drugs	


(T. Jackson & H. Byrne, Math BioSci 2000)	


(JC Panetta, Math BioSci 2003)	


1. ODE with functional representation of pharmacodynamics for bone marrow toxicity 	


2. PDEs describing action of a drug (d) on proliferating (p) and quiescent (q) cells	


PBM, NBMi = bone marrow cells, N = circulating neutrophils, D = drug concentration	


p (resp. q) cells:	

high (resp. low)	

susceptibility to drug d	


“Functional’’=by designing targets related to those fates that are considered as relevant	

for cell and tissue behaviour in cancer: proliferation, cell death, [de-]differentiation	




3 detailed examples of molecular PK-PD modelling:	

Oxaliplatin, Irinotecan, 5-Fluorouracil	


Pharmacokinetic-pharmacodynamic (PK-PD) modelling	

 

“Pharmacokinetics is what the organism does to the drug,	

     Pharmacodynamics is what the drug does to the organism”	


	

	




1st example: Modelling PK-PD of cytotoxic drug Oxaliplatin	

(cytotoxic action exerted on DNA in all phases except M phase)  	


Decay of free DNA	


Input i =oxaliplatin infusion	

Plasma proteins	


Intracellular reduced glutathione	


oxaliplatin	

infusion	


oxaliplatin	

infusion	


(JC, O. Fercoq, submitted as Springer book chapter, 2014)	




Molecular PK of Oxaliplatin in plasma compartment	


[ ] )(tiPLCl
dt
dP

+⋅⋅++−= λξ

Mass of  active oxaliplatin  Instantaneous infused 
dose (flow)	


Rate of transfer from plasma to 
peripheral tissue (cellular uptake) 

Constant clearance  

Binding rate of oxaliplatin to plasma proteins	
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Mass of plasma  proteins (albumin 
or other hepatic proteins)	
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ω

Hepatic synthesis activity of plasma proteins ωL tunes the period of the cycle of plasma proteins	


rL tunes the amplitude of the 
cycle of plasma proteins	


ε tunes the robustness of GSH oscillations, from harmonic to relaxation-like	


Plasma protein synthesis	

shows circadian rhythm	




Molecular PK of Oxaliplatin: tissue concentration	


Tissue concentration	


in free oxaliplatin (C=[DACHPt]) 

GST-mediated binding of reduced glutathione (G)     
to oxaliplatin (C), i.e., cell shielding by GSH	


Degradation of free DNA (F)  
by oxaliplatin (C)	


W = volume of 	

tissue in which	

the mass P of 	

free oxaliplatin	

is infused“Competition” between free DNA [=F] and reduced glutathione	


GSH [=G] to bind oxaliplatin [=C] in proliferating cells	




Molecular PD of Oxaliplatin activity in tissue	

Mass of free DNA	


DNA repair  function	


(θ1 < θ2 : activation and inactivation  thresholds; gR: stiffness) 
Mass of reduced     
glutathione in target          
cell compartment 

Activity of γ-Glu-cysteinyl ligase (GCS) 

Action of oxaliplatin on free DNA (F)	


Glutathione synthesis	

(  detoxification) in cells 
shows circadian rhythm	


ωG  tunes the period of the cycle	

of GSH synthesis by GCS	


Oxaliplatin cell concentration	


ρG tunes the amplitude of the cycle of GSH 
synthesis by GCS = γ-Glu-cysteinyl ligase	


δ tunes the robustness of GSH oscillations, from harmonic to relaxation-like	


1-F/F0 =DNA damage	

dN
dt

= −
ωL
2

ε
(L − L0 )



PD of Oxaliplatin on DNA and genetic polymorphism	

 of repair function in tumour cells: drug resistance	


…the same with stronger DNA repair function, ERCC2=XPD-determined:	


F (free DNA)	


F (free DNA)	


G (glutathione)	


S (GCS activity)	


(Diminished VGST binding to GSH / cellular uptake ξ, changed infusion peak time, lead to comparable results)	


F (free DNA)	




2nd example: cytotoxic drug Irinotecan (CPT11)	


(from Klein et al., Clin Pharmacol Therap 2002)	


Intracellular PK-PD model of CPT11 activity:	

	

•  [CPT11], [SN38], [SN38G], [ABCG2],	

   [TOP1], [DNA], [p53], [Mdm2]	

•  Input=CPT11 intracellular concentration	

•  Output=DNA damage (Double Strand Breaks)	

•  Constant activities of enzymes CES and UGT1A1	

•  A. Ciliberto’s model for p53-Mdm2 dynamics	


(from Mathijssen et al., JNCI 2004)	


(CES)	


(from Pommier, Nature Rev Cancer 2006)	


Topoisomerase 1: the target	
Prodrug	


Drug	


Catabolite	




PD	


PK	


Intracellular PK-PD of Irinotecan (CPT11)	


(Luna Dimitrio’s Master thesis 2007; 	

A. Ballesta’s PhD work 2012)	




A. Ciliberto’s model of p53-Mdm2 oscillations	


(Ciliberto, Novak, Tyson, Cell Cycle 2005)	




PD of Irinotecan: p53-Mdm2 oscillations can repair 
DNA damage provided that not too much ���

SN38-TOP1-DNA ternary complex accumulates	


(Intracellular PK-PD of irinotecan and A. Ciliberto’s model of p53-MDM2 oscillations)	

(Luna Dimitrio)	




3rd example: PK-PD of cytotoxic drug 5-Fluorouracil ���
���

5-FU: 50 years on the service of���
colorectal cancer treatment	


[= Uridine]	


(NB : Uracil is found only in DNA) 	


(Methylation site blocked)	


Normally,!
methylation in 5!
by Thymidylate!
Synthase (TS) of !
dUMP into dTMP"

(5-FU will be later transformed into 
FdUMP instead of normal dUMP)	




PK-PD of 5-FU 	


Competitive	

inhibition	

by FdUMP of 
dUMP binding to 
target TS	


+	

[Stabilisation 
by CH2-THF of 
binary complex 
FdUMP-TS]	


Incorporation of 
FUTP instead of 
UTP to RNA 	


Incorporation of 
FdUTP instead of 
dTTP to DNA 	
(Longley, Nat Rev Canc 2003)	


RNA pathway	
 DNA pathway 
2 main metabolic pathways:	

 action on RNA and on DNA	




 Formyltetrahydrofolate (CHO-THF) = LV ���
a.k.a. Folinic acid, a.k.a. Leucovorin  

   Precursor of CH2-THF, coenzyme of TS, that forms with it and FdUMP 
a stable ternary complex, blocking the normal reaction"

	
 	
                         (Longley, Nat Rev Canc 2003)	


5,10-CH2-THF + dUMP + FADH2     dTMP +THF + FAD 
TS	


	
 	
Inhibition of Thymidylate Synthase (TS) by 5-FU and Leucovorin	


(TS affinity:	

FdUMP > dUMP)	




Plasma and cell pharmacokinetics (PK) of 5-FU	

•  Poor binding to  plasma proteins	


•  Degradation +++ (80%) by liver DPD	


•  Cell uptake using a saturable transporter	


•  Rapid diffusion in fast renewing tissues	


•  5-FU = prodrug; main active anabolite = Fd-UMP	


•  Fd-UMP: active efflux by ABC transporter ABCC11 = MRP8	

(Oguri, Mol Canc Therap 2007)	




5-FU catabolism: DPD ���
(dihydropyrimidine dehydrogenase)	


•  5-FU 	
DPD 	
5-FU H2, hydrolysable [           FβAlanin]	


•  DPD: hepatic +++	


•  DPD: limiting enzyme of 5FU catabolism 	


•  Michaelian kinetics	


•  Circadian rhythm of activity	


•  Genetic polymorphism +++ (very variable toxicity)	




Modelling PK-PD of 5-FU [with drug resistance] + Leucovorin	

(action exerted on thymidylate synthase only in the S-G2 phase) 	


(F. Lévi, A. Okyar, S. Dulong, JC, Annu Rev Pharm Toxicol 2010)	




P = Plasma [5FU]	

	

F = Intracellular [FdUMP]	

	

Q = Plasma [LV]	

	

L = ‘Intracellular [LV]’=[CH2THF]	

	

N = [nrf2] efflux Nuclear Factor	

	

A = ABC Transporter activity	

	

S = Free [TS] (not FdUMP-bound)	

	

B = [FdUMP-TS] binary complex	

	

T = [FdUMP-TS-LV]  irreversible 
ternary complex (TS blockade)	


  5-FU (+ drug-induced drug resistance) + Leucovorin	


Input = 5FU infusion flow 

Output = blocked 
Thymidylate Synthase 

Input = LV infusion flow	




5-FU and LV, plasma and intracellular PK:	

uptake, degrading enzymes, active efflux	


P=5FU	

(plasma)	

	

F=FdUMP	

(cell)	

	

Q=LV	

(plasma)	

	

L=LV (cell)	


5-FU cell uptake	
 5-FU DPD detoxication in liver	
FdUMP extracellular efflux	

(by ABC Transporter ABCC11)	


Binding of	

FdUMP to TS	

to form a reversible	

binary complex B	


Binding of LV to	

FdUMP-TS = B to	

form a stable 	

ternary complex	

	


i(t) = 5-FU	

infusion flow	


j(t) = LV	

infusion flow	




N=nuclear factor nrf2	

	

	

A=ABC transporter MRP8	


Resistance? Induction of ABC Transporter activity by	

FdUMP-triggered synthesis of nuclear factor nrf2	


FdUMP	

Nuclear factor	

(e.g., nrf2)	

ABC Transporter activity	

(ABCC11=MRP8)	




S=free TS	

	

B=binary 
complex	

	

T=ternary 
complex	

	


Targeting Thimidylate Synthase (TS) by FdUMP:	

Formation of binary and ternary TS-complexes	


        "

F + S 	
 	
F-S = B (FdUMP-TS 2-complex)	


B + L 	
 	
B-L = T (FdUMP-TS-LV 3-complex)	


k1"
k-1	
 k4	


TS blockade results in subsequent DNA damage	

	




Simulation: 5 sequences of 2-week therapy courses	

4 days of 5-FU+LV infusion,12 hours a day, every other week	

	

P = Plasma [5FU]	

	

	

F = Intracellular [FdUMP]	

	

	

Q = Plasma [LV]	

	

	

L = Intracellular [LV]	

	

N = [nrf2] 5FU-triggered 
Nuclear Factor	

	

A = ABC Transporter activity, 
nrf2-inducted	

	

S = Free [TS] (not FdUMP-
bound)	

	

B = [FdUMP-TS] reversible 
binary complex	

	

T = [FdUMP-TS-LV] 	
           
stable ternary complex	

	




Some features of the model: 	

a) 5-FU with/without LV in resistant cancer cells (=MRP8+ cells)	


With Leucovorin added in treatment	
 Without Leucovorin added	


TS	
 TS	


Cancer cells die	
 Cancer cells survive	


6.4	
2.5	

Binary	

complex	


Ternary	

complex	


Ternary	

complex	


42.6	


TS	

Binary	

complex	

Ternary	

complex	


6.4	


(42.9)	

Binary	

complex	


Ternary	

complex	


6.4	
2.5	




b) 5-FU+LV with/without MRP8 (cancer vs. healthy cells)	


Resistant cancer cells (=MRP8+)	
 Healthy or sensitive cells (=MRP8-)	


TS	
 TS	
2.5	
 0.8	


Cancer cells resist more than healthy cells, due to lesser exposure to FdUMP	


(actively effluxed from cells by ABC Transporter MRP8)	


TS	
 2.5	
 TS	




The sentinel protein p53 senses DNA damage	

due to cytotoxic drugs, induces cell cycle arrest and	

launches DNA repair or (in case of failure) apoptosis












Connecting DNA damage with cell cycle arrest at G1/S and G2/M checkpoints 
by inhibition of phase transition functions ψi and by induction of cell death	


	
 	
	


(from You et al., Breast Canc Res Treat 2005)	




Modelling p53 cell dynamics ( L. Dimitrio’s, then J. Elias’s theses)	


Dimitrio et al. JTB 2012; further work by Elias et al. BBA Prot 2014, Phys Biol 2014, CSBJ 2014   	


Single-cell  intracellular reaction-diffusion oscillatory dynamics of p53 and Mdm2 	




III. Therapeutic control and its theoretical optimisation	




Optimising cancer therapy by drugs 	
	


•  Pulsed chemotherapies aiming at synchronising drug injections with cell cycle 
events to enhance the effect of drugs on tumours: e.g. optimal control of IL21 
injection times and doses Σ ui δ (t-ti) using variational methods (Z. Agur,IMBM, Israel)	


•   Optimising [combined delivery of cytotoxic drugs and] immunotherapy 	
           
(L. de Pillis & A. Radunskaya Cancer Res 2005, JTB 2006, Frontiers Oncol 2013)	


•  Chronotherapy = continuous infusion time regimens taking advantage	

       of optimal circadian anti-tumour efficacy and healthy tissue tolerability	

       for each particular drug: has been in use for the last 15 years, with achievements 

for colorectal cancer treatment in human males (M.-C. Mormont & F. Lévi, Cancer 2003)	


•  Optimising combined delivery of cytotoxic and antiangiogenic drugs           	
      
(U. Ledzewicz et al. MBE 2011)	


•  Overcoming drug resistance +++: optimal control strategies to overcome the 
development of drug resistant cell populations, using different drugs	


(M. Kimmel & A. Swierniak, Springer LN Math 1872, 2006; Lorz et al. 2013, 2014; Trélat et al., underway)	

	

	


	




Choosing the constraint to be represented may determine	

the model of proliferation used to optimise drug delivery,	

aiming at avoiding the two main pitfalls of pharmacotherapy:	


•  Toxicity issues. Controlling toxic side effects to preserve healthy cell populations 
leads to representing proliferating cell populations by ordinary differential equations, 
or by age-structured models: physiologically structured partial differential equations	


•  Drug resistance issues. Controlling emergence of drug-induced drug-resistant cell 
subpopulations in tumour tissues leads to using phenotypic trait-structured models of 
proliferation: physiologically structured evolutionary integro-differential equations	




1. Minimising unwanted toxic side effects on healthy cells 	




Search for a difference between healthy and cancer cell populations: 
possible role of circadian rhythms?���

Mammalian physiology at the macroscopic level: control by 
circadian rhythms of the cell division cycle at checkpoints	

 Example of circadian rhythm in normal  Human oral mucosa: tissue concentrations 

in Cyclin E (control of G1/S transition) and Cyclin B (control of G2/M transition)	
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Nuclear staining for Cyclin-E and Cyclin-B1. Percentages of mean ± S.E.M. in oral mucosa 
samples from 6 male volunteers. Cosinor fitting, p < 0.001 and p = 0.016, respectively.	
	


	
(from Bjarnason et al. Am J Pathol 1999)	
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Central coordination	


            TGFα, EGF	

Prokineticin	


Glucocorticoids	

      Food intake rhythm	


                   Autonomic nervous system	


Circadian chronobiology: the circadian system	


Lévi, Lancet Oncol 2001 ; Mormont & Lévi, Cancer 2003	


A system of molecular clocks	

that gives a 24 h rhythm to	

all cells in our organism	




•  Tolerance for anticancer drugs:	

  variation > 50% as a function of 	

  circadian timing	

	


•  Determinants:	

  rhythms in metabolism,	

  proliferation, apoptosis, repair	

	


•  Antitumour activity:	

  best near the time of best tolerance	


•  Combination of cytotoxic drugs	

  most effective following the delivery of each agent	

  near its time of best tolerance	


Lévi, Lancet Oncol 2001 ; Granda et Lévi, Chronobiology Int 
2002 

Chronotherapeutic principles, according to F. Lévi	


INSERM E 0354 

Gemcitabine	


R-Roscovitine	


Activity	
 Rest	


Experimental settings for laboratory rodents	


(M.-C. Mormont & F. Lévi, Cancer 2003	




Simple pharmacokinetics-pharmacodynamics (PK-PD)	

of a cancer drug acting on cell populations: 6 state variables	


Healthy cells (jejunal mucosa)	
 Tumour cells	


f(C,t)=F.Cγ/(C50
γ+Cγ).{1+cos 2π(t-ϕS)/T}	
 g(D,t)=H.Dγ/(D50

γ+Dγ).{1+cos 2π(t-ϕT)/T}	


(PK)	


(« chrono-PD »)	


(homeostasis=damped harmonic oscillator)	
 (tumour growth=Gompertz model)	


(JC, Pathol-Biol 2003; Adv Drug Deliv Rev 2007)	

Aim: balancing IV delivered drug anti-tumour efficacy by healthy tissue toxicity 	


Main work hypothesis: ϕT=ϕS+12  

 oxaliplatin infusion flow 	




Optimal control, step 1: deriving a constraint 	

function from the enterocyte population model	


Minimal toxicity constraint, for 0<τA<1 (e.g. τA =60%):	


Other possible constraints:	




Optimal control, step 2: deriving an objective 
function from the tumoral cell population model	


Objective function 1: Eradication strategy: minimize GB(i), where;	


Objective function 2: Stabilisation strategy: minimize GB(i), where;	


or else:	


or!



Optimal control problem (eradication): defining a Lagrangian:	


then:	


If GB and FA were convex, then one should have:	


…and the minimum would be obtained at a saddle-point	

    of the Lagrangian, reachable by an Uzawa-like algorithm	




…but GB and FA need not be convex functions of infusion flow i!!	

	

	

	

Yet it may be proved using a compacity argument that	

the minimum of GB under the constraint FA≤0 actually exists:	

	

	

FA and GB  are weakly continuous functions of i, from L2([t0,tf]) to  H2([t0,tf]) since 
i->A(t,i) and i->B(t,i) are continuous by integration of the initial system:	


Investigating the minima of the objective 
function: a continuous problem	


and the constraint set {i, 0 ≤ i ≤ imax, FA(i) ≤ 0} is weakly compact in L2([t0,tf])	

	


hence also are	

C,D,A,B as 
functions of i	




Investigating the minima of the objective 
function: a differentiable problem	


     Moreover, A and B are C 2  as functions of time t  (by integration of the initial system)	

	

	

     The minimum of A being attained at tA(i), i.e., FA(i) = τA-A(tA, i)/Aeq, it can be proved, 

assuming that ∂2A(tA(i),i) / ∂t2 > 0 and using the implicit function theorem, that tA is  a 
differentiable function of i	


	

	

     In the same way,  tB , defined by GB(i)=maxt B(i,t)=B(i,tB(i)), is, provided that 
∂2B(tB(i),i) / ∂t2 < 0,  a differentiable function of i	


	

     Hence, the infusion flow optimatisation problem is liable to differentiable optimisation 

techniques, and though the problem is not convex, so that searching for saddle points of 
the Lagrangian will only yield sufficient conditions,	


	

      We nevertheless can define a heuristics to obtain minima of the objective function GB 

submitted to the constraint FA≤0, based on a Uzawa-like algorithm with a nonlinear 
conjugate gradient	


	

	

	




Optimal control: results of the tumour stabilisation strategy 
using this simple one-drug  PK-PD model	


(and investigating more than Uzawa’s algorithm fixed points, by storing best profiles)	
	

	


Objective: minimising the maximum 
of the tumour cell population	


Constraint : preserving the jejunal mucosa 
according to the patient’s state of health	


(C. Basdevant, JC, F. Lévi, M2AN 2005; JC Adv Drug Deliv Rev 2007)	


Solution : optimal infusion flow i(t) adaptable to the patient’s state of health 
(according to a tunable parameter τA: here preserving τA=50% of enterocytes) 	


i	
 B	
 A	




Physiologically and pharmacologically controlled model:	

age-structured PDE model for the cell division cycle	


(here only linear models are considered, but nonlinear models with feedback are possible)	


(from B. Basse et al., J Math Biol 2003)	


In each phase i, a McKendrick linear model:	


di , Ki->i+1 constant or periodic	

 w. r. t. time t (1≤i≤I, I+1=1)	

	


ni:=cell population density in 
phase i ; di:=death rate;	

vi :=progression speed;	


Ki-1->i:=transition rate	

(with a factor 2for i=1)	


Death rates di: (“loss”), “speeds” vi and phase transitions Ki->i+1 are model targets	

for physiological (e.g., circadian) or therapeutic (drug) control ψ(t)	

[ψ(t): e.g., clock-controlled CDK1 or intracellular output of drug infusion flow]	

(Presented in: JC, B. Laroche, S. Mischler, B. Perthame, RR INRIA #4892,  2003;  recently: JC, S. Gaubert, T. Lepoutre MMNP, MCM 2009, 2011)	




In summary: proof of the existence of a unique growth exponent λ, the same for all 
phases i, such that the                                       are bounded, and asymptotically 
periodic if the control is periodic	


Example of control (periodic control case): 2 phases, control on G2/M transition by 
24-h-periodic CDK1-Cyclin B (from A. Goldbeter’s minimal mitotic oscillator model)	


 ψ=CDK1   All cells in G1-S-G2 (phase i=1)  All cells in M (phase i=2)	

	

  Entrainment of the cell division cycle by ψ= CDK1 at the circadian period	


  	


λ: a first eigenvalue governing the cell population behaviour	


time t 

“Surfing on the 
exponential growth curve”	

	

(= the same as adding	

an artificial death term	

+λ to the di)	


Main output of this age-structured PDE model	




(from You et al. 2005, Breast Canc. Res. Treat. 2005)	


Circadian rhythms and physiological control of the cell cycle:	

Known connections between the cell cycle and circadian clocks 	


So, what if we add circadian clock control??	

i.e., what if we put K(t,x) = κ(x).ψ(t)	

with κ = FUCCI-identified and ψ = a cosine?	

[cosine: in the absence of a better identified clock thus far!] 	

	


At the molecular level (Bmal1 and Per2 are 
constituents of the circadian clock):	

	

Bmal1 controls Wee1 and Cyclin B-Cdk1	

	

Per2 controls p21 and Cyclin E- Cdk2	

	

Wee1 and p21 act in antiphase	

	

The circadian clock (Bmal1, Per2) might thus	

be a synchroniser in control of cell populations 	

between G1/S and G2/M transitions 	

	

	




(a 12 h delay between the two cosines was determined as the one that maximised the λ) 	


Circadian control on phase transitions: two cosines for ψ1 and ψ2 	


Resulting evolution of the clock-controlled cell population: λ=0.024 h-1 (<0.0039 h-1)  	

  	


λ=0.024 h-1 	


Adding theoretical circadian control on phase transitions	


Here we put	

K(t,x) = κ(x).ψ(t)	

with κ = FUCCI-identified	

and ψ = cosine-like function	

	

[cosine: in the absence of a	

better identified clock thus far] 	

 

SG2M to G1 gating	
G1 to SG2M gating	


Gate open	


Gate closed	


Gate open	


Gate closed	




Phases: asynchronous cell growth	
 Global: sheer exponential cell growth	


[Agreement between	

model and data on	

the first division] 	


F. Billy	




Steep synchronisation within the cell cycle	
 Stepwise cell population growth	


F. Billy	


(1) Healthy        	

cell population	


(=sharp gating by 	

circadian clock)	


‘Healthy gating’	




Loose synchronisation within the cell cycle	
 Stepwise cell population growth	


F. Billy	


(2) cancer cell	

population	


(=lazy gating by 	

circadian clock)	


Main work hypothesis	

(difference from healthy cells)	


‘Cancer gating’	




F. Billy	


Healthy control case ψ	
 Cancer control case ψ	
 No control	




Theoretical chronotherapeutic optimisation	

of a first eigenvalue (for cancer growth) under the constraint	

of preserving another first eigenvalue (healthy tissue growth)	


-  McKendrick’s model of cell population proliferation	

-  Control of proliferation by blocking Ki_i+1 using theoretic periodic drug delivery:	

 K(t,x)=[1-g(t)].ψ(t).κ(x) where: g(t) is a periodic external control (chronotherapy)    

	
 	
 	
         ψ(t) is a circadian clock control on the cell cycle
	
 	
 	
         κ(x) is an [only] age-dependent transition rate	


	

-  Objective function to be minimised: λ1, 1st eigenvalue of cancer cell population	

-  Constraint function to be preserved: λ2 [≥Λ], 1st eigenvalue of healthy cell population	

-  Design of an augmented Lagrangian by combining λ1 and λ2-Λ (with penalty)	

- Arrow-Hurwitz (or Uzawa) algorithm to track saddle points of the Lagrangian	

-  …thus obtaining only suboptimality (necessary to obtain critical points) conditions	


	


i.e., what if now we add a drug control, setting K(t,x) = κ(x).ψ(t).[1-g(t)]?	

 



Results: circadian + 24h-periodic drug control on transitions	

K(x,t) = κ(x).ψ(t).g(t): κ FUCCI-identified, ψ clock, g optimal drug effect on S-phase 	


green and red gating: ψ	

(circadian clock control	

without drug)	

	

blue: g.ψ	

(drug + circadian control)	

g here numerical solution	

to the optimisation problem	

	


healthy case:	

sharp ψ gating	


cancer case:	

lazy ψ gating	


G1/S	


G1/S	


M/G1	


M/G1	


F. Billy et al. Math Comp Simul 2012,	

Math Biosc Eng 2012, DCDS-B 2012, 	

Springer book chapter 2013	




Evolution of the two populations: cancer (blue), healthy (green)	


Circadian control,	

no drug infusion	


Circadian control,	

added drug infusion	


(F. Billy et al. 2013, 2014)	




Numerical solution to the optimal infusion problem	

(Uzawa) and effect on eigenvalues, healthy and cancer 	

Infusion scheme g(t)	


Target eigenvalues:	

Cancer (blue)	

Healthy (green)	


In favour of this approach:	

- characterises long-term                	

   trends with one number,	

- easily accessible	

   target for control	

- fits to physiologically	

  structured growth models	


Its drawbacks:	

-  deals with asymptotics,	

not with transients	

-  assumes a linear model	

 for proliferation	

- assumes periodic control	

 by drugs (but the period	

 can be infinitely long)	




Introducing pharmacological effects on death rates with repair	

(rather than on phase transitions): extension of the model	


+  PK-PD added models: cytotoxic (death rates) effects 	


(JC, O. Fercoq, book chapter to appear, 2014)	




Pharmacokinetics-pharmacodynamics (PK-PD) of oxaliplatin	

(cytotoxic action exerted on DNA in all phases except M phase)  	


Decay of free DNA	


Input i =oxaliplatin infusion	

Plasma proteins	


Intracellular reduced glutathione	


oxaliplatin	

infusion	


oxaliplatin	

infusion	


(JC, O. Fercoq, Springer book chapter to appear, 2014)	




PK-PD of 5FU [with drug resistance] + Leucovorin	

(action exerted on thymidylate synthase only in the S-G2 phase) 	


(F. Lévi, A. Okyar, S. Dulong, JC, Annu Rev Pharm Toxicol 2010)	




Solution to the chronotherapeutic combined drug delivery optimisation problem 	


(JC, O. Fercoq, Springer book chapter to appear, 2014)	


Here, only	

cytotoxic	

drugs acting	

on death rates 	


Leucovorin	


5FU	


Oxaliplatin	




Effects of this optimised periodic drug delivery regimen on growth rates 	


(JC, O. Fercoq, Springer book chapter to appear, 2014)	


Target eigenvalues:	

Cancer (blue)	

Healthy (green)	




Evolution of the two cell populations, without, then with cytotoxic drugs	


(JC, O. Fercoq, Springer book chapter to appear, 2014)	


A result not as good as in the previous case, when drugs were applied on	

transition rates... hence the suggestion of a cytotoxic+cytostatic treatment	

(e.g., 5FU+oxaliplatin+cetuximab): a story to be continued	


(Here, drugs acting on death rates and not on transition rates ) 	




+Modelling effects of cytostatics (CDKIs, TKIs, ...) acting	

on cell cycle phase transition rates [and boundary conditions]	


Control on inputs from G0 phase may be represented by a multiplicative factor in the	

 first (G1) boundary condition (which is the same as modifying the first transition rate);	

for instance, following Pierre Gabriel and Glenn Webb (JTB 2012):	


New mitosis term 	


New ‘death’ term	

(=death + escape	

 towards G0) 	
f: target of 	


cytostatic drug,	

sending cells to	

quiescence	

(measurable)	


Optional (not done, to be added)	




[Therapeutic control and its theoretical optimisation]	

	

     2. Overcoming resistance in cancer cell populations	


	
 	
      Cancer as an evolutionary problem	

	

“Nothing in biology makes sense except in the light of evolution”	


	
 	
 	
 	
 	
 	
Theodosius Dobzhansky, 1973	




Tackling this other main issue in cancer pharmacotherapeutics:	

Emergence of drug resistance in cancer cell populations	

(another model of cell population dynamics, with thus far no PK-PD) 	


Instead of controlling drug resistance at the individual cell level (ABC transporters),	

representing the possible emergence of resistant cell clones due to mutations	

occurring at mitoses in a cell Darwinism evolutionary perspective.	

	

	

Assumption: Cancer cell populations, under the pressure of a drug-enriched	

environment, may develop (costly) mutations evolving into resistant cell clones,	

less fit in a drug-free environment, but better survivors in a hostile environment.	

	

	

A therapeutic objective, under these circumstances, may be not to eradicate all	

cancer cells (in fact only all drug-sensitive cells), but instead to let some of them	

live so as to limit the growth of an emergent resistant cell clone (‘adaptive therapy’).	




Carlo Maley	
 Robert Gatenby, MD*	


First international  	

Evolution and cancer conference 
SF, June 3-5, 2011, second in 2013	


A soaring theme on the international scene: Evolution and cancer	


* RG advocates ‘adaptive therapy’, cf. Gatenby Nature 2009, Gatenby et al. Cancer Research 2009  	




  Gatenby’s new paradigm: rational management of cancer burden by ‘adaptive therapy’	


See also review on evolution and cancer by Aktipis et al. PLoS One, Nov. 2011 	




Evolution of cell populations toward resistance under anticancer 
drug pressure: ecological-like integro-differential models 	


- Exposure to anticancer drugs is an environmental factor to which cell populations	

   adapt or not, according to their evolution abilities	

	

	

- Due to genomic instabilities (mutated p53, error-prone DNA polymerases),	

   resulting in higher genomic variability at division, cancer cell populations have	

   better capacities than healthy cell populations to adapt to a changing environment	

	

	

- Such variability is multiple and cannot be reduced to only pointwise mutations	

	

	

-  Inspired by ecological models, one can represent it by a continuous trait x governing	

  an evolving phenotype expressed as resistance to a drug, or to multiple drugs	




First point of view: ‘small mutations only’, one cytotoxic drug c(t), evolutionary trait x 	

a) Healthy cells	


A. Lorz et al. M2AN 2013	




First point of view: ‘small mutations only’, one cytotoxic drug c(t), evolutionary trait x 	

b) Cancer cells           	


A. Lorz et al. M2AN 2013	


Mathematical models: integro-differential equations	




Small mutations only: monomorphism= evolution towards a single phenotype	


Theorem: evolution towards monomorphism (proved in A. Lorz et al., M2AN 2013)	


Asymptotic pdf in trait x	
Evolution in time t and trait x  	


xH, fittest trait	


(illustrations with θH=0, i.e., no mutations and µH(x)=0, i.e., no drug-induced resistance)	




	

	

	

Small mutations only: monomorphism= evolution towards a single phenotype	

	

	

	


Theorem: evolution towards monomorphism (proved in A. Lorz et al., M2AN 2013)	


Asymptotic pdf in trait x	
Evolution in time t and trait x  	


xC, fittest trait	


(illustrations with θC=0, i.e., no mutations and µC’(x)<0, i.e., drug-induced resistance)	




Second point of view : ‘no mutations, exchanges with the environment’,      	

cytotoxic and cytostatic drugs, 2d resistance trait (x [cytotoxic],y [cytostatic])	




No mutations: sensitive (‘healthy’) cells. Starting from a common medium phenotype ���
(cytotoxic res.=.5, cytostatic res.= .5), evolution towards the non-resistant (0,0) phenotype:���

Monomorphism of asymptotic cell populations	


Model, simulations and figures by Tommaso Lorenzi (work underway)	




No mutations: resistant (‘cancer’) cells. Starting from the same common medium 
phenotype (.5,.5), evolution towards 2 resistant phenotypes, (1,0) and (0,1):���

Dimorphism (which is in fact a ‘double monomorphism’ of asymptotic cell populations)	


Model, simulations and figures by Tommaso Lorenzi (work underway)	




Mutations again, cytotoxic and cytostatic drugs,	

  with a 1d drug resistance trait x for both drugs	


(A. Lorz et al., M2AN 2013)	




A. Lorz et al. M2AN 2013	


Cancer cells	
 Healthy cells	


Cancer cell	

population	

extinct	


Healthy cell	

population	

preserved	


[illustrations with θH=θC=0.1, µH’(x)<0, µC’(x)<0, µC(x)=2.µH(x)]	


‘Pedestrian’s optimisation: distinct drug effects on the two cell populations	




And, time permitting, more recent developments about drug resistance in cancer… 	



