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The problem

Under which conditions on the mutation rates
can a virus survive if its environment (immune
system persecution) changes periodically?



The Eigen quasispecies model

• Introduced by Eigen in the 1970’s to study the origin of life.
• Later used to study virus replication, taking into account

the possibility of replication errors.
• A virus genome is σ = (s1, s2, . . . , s`) with si ∈ {0,1}.
• ` is large, in the range 103 to 105 for viruses.
• Genome space is Λ = {0,1}`.
• Phase transitions, methods from Statistical Mechanics and

Quantum Field Theory. Interest of physicists.



The Eigen model in general

• If pσ(t) be the virus population with genome σ in
generation t , then

pσ(t + 1) =
∑
σ′∈Λ

Wσ,σ′ f (σ′, t)pσ′(t) . (1)

• f (σ, t) is the fitness at time t of individuals with genome σ,
i.e., the number of its descendants in generation t + 1.

• Wσ,σ′ is the probability that an individual with genome σ′

has a descendant with genome σ.
• We shall use Hamming distance d(σ, σ′) to measure

distance between genomes:

d(σ, σ′) =
∑̀
i=1

|si − s′i | .



The Eigen model in general

• If pσ(t) be the virus population with genome σ in
generation t , then

pσ(t + 1) =
∑
σ′∈Λ

Wσ,σ′ f (σ′, t)pσ′(t) . (1)

• f (σ, t) is the fitness at time t of individuals with genome σ,
i.e., the number of its descendants in generation t + 1.

• Wσ,σ′ is the probability that an individual with genome σ′

has a descendant with genome σ.
• We shall use Hamming distance d(σ, σ′) to measure

distance between genomes:

d(σ, σ′) =
∑̀
i=1

|si − s′i | .



The Eigen model in general

• If pσ(t) be the virus population with genome σ in
generation t , then

pσ(t + 1) =
∑
σ′∈Λ

Wσ,σ′ f (σ′, t)pσ′(t) . (1)

• f (σ, t) is the fitness at time t of individuals with genome σ,
i.e., the number of its descendants in generation t + 1.

• Wσ,σ′ is the probability that an individual with genome σ′

has a descendant with genome σ.

• We shall use Hamming distance d(σ, σ′) to measure
distance between genomes:

d(σ, σ′) =
∑̀
i=1

|si − s′i | .



The Eigen model in general

• If pσ(t) be the virus population with genome σ in
generation t , then

pσ(t + 1) =
∑
σ′∈Λ

Wσ,σ′ f (σ′, t)pσ′(t) . (1)

• f (σ, t) is the fitness at time t of individuals with genome σ,
i.e., the number of its descendants in generation t + 1.

• Wσ,σ′ is the probability that an individual with genome σ′

has a descendant with genome σ.
• We shall use Hamming distance d(σ, σ′) to measure

distance between genomes:

d(σ, σ′) =
∑̀
i=1

|si − s′i | .



The Eigen model in general

• If pσ(t) be the virus population with genome σ in
generation t , then

pσ(t + 1) =
∑
σ′∈Λ

Wσ,σ′ f (σ′, t)pσ′(t) . (1)

• f (σ, t) is the fitness at time t of individuals with genome σ,
i.e., the number of its descendants in generation t + 1.

• Wσ,σ′ is the probability that an individual with genome σ′

has a descendant with genome σ.
• We shall use Hamming distance d(σ, σ′) to measure

distance between genomes:

d(σ, σ′) =
∑̀
i=1

|si − s′i | .



Mutation matrix

• Let µ be the per site mutation probability.
• Naturally, Wσσ′ = µd (1− µ)`−d , where d is the Hamming

distance between σ and σ′.
• As µ is very small, of order 10−7 or less, a useful

simplification is taking

Wσσ′ =


1− β, if d(σ, σ′) = 0
µ, if d(σ, σ′) = 1
0, if d(σ, σ′) > 1

, (2)

where β ≡ µ` is the genome mutation probability.



The sharp-peak fitness landscape

• A simple and popular choice for the fitness is the
sharp-peak landscape (SPL):

f (σ, t) =

{
1 + k , if σ = σ0(t)
1, if σ 6= σ0(t)

. (3)

• The fittest genome σ0(t) at time t is called the wild type or
master sequence.

• Parameter k > 0 is called the selective advantage of the
master sequence above all other genomes.
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The error catastrophe

• In the static SPL, if β is too large, or k too small, the virus
population will not be concentrated within genomes close
to the master sequence, being spread throughout genome
space.

• In the static SPL, this error catastrophe will occur if
β > βstatic

u , where

βstatic
u =

k
1 + k

. (4)

• The error catastrophe is a transition between a localized
phase in Λ, the quasispecies, and a delocalized phase in
Λ, in which the virus population is not able to maintain
genetic identity.



The Nilsson-Snoad model

• Nilsson and Snoad proposed in Phys. Rev. Lett. 84 (2000)
a time-dependent version of the SPL in which at every τ
generations the master sequece hops to a random nearest
neighbor in Λ.

• The idea is to model a viral population forced to
periodically change its master sequence due to
persecution by an immune system.

• Nilsson and Snoad treated the model using several
questionable approximations. They found out not only the
well-known error catastrophe characterized by an upper
threshold βNS

u , but also an adaptability catastrophe
characterized by a lower threshold βNS

l .
• A quasispecies will exist if βNS

l < β < βNS
u .
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Results
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• In Phys. Rev. E
82(3):031915 (2010), we
have shown that the
conclusions by Nilsson and
Snoad about the existence
of upper and lower
thresholds were correct.

• But their approximation
scheme was not so much
accurate, particuarly for
small values of the
selective advantage k .



Some ideas about our techinques

• Nilsson and Snoad divide the virus population into 3
classes: viruses in the present master sequence, viruses
in the next master sequence and all others.

• Existence of a quasispecies turns out to be the calcuation
of the dominant eigenvalue of a 3× 3 matrix.

• We divide instead the population into M + 1 classes: each
of the M genomes which are going to be master
sequences at some time plus one class for all other
genomes.

• M should be of order 2`, but smaller values produce almost
the same results.

• We seek the dominant eigenvalue of the non-negative
matrix A = S−1Eτ

1 , where E1 gives the evolution for one
generation while the master sequence remains unchanged
and S represents the shift of the master sequence after τ
generations.



Some ideas about our techinques 2

• By the Perron-Frobenius theory for non-negative matrices,
the dominant eigenvalue λPF is given by the maximum
over non-negative vectors of the Collatz-Wielandt function

fA(v) = min
vi 6=0

(Av)i

vi
.

• The vector v which maximizes the above function is an
eigenvector corresponding to λPF .

• For any vector v , fA(v) is a lower bound to λPF . If v is a
good approximant to the dominant eigenvector, fA(v) will
be a large lower bound approximating λPF .

• If ek is the k -th vector in the canonical basis for RM , a good
guess for the dominant eigenvector is
v(δ) = δe1 + (1− δ)eM .

• It is straightforward to find the value of δmax ∈ [0,1]
maximizing fA(v(δ)).



Some ideas about our techinques 3

Surprisingly, fA(v(δmax)) is not only a lower bound, but a very
good approximation for λPF .

λPF ≈
(1 + k)τ (2 + k)

k `
β (1− β)τ−1 .
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