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Non-cooperative games (1/2)

Game theory deals with decision making in systems
where more than one rational agent are involved

A rational agent is called player

Decisions are called strategies

At the end of the game, each player earns a payoff
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Non-cooperative games (2/2)

The game structure (players, strategies, payoffs) is known to
all players

Each player adopts a strategy wishing to maximize his payoff

Decisions are made without interaction between players
(communications and coalitions are forbidden, non
transferable payoffs)

The payoff of a player depends on his strategy, but also on the
strategies of the others!
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The Prisoners’ dilemma game (1/2)

Two players (the thieves)

Two strategies: confess (C), not confess (NC)

Confess is a non cooperative behavior
Not confess is a cooperative behavior

Payoffs (years in jail, minimization problem):

Player2
C NC

C 2 0
Player1

NC 3 1

Many people say that the best strategy is to confess (C)...
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The Prisoners’ dilemma game (2/2)

Player2
C NC

C 2, 2 ⇐ 0, 3
Player1 ⇑ ⇑

NC 3, 0 ⇐ 1, 1

...but a deeper investigation shows that it’s better for both
not to confess (NC)!

Arrows represent the preferences of rational players

(C, C) is said to be a pure Nash equilibrium*

Nash equilibrium is the n-uple of strategies such that no
player has anything to gain by changing only his own strategy
unilaterally

*J.F. Nash was awarded with the Noble Prize in 1994 thanks to his huge contribution to game theory
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The Rock - Scissor - Paper game

Player2
R S P

R 0, 0 1,−1 −1, 1
Player1 S −1, 1 0, 0 1,−1

P 1,−1 −1, 1 0, 0

Some games have no pure Nash equilibria!

Randomization is the key to be successful

A player can play a certain strategy with a particular
probability

The probability density function is called mixed strategy

Nash demonstrated that every game has at least one Nash
equilibrium in the set of mixed strategies
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Basics on Evolutionary Game Theory

Infinite population of equal individuals (players or replicators)
Each individual exhibits a certain phenotype (= it is
preprogrammed to play a certain strategy)
An individual asexually reproduces himself by replication.
Offspring will inherit the strategy of parents

Nature favors the fittest

Two replicators are randomly drawn from the population.
Only one of them can reproduce himself
They play a game in which strategies are the phenotypes
Fitness of a replicator is evaluated like for game theory!
The fittest is able to reproduce himself. The share of
population with that phenotype will increase

Natural selection!
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The replicator equation

ẋs = xs(ps(x)− φ(x))

xs is the share of population with strategy s
0 ≤ xs ≤ 1,

∑
s xs = 1 ∀t ≥ 0

ps(x) = eTs Bx is the payoff obtained by a player with strategy s

φ(x) = xTBx is the average payoff obtained by a player

B is the payoff matrix

All Nash equilibria are rest points

Lyapunov stable rest points are Nash equilibria

The replicator equation is equivalent to Lotka-Volterra equation!

Weibull, J.W., 1995. Evolutionary Game Theory. MIT Press

Hofbauer J., Sigmund K., 1998. Evolutionary games and population dynamics, Cambridge University Press
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Properties of the replicator equation

A

A

A

A

B    A dominates 

B    B dominates 

B    Bistability

B    Coexistence

Stable Unstable

Payoff matrices           Rest points

NE

NE

NENE

NE

Some "A", some "B"All "B"All "A"

NE

Marginal stability and existence of infinite equilibria are also
possible, e.g with payoff matrices [a b; a b].
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...but in real world situations, things are different!

Indeed:

The population of individuals can be finite

In general, players aren’t preprogrammed to play a pure
strategy; they can be ”mixed” (i.e. they can be partially
cooperator and partially defector, selfish and altruist...)

Population has a structure: an individual can meet only his
neighbors

Individuals are described by vertices of a graph, edges are the
connections between them. A = {av ,w} is the adjacency
matrix of the graph



Game Theory Evolutionary GT The replicator equation on graphs (N, 2)-games Simulations Bacterial networks Conclusions

Extensions of the replicator equation to networks

The replicator equation on graphs has been obtained for
networks with infinite vertices

It has also been studied with infinite networks of fixed degree
(each vertex has the same number of connections)

Algorithmic approaches have been used to model finite
population showing cooperative behavior (Prisoners’ dilemma
game) in discrete time

Ohtsuki, H., Nowak, M.A., 2006. The replicator equation on graphs. J. Theor. Biol., Vol. 243, N. 1, pp. 86-97

Szabó G., Fáth G., 2007. Evolutionary Games on Graphs. Physics Reports, Vol. 446, pp. 97-216

Gómez-Gardeñes, I. Reinares, A. Arenas and L.M. Floŕıa, 2012. Evolution of Cooperation in Multiplex Networks,

Scientific Reports, Vol. 2, n. 620
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Our idea for a replicator equation on graphs

Each circle or cluster or tangle of relationships is linked by infinite strands

to infinite circles or clusters or tangles (C. E. Gadda, Meditazione

Milanese, 1974)

Main idea A mixed player is an infinite population of replicators!

Classical replicator
equation

Replicator equation
on graph

Mixed playerReplicator player
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Step 1. From the RE to the multipopulation RE

a) The population is well mixed and the individuals differ only for
the chosen pure strategy (mean field approach)

b) The population is splitted in subpopulations with different
characteristics (not the strategies)

c) The subpopulations are organized as the vertices of a fully
connected graph
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Modeling phase: preliminaries

xv ,s is the share of replicators in subpopulation v choosing
strategy s

xv = [xv ,1 . . . xv ,M ]T is the strategy distribution of
subpopulation v

pv ,s = πv (es , x−v )1 is the average payoff earned by a
replicator of subpopulation v with pure strategy s (es is the
s-th standard versor of RM)

φv = πv (xv , x−v ) =
∑M

s=1 xv ,spv ,s is the average payoff
earned by a replicator of subpopulation v

1In general, πv (xv , x−v ) is the payoff earned by the mixed player v when he
plays strategy xv .
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The multipopulation replicator equation provides a solution

The multipopulation replicator equation describes how the
game strategies evolve in subgroups of the population
identified by specific characteristics (not the strategies)

ẋv ,s(t) = xv ,s(t)(pv ,s(t)− φv (t))

The replicators of a vertex play games only with the
replicators of different vertices
If the strategy s is better than the average the share of
population that uses s increases in time (pv ,s(t)− φv (t) > 0);
it decreases otherwise.

In our model these subgroups are the individuals!

Weibull, J.W., 1995. Evolutionary Game Theory. MIT Press
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Step 2. The multipopulation RE on graphs

The subpopulations are organized as the vertices of a generic finite

graph and each vertex behaves as a population player

The replicators of a vertex play 2-players games with the replicators

of all the other vertices connected to him

Calculate the payoffs of the vertex players
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Step 3. Calculate the payoffs (1/3)

Classical replicator
equation

Replicator equation
on graph

Mixed playerReplicator player

A vertex player interprets all his neighbors as an “average
player”

This game is equivalent to a N-players M-strategies game
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Step 3. Calculate the payoffs (2/3)

The payoffs depend on the adjacency matrix A = {av ,w} of the
graph.

Payoff obtained by player v when players use pure strategies
s1, . . . , sN is a tensor :

π̄Gv (s1, . . . , sN) = eTsv Bv

(
1

dv

N∑
v=1

av ,wesw

)
When strategy distributions xv are known for each vertex
player, then the average payoff can be evaluated as follows:

πGv =
M∑

s1=1

. . .

M∑
sN=1

(
N∏

w=1

xw ,sw

)
π̄Gv (s1, . . . , sN).

Jackson M. O., Zenou Y., 2014. Games on Networks, Handbook of Game Theory, Vol. 4, Peyton Young and

Shmuel Zamir, eds., Elsevier Science
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Step 3. Calculate the payoffs (3/3)

The extension to the mixed strategy set allows to evaluate the
following payoff functions:

Payoff obtained by player v with pure strategy s:

pGv ,s = eTs Bvkv

Average payoff obtained by player v :

φGv = xTv Bvkv

where

kv =
1

dv

N∑
v=1

av ,wxw
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Multipopulation RE + graph payoffs → RE on graphs

xv ,s is the probability that player v will play strategy s

or

the probability that a replicator inside v is preprogrammed to use
pure strategy s. Then, the replicator equation on graphs (RE-G) is:

ẋv ,s = xv ,s(pGv ,s − φGv )

The Cauchy problem:
ẋv ,s = xv ,s(pGv ,s − φGv )

xv ,s(t = 0) = cv ,s

∀v ∈ V, ∀s ∈ S,

Madeo D., Mocenni C., Game interactions and dynamics on networked populations, IEEE Transactions on

Automatic Control, (accepted with revisions), 2014
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Relationship to the standard RE

Theorem

Let X(t) be the unique solution of the Cauchy problem of RE-G
where xv ,s(0) = cs ∀v. Assume also that A is stochastic and
Bv = B ∀v. Let y(t) be the unique solution of the Cauchy
problem, with ys(0) = cs . Then, xv (t) = y(t) ∀v , ∀t ≥ 0.

The Theorem states that the standard replicator equation can be
obtained as a special case of the proposed extended version on
networks, provided that initial conditions and payoff matrices are
the same for all vertices.
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The equation for (N , 2)-games

The payoff matrix for 2-strategies games is:

Bv =

[
bv ,1,1 bv ,1,2

bv ,2,1 bv ,2,2

]
.

Let σv ,1 = bv ,1,1 − bv ,2,1, σv ,2 = bv ,2,2 − bv ,1,2 and
kv (y) = [kv ,1(y) kv ,2(y)]T , then the RE-G reads:

ẏv = yv (1− yv )fv (y), (1)

where
fv (y) = σv ,1kv ,1(y)− σv ,2kv ,2(y). (2)

σv ,1 and σv ,2 represent the gains obtained by pure strategies

kv ,s is related to the number of players connected to v using s
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Structure of NE and stationary point sets

ΘNE =
{

y∗ ∈ [0, 1]N : ((y∗v = 0 ∧ fv (y∗) ≤ 0)∨

(y∗v = 1 ∧ fv (y∗) ≥ 0) ∨
(fv (y∗) = 0)) ∀v} ,

ΘNES = ΘNE where strict inequalities hold

Θ∗ =
{

y∗ ∈ [0, 1]N : y∗v = 0 ∨ y∗v = 1 ∨ fv (y∗) = 0 ∀v
}

1 The set of pure steady states Θp = {0, 1}N ⊆ Θ∗

2 Θm = (0, 1)N ∩Θ∗ is the set of interior steady states. Notice
that Θm ⊆ ΘNE

3 All other steady states are classified as pure/mixed and their
set is Θmp = Θ∗ \ (Θp ∪Θm)
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Stability of pure stationary points

Theorem

Let y∗ ∈ Θp. Then, the following statements are equivalent:

(a) (σv ,1kv ,1(y∗) ≤ σv ,2kv ,2(y∗) ∧ y∗v = 0)∨
(σv ,1kv ,1(y∗) ≥ σv ,2kv ,2(y∗) ∧ y∗v = 1) ∀v

(b) λv (J(y∗)) ≤ 0 ∀v

(c) y∗ ∈ ΘNE

Corollary

Let y∗ ∈ Θp. Then, the following statements are equivalent:

(a’) ((σv ,1kv ,1(y∗) < σv ,2kv ,2(y∗) ∧ y∗v = 0)∨
(σv ,1kv ,1(y∗) > σv ,2kv ,2(y∗) ∧ y∗v = 1)) ∀v

(b’) λv (J(y∗)) < 0 ∀v

(c’) y∗ ∈ ΘNES
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Some remarks to Theorem

1. Equivalence between (b)/(b’) and (c)/(c’) implies that:

every pure Nash equilibrium is Lyapunov stable

every pure strict Nash equilibrium is asymptotically stable

2. By definition of σv ,1, σv ,2 and kv ,s(y∗) we have that:

the steady state corresponding to a pure Nash equilibrium is
stable if for each vertex v the total gain of players in his

neighborhood choosing pure strategy sv is the highest
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Stability of mixed stationary points

Theorem

Suppose that σv ,1 = σ1 and σv ,2 = σ2 ∀v with
sign(σ1) = sign(σ2) 6= 0. Then there always exists a steady state
y∗ ∈ Θm such that y∗v = σ2

σ1+σ2
∀v. Moreover,

λ(J(y∗)) = σ1σ2
σ1+σ2

λ(A).

The payoff matrices satisfying the hypotheses of Theorem 3
describe games where coexistence (sign(σ1) < 0) or bistability
(sign(σ1) > 0) occur.
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Some remarks to Theorem

1. The adjacency matrix A of an undirected graph with no
self-edges is symmetric, has real spectrum and null trace. The
Perron-Frobenius theorem states that the largest eigenvalue of A is
non-negative. Null trace implies that there must exist at least one
non positive eigenvalue. From Theorem 3 follows that the same
property holds for the spectrum of the Jacobian matrix y∗. Then,

all the elements of Θm are saddle points

2. In the graph context coexistence or bistability are feasible only
along the stable manifold of the saddle point
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Bistable payoff matrix (1/4)

B =
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1 0
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Bistable payoff matrix (2/4)

B =

[
1 0
0 1

]
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Bistable payoff matrix (3/4)

B =
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1 0
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Bistable payoff matrix (4/4)

B =
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The non strict prisoners’ dilemma game

B =

[
1 0

1.5 0

]

Resilience of cooperation in non strict Prisoners’ dilemma
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Coexistence of strategies

B =

[
0 1
1 0

]

The attractive mixed Nash equilibrium of RE is not homogeneously stable
in the RE-G



Game Theory Evolutionary GT The replicator equation on graphs (N, 2)-games Simulations Bacterial networks Conclusions

Bacterial networks: motivation and assumptions (1/2)

Biological evolution is driven more by symbiotic or cooperative

relationships than competition between species: eukaryotic cells

originated as communities of interacting entities (symbiogenesis) (Lynn

Margulis, 1967)

Cellular cooperation has been necessary for the evolution
towards multicellular organisms

New metagenomics data from environmental microbial
communities (e.g. Wrighton et al. (2012); Kantor et al.
(2013)) is showing that novel, small microorganisms lack the
full metabolic potential to have a truly independent lifestyle
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Bacterial networks: motivation and assumptions (2/2)

Linking genomics and imaging (Comolli and Banfield (2014)),
one novel nanoarchaea named ARMAN has been found
establishing connections with archaea of different species
Microbes of different classes or species may lack the full
metabolic potential necessary for survival under certain
(averse) conditions

Madeo D., Comolli L. and Mocenni C., Emergence of microbial networks as response to hostile environments,

Frontiers in Microbiology, Nature Publishing Group, in press. 2014
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Modeling bacterial connection

N bacteria are present in the space

Bacteria are subdivided into D ≥ 2 subclasses

Bacteria want to create links to exchange matter and
information such as genetic material, proteins, metabolic
intermediates, etc. (behavioral strategies)

Two bacteria of the same class do not link together

Each bacterium has a finite amount of transferable energy

Energy transfer is dissipative (a part of the energy is lost due
to the distance between two bacteria)
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Basics and notation

V is the set of all considered bacteria (|V| = N);

V1 ⊂ V and V2 ⊂ V are the subclasses, where V = V1 ∪ V2

and V1 ∩ V2 = ∅;
ρv ,w > 0 is the distance between bacteria v and w ;

Tv > 0 is the maximum amount of energy that organism v
can transfer to others.
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Energy transfer
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The mechanism of connection

The establishment of a connection between two individuals is
modeled by an evolutive game

The strategies available to each player consist of the will of
being connected to another player

The number of feasible strategies to each player corresponds
to the number of bacteria different from itself: N − 1

Due to dissipation, connections are possible only under a
threshold distance µ

An individual v is effectively connected to another individual
w if and only if w is also willing to be connected to v
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From the RE-G to the formation of connections

The RE-G reads
ẋv ,sv = xv ,sv (pGv ,sv − φ

G
v )

Given the solution of the RE-G, we built the effective connection
graph GE (t) by definining its adjacency matrix
AE (t) = {aEv ,w (t)}v ,w∈V as follows:

aEv ,w (t) =

{
1 if xv ,sv (t) > η ∧ xw ,sw (t) > η
0 otherwise

where sv = w , sw = v and η ∈ [0, 1] is a threshold.
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Effective network formation
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Formation of stable links
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System efficiency and number of links over time
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Asymptotic network

The asymptotic network does not depend on the distance
(except for very small ones) and threshold parameters: it is

a stable intrinsic property of the model
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Conclusions and Future Work

Model construction. The theoretical formulation of the RE-G
provides a new way for

describe decisions and dynamical interactions among
individuals in a society

obtaine a general framework to derive suitable equations of
such interactions and analyze their properties

Network reconstruction. Solving inverse problems on the basis of
RE-G allows to

explain mechanisms arising in real world phenomena. E.g. it
has been observed that genes responsible for the cellular
cooperation necessary for multicellularity are also the genes
that malfunction in cancer cells (Davies and Lineweaver, 2011)

optimize the network and the decision problem (game) to
solve consensus and synchronization problems
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