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1 INTRODUCTION: THE BIOLOGICAL INVASION PROBLEM

Species in an ecosystem can be classified as natives and exotics. Native species
are those that have coevolved together in the ecosystem while exotic ones have
not. The introduction of exotic species into an ecosystem is usually associated
to human influences and it can be intentional or accidental. Some exotic species
do not survive, at least without an artificial assistance. But some others do quite
well on their own in a new environment. Exotic species may have no natural
predators in the new environment or they can make a better use of the natural
resources than the natives, so they spread in the new territory, competing with
some of the natives and eventually leading to their extinction. Exotic species that
succesfully establish and spread in an ecosystem are called invaders. The process
by which an invader arrives and spreads into the new territory is called biological
invasion. It is worth mention that, although invaders are usually exotic species,
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sometimes native species may also behave as invaders. That is, if an ecosystem
suffers a strong disturbance, like fire or heavy grazing, some native species whose
population were originally stable, may start to grow outcompeting other native
species.

There are many examples of introduced species that became invaders, rang-
ing from bacteria to cattle. Human accidental or intentional introductions are
responsible for most of the present biological invasions, threatening the structure
and functioning of many ecosystems.

There are many effects associated with biological invasions, perhaps the most
important one being the possible loss of biodiversity in the long term. But also
biological invasions may introduce changes in different environmental traits, like
climate, hydrology (invaders may consume more water than natives), soil com-
position (for instance, some plants take up salt from soil and deposit it on the
surface, making it unsuitable to some native species), etc. All these changes have
a strong economical impact, considering their influences in agriculture, forestry
and public health [9]. Hence, it is of interest to understand this phenomenon in
order to predict the potential invasiveness of a species before the introduction
in an ecosystem, and to develop strategies of control of invasive species already
introduced.

Although the biological invasion has been recognized as potentially damag-
ing for ecosystems functioning more than 40 years ago [5], there are still many
important open questions about it. Perhaps the most important one is: What
makes a succesful invader? That is, why a given species behaves as an invader
and a similar one does not? Why the same species behaves as an invader in a
given ecosystem while it does not invade another different one? At the present
specialists agree that this is an extremely complex problem and that the answer
to this question depends on several factors. Among the most important factors
for plants we can mention:

o Life history traits, that is, reproductive and growth properties of individual
trees, like seed dispersal mechanisms, germination properties, age of repro-
ductive maturity, etc. One point that is of particular interest is the posssible
existence of long range seed dispersal distributions (in a statistical sense). Trees
disperse seeds through several mechanisms, which generate different types of
spatial seed dispersal distributions. There is evidence that some mechanisms
may generate fat-tailed (that is, long ranged) distributions. This is a very im-
portant factor in the description of plant migration process, invasive or not,
since this type of distribution may change the rates of spread of a species in
orders of magnitude. We will discuss this topic with more detail later.

e Demographic traits, like the mortality rates at the different stages of growth
of a tree,

o FEnvironmental conditions, including disturbance regimes.

e Interspecific interactions, for instance, competition between the alien and na-
tive species, but also interactions of positive sign (like symbiosis or facilitation).



However, it is not clear the relative importance of all these factors and exper-
imental results are frequently ambiguous and, sometimes, even contradictory.
Hence, it is of interest to have accurate theoretical models to check all these
hypotesis. In section 2 we present a recently proposed cellular automaton model
[3] that describes the population dynamics of several interacting woody species
(trees and shrubs) at an individual based level. The model includes most of the
features that are belived to be important describing invasion processes, where
the parametrization is made on the base of measurable quantities. In section
3 we show a comparison between field data estimations and predictions of the
model, both for invasion and non invasion systems.

Another important point is how can we characterize the invasion process.
That is, how do we measure the invasiveness of a species or the invasibility
of the habitat? Usually the invasion process is characterized by means of the
different rates of spread of the invasive species, that is, the velocities at which it
spreads in the new environment. Although these are good measures, sometimes
its calculation involves a series of problems. Experimentally, the rates of spread
can be estimated, for example, from aerial photographs, by measuring the areas
covered by the species at different times. However, this involves the usage of
high resolution photographs taken during large periods of time (typically several
decades). Hence, the available data are scarce and not very accurate and it is
important to find alternative ways of characterizing the invasion process.

Sections 4 and 5 are devoted to the study of different scale-invariant (i.e.,
fractal) spatial patterns that may appear during invasion processes. The results
presented in those sections suggest the fractal dimension of the particular fractal
patterns as good (and measurable) quantities to characterize invasion processes.

A general discussion is presented in section 6.

2 THE MODEL

We first present a cellular automaton for the description of a single, non-interacting
species. This model will be generalized later to the case of several interacting
species.

2.1 SINGLE SPECIES CELLULAR AUTOMATON

The model [3] is defined on a square lattice of N = L, x L, sites or cells with
open boundary conditions. Each cell can be occupied by at most one single adult
individual. This rule fixes the spatial scale, in the sense that the area of a unit
cell of the lattice will correspond to the average area covered by the canopy of
the trees under consideration. For instance, in the case of the species considered
in section 3 the average area is 25m? [10], that is, the lattice unit corresponds
to om.



To each cell we associate an integer variable a;(t) that represents the age
of the individual located at it at time ¢, where the time unit is chosen to be
one year. This time scale appears naturally since we consider annual rates of
reproduction and mortality. We use a parallel dynamics. Reproductive traits are
described by the following parameters:

e Every mature individual produces n seeds in a seed crop. We assume a self-
breeding species, that is, every individual produces seeds.

e The dispersal of those seeds is described by a density function f(r), defined as

the fraction of seeds dipersed by one individual to a distance r per unit area.

This density is normalized in the plane.

Every seed geminates with a probability f,.

Reproductive or mature individuals are those whose age is greater than t,,.

Individuals produce seed crops every t, years.

An important factor for invasion is the existence of juvenile banks. Saplings

of some species can survive under the shade of the parental, but they grow

until certain high and then stop growing. They do not become reproductive

while living under the shade of the parental. When the parental dies they can

resume their growth and one of them replaces the parental and can become

reproductive. The colection of saplings below the shade of the parental is called

a juvenile bank. For species with juvenile banks we include another parameter,

the average age tj of the saplings.

Mortality in trees is much more higher at the first stages of growth (usually
during the first and second years of life) than for older trees. Hence, we consider
two probabilities of survival:

e ¢ is the annual adult survival probability.
e P is the juvenile ( < 2 years) survival probability.

The dynamics of the model is as follows. Let’s first consider an occupied cell
i at time ¢, that is, a cell for which a;(¢) # 0. If the species does not have juvenile
bank, then the individual can survive and grow with probability ¢, and therefore
a;(t + 1) = a;(t) + 1, or it dies with probability 1 — ¢, leaving the cell empty
a; = 0. If the species has juvenile bank, the rule is very similar, except that when
it dies instead of leaving the cell empty it is replaced by another individual with
agety.

Let’s now consider an empty cell i at time ¢, that is a;(¢) = 0. This cell
can be colonized at time ¢ + 1 with probability p;(t), that depends on the seeds
received from other cells; p;(t) is the probability that at least one of the seeds
received at time ¢ germinates and that the corresponding juvenile survives until
the adult stage. Assuming these two events as independent, p; is given by

pi(t) =1— (1 P fy)"® (1)



where s;(t) is the total number of seeds received by the cell at time ¢. How do
we calculate s;? Suppose that the species produces crops every year. Then, the
number of seeds received by the cell ¢, coming from a mature tree located at a
cell j is nf(r;;), where r;; is the distance between cells. Hence, s;(¢) is obtained
by summing this quantity over all cells containing a mature tree. If the interval
between seed crops t; is greater than one, then cells containing mature trees only
contibute to these sums every t, years.

Now, what is the appropriate choice for the seed dispersal function f(r)? For
many tree species seed dispersal has a limited range, that is, seeds are dispersed
in the neighborhood of the tree. In this case f(r) will be short-ranged, that is,
without long tails and the global spread properties are not expected to depend
on the specific form of f(r). However, as we mentioned before, one open question
about plant spread dynamics is the possible existence of long range seed dispersal
mechanisms. This question was first addressed when people tried to explain the
postglacial migration of different species of trees, like oaks. After the glaciers
retreated they left an open area that the woods recolonized at a velocity of about
1 Km/year [4]. Applications of short range dispersal models to this problem, like
the reaction-diffusion model, with realistic parametrizations predicted velocities
ranging between 1 and 50 m/year [12]. This difference of about two orders of
magnitude suggests the presence of long range seed dispersal distributions [§].
But then the question is, which type of mechanisms can lead to the occurence of
rare events of seeds dispersed very long distances? Trees use one or more different
mechanisms of seed dispersal as a result of evolutionary adaptations. The most
simple one is just gravity, that is, seeds just fall down near the canopy. This is
clearly a short range mechanism.

Some plant species use mutualistic relationships with animals, like birds or
mammals, as dipersal strategies. They produce fruits that have attractive colors
and flavours. Then the animals eat the fruits together with the enclosed seeds,
which pass unharmed through the digestive tract. So, the animals move and
defecate the seeds in another place. Whether or not this type of mechanism
could lead to long ranged dispersal effects depends on several factors, like the
effective mobility and the habits of the animals. Experimental evidence is not
conclusive at all.

Finally, the best candidates are wind dispersal mechanisms. Some seeds have
a wing with the form of an helix (gyroscopic seeds). In the presence of strong
winds these seeds leave the canopy, rotate and fly, so they can be driven by the
wind over long distances. However, the experimental evidence is not conclusive
in this case either. Unfortunately, it is very difficult to measure seed dispersal
distribution functions. Field measurements of seeds distributions have large error
bars and limited ranges. Therefore, attempts of fitting data with short and long
range distributions cannot give a definite answer. Hence, it is interesting to look
for other ways of detecting long range seed dispersal distributions.



To analize this problem we used two different types of models for the seed
dispersal function. For simulating short range dispersal mechanisms we proposed
an exponential function:

flr) = e @

where d is the mean dispersal distance. For simulating long range dispersal mech-
anisms we proposed a power law:

_[ & i >1/2
f(r)_{ 0 Ef 02r<1/2 3)

where A is a normalization constant and a > 2 (otherwise the density function
f cannot be normalized). We expect three different behaviours, according to the
values of a.. For a > 4 this function has finite first and second moment. Therefore,
the central limit theorem holds and short range behaviour is expected. When
3 < a < 4 the first moment remains finite but the second moment becomes
infinite. The mean dispersal distance is given by d =< r >= (a — 2)/2(a — 3).
Finally, when 2 < a < 3 both first and second moment are infinite.

2.2 INTERACTIVE MULTIPLE CELLULAR AUTOMATA MODEL

Let’s now consider the case of several interacting species. In this case we as-
sociated to each species one single cellular automaton of the type described in
the previous subsection, all of them defined over the same lattice. In this way
each cell of the lattice has associated several dynamical variables. Interactions
are introduced by coupling them through new dynamical rules. We called this
an Interactive Multiple Cellular Automaton model, or IMCA [3]. The type of
interaction we are interested in is competition, which in an ample sense is com-
petition by space, and involves competition by resources. This means that only
one of the different dynamical variables associated to a given cell can be different
from zero at the same time.

Concerning the colonization of an empty cell, in this case we count the seeds
received by the cell from each one of the different species. Then we calculate the
different colonization probabilities and compare them with independent random
numbers. If only one species succeeds in the colonization, the cell follows the
dynamics of a single species. If more than one species succeed we sort the win-
ner with some probability that may depend on environmental conditions. If the
different species use resources in a similar way the winner is sorted with equal
probability among the diferent species present in the cell. If different species
use resources in a different way the probability depends on the environmental
conditions, which are described by a new set of variables. Those environmental
variables may be dynamical or fixed. In the last case we can consider them as
external conditions. An example of colonization rules that depend on environ-
mental variables will be presented in the next section.



3 SIMULATIONS VS. FIELD DATA VALUES

To compare the predictions of our model with real situations we considered
four different tree species from the mountain forest in Cérdoba, Argentina, two
of them exotics (Gleditsia triacanthos and Ligustrum lucidum) and two natives
(Lithraea ternifolia and Fagara coco). L. ternifolia was once the dominant tree
species in this region. The native woodlands are being invaded by several exotic
species. F. coco coexists in some parts of the mountains with the dominant L.
ternifolia. Seed dispersal in all these cases is short ranged; another remarkable
fact is that both invaders have juvenile bank while the natives have not [10].

We started our simulations by considering an initial dense forest of the dom-
inant native (L. ternifolia) with random ages, located in a rectangular area L,
sites of width. At the bottom of the area y = 0 we put a row of individulas of
one of the two exotic species, with random ages between zero and the age of
first reproduction t,,. This configuration simulates a very typical situation, since
these plants usually spread into the forests from roads or river sides.

In figure 1 we see the typical pattern of invasion at two different times,
where gray points represent the natives, black ones are the invaders (L. lucidum
in this case) and white points are empty sites. We see that the invaders form a
wide spread band that moves in the y direction, leaving a dense invaded forest
behind it. The presence of juvenile banks turn the invasion inevitable and at
large enough times the invaders cover the whole area.

To characterize the invasion process we defined the invasion front h(z) as
the coordinate y of the farthest occupied site corresponding the x position along
the bottom line (see figure 1). We then calculated the mean front position

7= Li S hz) (4)

z=1

as a function of time, and we averaged this quantity over different initial condi-
tions and over different sets of random numbers.

In the case of invasion by G. triacanthos it is necessary to introduce en-
vironmental variables. L. ternifolia has a special ability to establish in shallow
soils and rock crevices. G. triacanthos does not present this ability, that is, it
grows much more slowly on shallow soils than in deep soils. In this case we in-
troduced a set of soil parameters {¢;} that can take two values: ¢; = 0 represents
a shallow soil cell while ¢; = 1 represents a deep soil. These parameters are
sorted with some distribution at the beginning of the simulation and kept fixed
through it. The colonization rule of empty cells is the following: if ¢; = 0 the
native species always win with probability 1; if ¢; = 1 the winner is sorted with
equal probability.

In figure 2 we see the behaviour of the mean front position in this system,
for the cases of homogeneous deep and rocky soil. We see that the effect of the
soil type is just to slow down the process; both curves show the same qualitative
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FIGURE 1 L. lucidum invasion (black cells) in a dense L. ternifolia forest (gray cells),
for a simulation area of 80 x 160 cells; white cells correspond to empty cells. (a) ¢t =
50 years; (b) t = 150 years.

invader field estimation [m/y] | model prediction [m/y]
G. triacanthos 25-4 1.9-4.4
L. lucidum 11-12.5 13.6

TABLE 1

behaviour, that is, after some transient period, the front increases linearly with
time, showing a well defined velocity V. We also performed several simulations
with random mixtures of deep and rocky sites in different proportions. The be-
haviour is the same, with velocities between these two values. Hence, we can
consider these values as upper and lower bounds for the velocity prediction of the
model in this particular case.

We also performed similar simulations, but considering the other invader
L. lucidum. In this case we did not introduce soil varibles, because this invader
grows well in any type of soil, as well as the native. The results are qualitatively
the same as in the previous case.

In table 3 we show a comparison between the predictions of the IMCA model
with field data estimations made by using aerial photographs of the region [11].
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FIGURE 2 Mean front position as a function of time for G. triacanthos invasion in a
dense forest of L. ternifolia.

In order to perform another comparison with field data values, we simulated
the dynamics of both native species L. ternifolia and F. coco. In this case, as
long as F. coco spreads into the area, cells behind the spreading front can be
re-occupied by L. ternifolia. This lead, after some time, to a stationary situation
of a mixed forest with a distribution of patches of both species. The stationary
values of the population densities of both species are independent of the initial
conditions, showing a proportion of 2.3 between both densities, that is consistent
with the observed value 2 £1 [3].

4 FRACTAL GROWTH OF INVASION FRONTS

As it was mentioned in the introduction, it is interesting to look for alternative
ways of characterizing the invasion process, not only using the rate of spread.
If we look at the invasion front we see that it has some structure (see figure 1).
To analize this structure we studied the behaviour of the average width of the
front, which is proportional to the standard deviation:

Lo
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FIGURE 3 (a) Standard deviation of the invasion front as a function of ¢ and the
system width L,. (b) Data collapse of the curves shown in (a) for @ = 0.294 and
z =1.93.

We calculated o as a function of ¢t and averaged this quantity over different
initial conditions and different sequences of the random noise. In figure 3a we
show the temporal behaviour of o for different widths of the simulation area in a
log-log plot. We see that, for any value of L, o present three distinct regimes: a
transient period that is independent of L,, a power law regime and a saturation
regime, where it becomes constant. For large values of L, the power law regime
also becomes independent of L., and it is characterized by a single exponent 3.
Both the crossover time 7 from the power law to the saturation regimes and the
saturation value depend on L,. Moreover, it can be seen that for large values
of L, they present a power law dependency, characterized by two exponents «
and z. All this phenomenology is characteristic of what is known as a roughening
process. Roughening refers to some non-equilibrium phenomena associated with
the growth of certain type of interfaces between two different media. Growing
interfaces appear in a variety of phenomena in nature, like the fluid motion in
a porous media. If you put a drop of ink in a sheet of paper you see that the
patch grows with a well defined interface between the wet and dry parts. Also
if you burn one edge of the paper you see a propagating interface between the
burned and the unburned parts. If you look at anyone of these intefaces under
a microscope you see that it is not smooth, but rather irregular. Moreover, as
the interface propagates, the size of the irregularities increase. It is said that the
interface roughens [1].
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There is not a complete theory based on first principles that explains the
dynamic roughening. However, most the basic properties of these type of pro-
cesses are well described by a general phenomenological scaling approach, which
can be summarized in the following scaling relation [1] :

o(Ly,t) ~ LOF (Li) (6)

where the scaling function F' is such that

zP if 1
F(z) ~ { constant if x>1 (7)

and z = /(. This relation implies a crossover time 7 ~ LZ such that, o(Ly,t) ~
td for t < 7 and o(Ly,t) ~ LY for t > 7. In the last regime the interface
develops a self-affine structure, i.e. for a fixed time the profile h(z) satisfies
(in an statistical sense) the property h(z) ~ b~ *h(bz), for arbitrary values of
the scale factor b [1]. From this property follows that the local fractal or box
dimension D of the profile is D = 2 — « for short length scales (for long length
scales D always equals one [14]. The data collapse displayed for long times in
figure 3b shows that the scaling assumption Eq.(6) holds for the invasion fronts
with non trivial values of the exponents «a, 8 and z = a/f.

We then analized how variations in the life history parameters influence
the roughening process of the invasion front. It can be shown that the invasion
velocity is mainly determined by two parameters: the mean dispersal distance d
and the age of first reproduction t,, [3]. So we calculated the two independent
exponents of the roughening process a and z for different combinations of values
of d and t,,. We found that « is sensitive to variations in d and t,,, while z is
almost constant with a value near two for all the combinations of d and t,, we
checked. In figure 4 we show a parametric plot of the local fractal dimension
D = 2 — a vs the invasion velocity V; every point in this graph corresponds
to the calculated values of (a, V') for a particular pair of values of (d,t,,). We
see that all points appear to fall into a single curve that saturates at a constant
value around D = 1.8 for large values of V, showing that large invasion velocities
can be expected for very rough fronts. This result also suggests that the local
fractal dimension of the invasion front is a single valued, monotonic increasing
function of the velocity. But the local fractal dimension is something that, in
principle, we could measure from a high resolution aerial photograph. Hence,
this result suggests that we would not need photographs taken at different times
to estimate the invasion velocity; we could do that just with one photograph. In
other words, we could make predictions about the long time dynamical behaviour
from pure geometrical properties of a spatial pattern at a fixed time, at least in
the case of an invader with short range dispersal and in the presence of a strong
native competitor.
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FIGURE 4 Parametric plot of the local fractal dimension wvs the invasion velocity.

5 LONG RANGE SEED DISPERSAL AND SPATIAL PATTERN
FORMATION

To analize the influence of long range seed dispersal we simulated the spread of
a species with long range dispersal from a single focus, that is, we started the
simulations with a single mature individual located at the center of a square area.
To discriminate between the interaction and seed dispersal effects we neglected
competition, that is, we considered the spread of a single species in a clean area.
We chose a reasonable set of life history parameters, that is, a set of values
inside the ranges of values for the different species considered, and we varied the
exponent of the power law seed dispersal function.

In figure 5 we can see the difference between the typical spatial patterns
generated by short and long range seed dispersal distributions, where the pa-
rameters values are the same in both cases (figures 5a and 5b). The short range
case is characterized by a single compact cluster with an almost circular shape,
surrounded by a few isolated trees.

The long range case presents a much more complex pattern. In the first years
there is again a unique large cluster, which is more irregular and is surrounded
by a few small clusters and a broad distribution of isolated trees. After some
characteristic time, that dependes mainly on t,,, we observe the sudden appear-
ance of a distribution of cluster of several sizes, including some large ones. This
occurs because some of the trees located far away from the initial focus started
to reproduce and formed new secondary focuses. As time goes on, the main
cluster continues growing and absorbes neighbouring cluster. This effect gener-
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FIGURE 5 Comparison between spatial patterns generated by short and long range
seeds dispersal strategies, in a simulation area of 200 x 200 cells and parameters values of
G. triacanthos. (a) Exponential distribution function Eq.(2). (a) Power law distribution
function Eq.(3).

ates a very complex border structure that becomes self-similar (i.e., fractal) at
large times, while new clusters of different sizes are being created continuously.
The predicted pattern agrees qualitatively with those observed in Criptostegia
grandiflora (a shrub with seed dispersal by wind) in northeast Australia [7].
We calculated the fractal dimension D of the main cluster border using a
box-counting procedure. In figure 6 we see D as a function of time for different
values of the exponent «, half of them corresponding to distributions with infinite
first moment and the other half with finite first moment. We see in all the cases
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FIGURE 6 Fractal dimension of the main cluster border for different values of o and
and L, = 1024.

that, after some transient period, D saturates into a constant value, which seems
be independent of a with a value around D = 1.72 + 0.03 for distributions with
infinite first moment. The fact that physical properties of the system become
independent of &, when « is such that the first moment diverges, is characteristic
of systems with interactions that decay as 1/7* [2, 6].

Finally, in figure 7a we can see the typical time evolution of the normalized
frecuency P(s) of clusters with area s, for a particular value of a. We see that also
this quantity reaches a stationary state at long times. An approximation of the
stationary distribution is diplayed in figure 7b. We see that the long range quality
of the basic interactions generates a complex distribution with crossovers between
different power law regimes, which are expected to contain also information about
the invasion process. This point deserves further investigation and some related
work is in progress.

6 CONCLUSIONS

We have shown that the study of spatial pattern formation is indeed a valuable
tool for the analysis and detection of several features associated with biological
invasion processes. That is, we saw how stationary fractal patterns may be de-
veloped during different invasion processes and that the corresponding fractal
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dimensions contain information about them. In particular, we showed that the
competition between alien and native species lead to the appearence of a self-
affine invasion front (as a result of a roughening process), whose local fractal
dimension is proportional to the invasion velocity. This result suggests a possi-
ble technique for estimating invasion velocities through the analysis of spatial
patterns in aerial photographs. But also the suggestion of a constant value of
the dynamical exponent z opens the possibility of estimating the long time be-
haviour (i.e., the asymptotic velocity through the local fractal dimension D) by
monitoring the short time behaviour of the growth exponent 8 of the standard
deviation. Works along these lines are in progress.

Concerning the effect of long range seed dispersal, we showed that it gener-
ates a very particular stationary pattern that may serve as an indirect way of
detecting its presence. In this case the fractal dimension D of the main cluster
border increases as & — 3T and it seems to be independent of a when 2 < o < 3.
Of course, as a decreases, the different rates of spread (population growth is non
linear in this case) increase. Hence, we see again what could be a general rule,
that is, large fractal dimensions appear to be associated with fast invasion pro-
cesses.

Finally, the presence of several power law regimes (and the corresponding
crossovers between them) in the stationary cluster size distribution of a species
with long range seed dispersal suggests a non extensive statistical formalism
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([13], see also Montemurro in this book) as the appropriated framework for the
analysis of this problem. Work along this line is also in progress.
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