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Abstract 
 The two-dimensional Ising model with competing 
short range ferromagnetic interactions and long 
range antiferro-magnetic interactions is perhaps the 
most simple one containing the minimal microscopic 
ingredients necessary for an appropriate description 
of the macroscopic properties of ultrathin films and 
quasi−two−dimensional magnetic materials. Despite 
such relative simplicity, the frustration introduced by 
the competition between interactions generates 
complex behaviors that have eluded, up to now, a 
complete understanding of its general properties. In 
this work we review recent advances in the 
understanding of both equilibrium and non-
equilibrium properties of the model. This includes a 
detailed description of several known properties of the 
thermodynamical phase diagram, as well as the 
existence of several types of metastable states and 
their influence in the low temperature dynamics. 
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I. Introduction 
 The Ising model with arbitrary interactions is perhaps the most successful one in 
statistical physics. Despite its (relative) simplicity, it has been used to model such a 
variety of complex systems exhibiting cooperative phenomena that it can be regarded 
with fairness as a paradigm of a model system. Besides its multiple applications in 
theoretical physics (in fact, Onsager’s solution of the two-dimensional model was the 
cornerstone of the modern theory of critical phenomena) one of its most conspicuous 
application in condensed matter (and its original motivation) is related to the description 
of anisotropic magnetic materials. While mostly applied in the past decades to bulk 
magnetic materials, the advances in film growth techniques, such as atomic or molecular 
epitaxy, has raised a renewed interest in the behavior of the two-dimensional version of 
the model. In particular, the study of thin magnetic films and quasi two-dimensional 
magnetic materials (like the rare earth layers that occur in perovskite structures of       
REBa2Cu3O7−δ, RE being a rare earth of the lanthanide series [3]) has experimented an 
increasing interest during the last years. Part of this interest is obviously motivated by 
the great amount of applications they find nowadays in many different technological 
fields, such as data storage, catalysis and electronic uses are only a few examples, among 
many others. Nevertheless, they have also caught the attention of both theoretical and 
experimental physicists due to the rich insight they provide into the fundamental role 
that microscopic interactions play in determining the macroscopic properties of a 
material. One of the most interesting applications of the two-dimensional Ising model is 
related to the theoretical description of ultra-thin magnetic films, like metal films on 
metal substrates (e.g. Fe on Cu [1], Co on Au [2], see also [3] for a recent review on the 
topic). If the magnetic film is thin enough (less than approximately  five monolayers) the 
atomic magnetic moments tend to align out of the plane defined by the proper film. This 
occurs because the surface anisotropy overcomes the anisotropy of the dipolar 
interactions, which favor in−plane ordering. Under these circumstances, one can then 
model the local magnetic momenta of the material by using Ising variables. 
 Any realistic theoretical description of a magnetic thin film must include, besides the 
usual short−range exchange interactions, also the long−range antiferromagnetic dipolar 
interactions. It is worth mentioning that dipolar interactions have been usually neglected, 
specially in thermodynamical studies, due to the small magnitude of dipolar interactions 
relative to the magnitude of the exchange interactions. Nevertheless, it is a well 
established fact that dipolar interactions can give place to very rich phenomenological 
scenarios, concerning both thermodynamical and nonequilibrium properties. In 
particular, when both interactions are present, the system is inherently frustrated, and 
many of the interesting static and dynamical properties of systems with dipolar 
interactions result, precisely, from this property. 
 In this paper we will review the recent advances in the study of equilibrium (i.e., 
thermodynamical) and out of equilibrium properties of the Ising model with competition 
between short−range ferromagnetic exchange interactions and long−range 
antiferromagnetic dipolar interactions defined on a square lattice and ruled by the 
following dimensionless Hamiltonian: 
 

      

(1) 
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where σ = ±1 and δ stands for the quotient between the exchange J0 and the dipolar Jd 

interactions parameters, i.e., δ = J0 | Jd. The first sum runs over all pairs of nearest 
neighbor spins and the second one over all distinct pairs of spins of the lattice. rij is the 
distance, measured in crystal units, between sites i and j. The energy is measured in units 
of Jd, which is assumed to be always positive (antiferromagnetic); hence δ > 0 means 
ferromagnetic exchange couplings. 
 
II. Thermodynamical properties 
A. Ground state 
 The basic features of the finite temperature phase diagram associated with 
Hamiltonian (1) were first derived by MacIsaac and coauthors in 1995 [4]. In that work 
the existence of equilibrium striped states was firmly established for the first time. They 
showed that the ground state of Hamiltonian (1) is indeed the striped one, provided that 
the relative strength of the interactions δ exceeds some positive value δa ≈ 0.425 [5]. If    
δ  < δa the ground state is the antiferromagnetic one. If δ > δa the ground state is 
composed by antialigned stripes of width h, which depends on δ. MacIsaac and 
coworkers showed that for every finite value of δ  > δa there exists always a value of h 
such that the corresponding striped state has less energy than both the ferromagnetic and 
the checkerboard states, which had been previously proposed as the ground state for this 
system [6]. Moreover, they showed that this is true for any value of δ. In other words, 
the presence of the dipolar interactions, even with an infinitesimal strength, suppress the 
ferromagnetic ordering, favoring the formation of stripe domains. The also showed that 
for large values of δ the equilibrium width increases exponentially h ~ eδ|2. Although not 
rigorously demonstrated up to now, a very large amount of numerical evidence supports 
the results of MacIsaac and coauthors. 
 
B. Monte Carlo finite temperature simulations 
 Most of the knowledge about the finite temperature equilibrium properties of the 
model has been obtained by means of Monte Carlo numerical simulations on finite 
lattices. These have been performed on square lattices of N = L × L sites [4, 7−9] using 
Metropolis or heat bath algorithms. Monte carlo simulations has been vastly used to 
study finite temperature properties of magnetic lattice spin models. However, performing 
Monte Carlo simulations in system (1) involves some particular subtleties to take into 
account, due to the presence of dipolar interactions. 
 First of all, the modulated nature of the ground state implies that the linear size L of 
the system must be chosen commensurate with the period of the modulation associated 
with the particular value of δ under consideration; otherwise, an artificial frustration is 
introduced. 
 A second point concernes the structure of the ground state as the value of δ is 
increased. For relatively large values of δ, striped states of widths similar to that of the 
ground state have very low energies. This may generate (as we will see later) multiple 
metastable states at low temperature, making it very difficult to equilibrate and therefore 
to determine the truly thermodynamically stable state. 
 Other complications arise as direct consequences of the long-range character of the 
dipolar interactions. Since every spin in the lattice interacts with each other, flpping a 
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spin does not affect only a few neighbor spins, but all the rest of the spins in the lattice. 
This means that most of the powerful algorithms developed in the last years to improve 
the efficiency of Monte Carlo simulations (like block algorithms) do not apply, since 
most of them rely on the finite range of the interactions. To further complicate the 
situation, the antiferromagnetic nature of the dipolar term does not allow the application 
of some specially designed algorithm for systems with long-range ferromagnetic 
interaction [11]. This means that, except from some recent works on the triangular 
lattice[10], most of the simulations of this model are based on simple Metropolis or heat 
bath algorithms, in which the typical number of operations to perform a Monte carlo step 
goes as N2 rather than N, as in systems with short range interactions. 
 Other consequences of the long-range character of the dipolar interactions are the 
strong finite-size effects, since in this case every spin feels directly the influence of the 
border. As in any type of system, the best way to diminish border effects is to use periodic 
boundary conditions. While both the interpretation and implementation of periodic 
boundary conditions are straightforward in systems with short range microscopic 
interactions, their usage in systems with long-range interactions is more subtle. In a general 
situation, there are two alternative representations of a finite two-dimensional system with 
periodic boundary conditions. On one hand, we can visualize the system as a torus, where a 
given spin interacts with its closer neighbors defined by the topology of the torus, up to a 
certain range of interaction, that is, to consider a finite translationally invariant system. On 
the other hand, we can think that we have an infinite system, where the original finite 
system has been replicated infinite times in all the coordinate directions. In other words, we 
can think that the infinite lattice has been partitioned into cells of size N = L2 and that we 
have chosen only the periodic solutions of the problem, with periodicity L in all the 
coordinate directions. While the difference between both views is just a matter of 
interpretation for systems with short-range interactions, the situation changes for long-
range interacting systems. According to the second scheme, a given spin will interact with 
infinite replicas of everyone of the rest of the spins and we can express the effective 
interaction between two spins inside the system as an infinite sum over replicas (this 
includes a “self-interaction” term, that accounts for the interaction of every spin with its 
own replicas). On the other hand, in the closed topology of the first scheme it is consistent 
to consider that every pair of spins inside the system interacts only through its minimal 
distance over the torus. This corresponds to the minimal truncation of the infinite series of 
the previous scheme and it is sometimes called the first image convention. While the 
efficiency of both type of schemes can be very different in systems that presents low 
temperature ferromagnetic ordering, in the case of Hamiltonian (1) the differences are 
minimal [12], with a little improvement obtained with the first scheme. The usage of a 
particular scheme is then a matter of convenience. However, while the usage of the second 
scheme is straightforward, the implementation of the first is more involved, since the 
infinite series for the effective interactions are slowly convergent. The usual way of 
handling them numerically is to adapt the Ewald sums technique [3, 13], originally derived 
for systems of interacting charged particles [14, 15]. 
 
C. Low temperature equilibrium properties: Metastable striped states 
 The finite temperature phase diagram in the (δ, T) space was first calculated using 
Monte Carlo simulations on small lattices (L = 16) by MacIsaac and coauthors in [4]. 
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Further improvements at low temperature were obtained by Gleiser and coauthors in [8]. 
The numerical simulations showed that both the antiferromagnetic and the different 
striped states remain stable at finite temperatures below some δ-dependent critical 
temperature Tc(δ). At T = Tc(δ) the specific heat 
 

                       
(2) 

 
presents a peak, indicating that the system undergoes a phase transition into a disordered 
phase. Both the nature of the disordered fase, as well as the order of the phase transition 
present several subtleties and will be considered in section II D. We will consider now 
the properties of the system at temperatures well below the critical one. We will 
concentrate our attention in the low δ region of the phase diagram, that is, where the first 
striped states emerge after the antiferromagnetic one, when the value of δ crosses δa = 
0.425. The transition points between the different striped states at T = 0 can be estimated 
by a numerical calculation of the striped states energies as a function of δ in finite size 
lattices of increasing linear sizes L [4]. We will denote by hi the striped state of width h 
= i, with i = 1, 2 ....  The state hi in a translationally invariant lattice has a degeneracy 4i, 
due to parallel translations along a coordinate axis and to π | 2 rotations of the stripe 
pattern. Let δ i,i+1 be the transition point between the striped states hi and hi + 1. We have 
for the first striped states that δ1,2 ≈ 1.26, δ2,3 ≈ 2.2 and δ3,4 ≈ 2.8. 
 We now consider the transition between the striped states h1 and h2 at finite 
temperatures [8]. The different striped phases can be characterized by the order 
parameter: 
 

                                         

(3) 

 
where the function fh(x) ≡ (x − mod(x,h))| h  takes odd and even values with periodicity h 
[3]; mh measures the overlap  of the spin configuration with  a vertical  strip pattern  of 
width h. The thermodynamical average Mh = 〈mh〉 and its associated susceptibilities 
 

                                (4) 
 
can be calculated through Monte Carlo simulations. The stability of the striped phases 
can be analyzed by heating the system from zero temperature, that is, by performing 
equilibrium Monte Carlo simulations in a sequence of increasing temperature values 
starting from T = 0, where the initial spin configuration at every temperature is taken as 
the last configuration of the previous one. The simulations start at T = 0 from an ordered 
configuration. In Fig. 1 we show an example for δ = 2, corresponding to an h2 ground 
state. In this case two simulations were performed in parallel, one starting from the h1 
and the other from the h2 (vertical) striped states, and in each case Mh1 and Mh2 were 
respectively measured, as well as the corresponding susceptibilities. In Fig. 2 we show a 
simultaneous measurement of Mh1 and Mh2 in a simulation started from the h1 state. 
When starting from h2 the system remains   in this state up to the critical temperature (i.e.,  
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Figure 1. Order parameters (3) and associated susceptibilities (4) vs. T when the system is heated 
starting at T = 0 from an initial (vertical) stripe configuration for L = 24 and  δ = 2; open squares: 
Mh2 for an initial configuration h2; full circles: Mh1 for an initial configuration h1. 
 

 
Figure 2. Mh1 and Mh2 when the system is heated starting at T = 0 from an initial (vertical) stripe 
configuration for L = 24 and  δ = 2. 
 
that of the peak in the specific heat) where Mh2 suddenly drops to a small value, with an 
associated peak in the corresponding susceptibility. The same behavior is reversely 
obtained by slowly cooling the system from high temperatures. This shows that the h2 
state is thermodynamically stable. On the other hand, when starting the simulation from 
the h1 state it remains stable up to certain temperature below the critical one, where it 
destabilizes and the h2 pattern emerges (see Fig. 2), showing the metastable nature of the 
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h1 phase for this particular value of δ. The reverse behavior is observed in the region δ < 
δ1,2, where the h2 phase appears metastable down the certain value δ˘~ 0.7. Repeating 
this procedure allows the calculation [8] of the stability lines for the h1 and h2 phases as 
a function of δ. The results are shown in the phase diagram of Fig. 3. The coexistence of 
different states indicates that the transition between both ordered phases at low 
temperature is of the first order type. The  first order transition line can be located by 
calculating the free energy per spin of each phase, which can be obtained by numerical 
integration 
 

                  
(5) 

 
where U ≡ 〈H〉| N and C(T) is obtained by heating from T = 0 up to the reference 
temperature T for every value of δ. For a given value of T, F(T,δ) is computed for 
different values of δ in each phase. The transition point is calculated as the crossing 
point of the two curves, as depicted in the example presente in Fig. 4. The first order 
transition line between h1 and h2 phases is shown in diamonds in Fig. 3. Following the 
same procedure another first order vertical line is encountered between the 
antiferromagnetic and the h1 phases [16]. Other vertical transition lines appear between 
ordered phases of higher h values [4]. 
 We now turn our attention to the general features of the phase diagram shown in Fig. 
3. We see that the first order line between phases h1 and h2 joins the point where the two 
stability lines cross, marked as TP in Fig. 3. Above the point TP both stability lines 
coincide with the maxima in the specific heat and thus with the transition lines to the 
disordered phase.  As we will see in II D,  those transitions are also of the first order type  
 

 
 

Figure 3. (T, δ) phase diagram for low values of δ obtained from Monte Carlo simulations in        
L = 24 lattices. Triangles: critical temperature obtained from the maximum in the specific heat; 
circles: stability line of the h1 striped phase; open squares: stability line of the h2 striped phase; 
diamonds: first order transition lines between low temperature ordered phases. TP indicates a triple 
point. 



Sergio A. Cannas et al. 8

 
Figure 4. Free energy per spin of states h1 and h2 vs. δ  for T = 0.2 and L = 24. 

 
and, therefore, TP is actually a triple point. Below the triple point we have a 
metastability region, which appears shadowed in Fig.3. The corresponding spinodal lines 
are given by the continuation of the order-disorder transition lines below TP. Further 
evidence of the metastable nature of h1 and h2 phases in that region can be obtained be 
analyzing the relaxation of mixed states in the shadow region of the phase diagram [8]. 
Following the same procedures described above, the coexistence of striped states with 
larger values of h at higher values of δ  can be verified. Notice that the spinodal line of 
h1 in the h2 region decays very slowly as δ increases; actually, it continues almost 
horizontal for a wide range of values of δ. Below this line the coexistence of multiple 
striped states can be found, for instance, between h1, h2 and h3 when δ2,3 < δ  < δ 3,4,     
as can be appreciated in the example for δ  = 2.6 shown in Fig. 5. Coexistence of a larger  
 

 
 

Figure 5. Order parameters (3) vs. T when the system is heated starting at T = 0 from an initial 
(vertical) stripe configuration for L = 24 and δ  = 2.6; circles: Mh1 for an initial configuration h1; 
triangle: Mh2 for an initial configuration h2; squares: Mh3 for an initial configuration h3. 
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number of striped states can be expected for higher values of δ . Moreover, other type of 
stable or metastable configurations (like mixtures of stripes of different widths) can also 
be expected in that region, as observed in a related three-dimensional model with 
competing nearest neighbors ferromagnetic interactions and long-range antiferro-
magnetic Coulomb-like interactions [22]. As we will see in III, the existence of 
metastable states has profound consequences in the far-from-equilibrium, low 
temperature properties of this system. 
 
D. High temperature properties 
 When we increase the temperature the ordered phases undergo a phase transition 
into a disordered state. Booth and coauthors [7] showed that above and near the 
transition temperature the disordered phase is not paramagnetic, but instead it consist of 
extended ferromagnetic domains characterized by predominantly square corners (see 
Fig. 6). This phase presents a fourfold rotational symmetry, as can be observed in 
numerical calculations of the structure factor 
 
 

 
 
which displays four symmetric peaks along the principal axes of the Brillouin zone [3]. 
As temperature is further increased, the four peaks become gradually smeared into a 
circle shaped crown, signaling the continuous replacement of the fourfold symmetry by 
the full rotational symmetry of the paramagnetic phase. Booth and coauthors proposed  
 

 
Figure 6. Specific heat vs. T for  δ = 3 (corresponding to an h4 ground state) and different system 
sizes. Some typical equilibrium configurations at the indicated temperatures for L = 48 are shown 
below. Note the sequence of transitions h4 → tetragonal → paramagnetic. 
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that the transition from the striped to this tetragonal phase can be characterized as an 
order-disorder one, associated to the loss of orientational order of the striped phase [7]. 
To characterize this symmetry breaking they introduced an order parameter 
 

                    
(6)

 
 
where nv (nh) is the number of vertical (horizontal) bonds between spins that are 
antiparallel [7]. The absolute value of this order parameter is one in any stripe 
configuration and equals zero in any configuration with fourfold rotational symmetry. 
The numerical simulations performed by Booth and coauthors of 〈m〉 for values of δ ≥ 3 
appeared consistent with a second order stripe-tetragonal phase transition [7]. In the 
same parameters region, the presence of the tetragonal phase shows its signature in the 
shape of the specific heat curve, as is illustrated in the example shown in Fig. 6, for δ = 
3. We see that the curve presents two peaks. The low temperature peak increases with 
the system size L and coincides with the temperature at which the order parameter (6) 
decays. Thus, it is associated with the stripe-tetragonal phase transition [7]. The 
temperature of the corresponding maximum of the specific heat appears to be almost 
independent of the system size, a finite size behavior usually observed in second order 
phase transitions. The second broader peak at higher temperature does not depend on the 
system size and is associated with the continuous decay of the tetragonal into the 
paramagnetic phase. This second peak becomes more pronounced as δ  increases [7]. 
 The existence of the tetragonal phase was first predicted by Abanov and coauthors 
[17] in a continuous approximation for ultrathin magnetic films, and it was only recently 
verified experimentally in fcc Fe on Cu(100) films [18, 19]. The work of Abanov et al. 
also predicted that the stripe-tetragonal transition should be either first order or the two 
phases might be separated a third phase characterized by rotational domain wall defects, 
that they called an Ising nematic phase [17]. Neither the Monte Carlo results of Booth et 
al., nor the experimental results have shown any evidence of this phase. However, the 
results of Booth et al. appear to be consistent with a second rather that a first order 
transition, as expected from Abanov et al. results. Nevertheless, Booth et al. pointed out 
that the possibility of a weak first order transition cannot be excluded from their Monte 
Carlo calculations. Indeed, extensive Monte Carlo calculations in other region of the 
parameters space showed that this is the case [9]. Information about the order of the 
transition can be obtained by analyzing the energy per spin histograms obtained during a 
single, large run of a Monte Carlo simulation for different temperatures, as in the 
example shown in Fig. 7 for δ = 2. The double peak structure of the energy distribution 
is characteristic of a first order phase transition. The typical configurations associated 
with each peak (i.e., with energies around the maxima) depicted in Fig. 7 show that the 
low and high energy peaks are associated with the striped (h = 2) and the tetragonal 
phases respectively. The typical configurations associated with the minimum of the 
distribution correspond to a coexistence of both phases. Further evidence of the first 
order nature of the transition can be obtained from finite size scaling properties of the 
specific heat (2) and the Binder fourth order cumulant [20]: 
 

                   
(7) 
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The last quantity presents a monotonous behavior at the critical temperature if the 
transition is continuous [20]. If the transition is first order, V → 2 | 3 both for T !  Tc 

and for T "  Tc (when L → ∞ ) and presents a minimum around some pseudo-critical 
temperature (2)

cT (L) [20]. In a first order temperature-driven phase transition the specific 
heat presents a maximum at a different pseudo-critical temperature (1)

cT (L) < (2)
cT (L). In 

Fig. 8 we see a Monte Carlo calculation of CL(T) and VL(T) for δ = 2 and different 
system sizes [9]. The strong dependency of (1)

cT (L) and (2)
cT (L) on L are characteristic of 

first order phase transitions. Moreover, the plot of those quantities as a function of L−2 
shown in Fig. 9 verify the expected finite size scaling behavior in a first-order 
temperature driven phase transition [21]: (1)

cT (L) ~ Tc + AL−2  and (1)
cT (L) ~ Tc + BL−2 

with B > A, Tc being the transition temperature of the infinite system. 
 

 
 
Figure 7. Energy per spin histograms for δ = 2, L = 32 and different temperatures around the 
pseudo-critical one (1)

cT (32) ≈ 0.79. Some typical equilibrium configurations for the indicated 
energies are also shown. 
 

 
Figure 8. Monte Carlo calculations for δ = 2 and different system sizes. (a) Specific heat; (b) 
Binder cumulant. 
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 Notice that the internal energies of both phases (roughly corresponding to the energies 
of the maxima of the histogram) near the transition temperature are located very close to 
each other. This property is also reflected in the rather shallow shape of Binder cumulant 
around (2)

cT (see Fig.8b) and evidences the weak nature of the transition. This effects 
become more pronounced as δ increases. Moreover, for values of δ>2.6. the double peak 
structure (together with the minimum of the Binder cumulant) seems to disappear, or at 
least become undetectable for small system sizes, as can be seen in Fig. 10. This fact  
explains  the seemingly continuous nature of  the transition observed by Booth et al.,  
whose calculations  were performed  for  δ  ≥ 3 [7].  However,  analytic  calculations on a  
 

 
Figure 9. Pseudo critical temperatures (1)

cT  (maximum of the specific heat) and (2)
cT  (minimum 

of the Binder cumulant) vs. L−2 for δ = 2. 
 

 
 
Figure 10. Energy per spin histograms for L = 24 and different temperatures around the pseudo-
critical ones (1)

cT (L). (a) δ =2.6; (b) δ = 3. 
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related continuous model suggest that it belongs to a large family of systems, or 
universality class, in which a first transition for any value of δ is expected on quite 
general grounds [9]. So, the question of the order of the transition for large values of δ  
still remains open. 
 
III. Dynamical properties 
 The dynamics of the two-dimensional Hamiltonian (1) at low enough temperatures 
is characterized, as occurs with any magnetic system that presents long−range order, by 
the formation and growth of small regions of ordered spins called domains. But unlike 
other magnetic models without disorder in the Hamiltonian, in this particular case the 
competition between the short range ferromagnetic interactions (that induces the system 
to order) and the dipolar antiferromagnetic interactions (that frustrates it and tends to 
increases the degeneracy of the ground state) gives place to an unusual slowing down of 
the dynamics. And this peculiar behavior somehow resembles that observed in systems 
with imposed disorder (i.e., with randomness in the Hamiltonian), such as, for instance, 
Edwards−Anderson spin glasses and random field Ising models. This is not a minor 
point, at least from a statistical mechanics point of view, mainly because there has been a 
considerable effort during the last years in trying to find a lattice model able to catch 
many of the dynamical and thermodynamical properties of structural glasses, which also 
present a notorious slowing down of the dynamics. And unlike spin glasses, it is 
nowadays vastly accepted in the community that an adequate model for structural glasses 
can not include disorder in the Hamiltonian. On the contrary, all the complexity of their 
dynamical behavior should be explained only in terms of the competition between the 
short range repulsion and long range attraction character of a some Lennard−Jones−like 
molecular interactions. Although a complete discussion about those attributes that can 
make a lattice system an acceptable model for structural glass is out of the scope of this 
article, we will revisit this point below, in order to show some recent evidence that 
permit us to suspect that Hamiltonian (1) could be considered a good candidate for 
modelling a bidimensional structural glass system. 
 Let us come back to the thin−film interpretation of model (1) which in fact is shared by 
almost all the authors who have contributed to its study during the last years. In 1996, 
Sampaio, Albuquerque and de Menezes performed a detailed study of the relaxation 
dynamics and hysteresis effects of the model [23]. In particular, starting from a fully 
magnetized configuration, they numerically analyzed the way the magnetization relaxes 
when the magnetic field is suddenly switched off. Inside the striped phases, where the 
equilibrium magnetization is obviously zero, they surprisingly found two different 
dynamical regimes, depending on the value of δ. For δ  ≥ δc ≡ 1.35 the initially fully 
magnetized state quickly relaxes to equilibrium, following the expected exponential law 
characterized by a strong dependence on both δ and temperature T. On the other hand, 
when δ  <  δc = 1.35 the relaxation presents a power law behavior with an exponent that 
does not depend on δ. This last behavior, usually found in systems with imposed disorder, 
motivated new investigations about the nature of the dynamical behavior of the model. 
 Hence, in the next three subsections we will present and discuss those results that 
have been found during the last years concerning the out of equilibrium dynamics of 
Hamiltonian (1). 
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A. Aging 
 Aging is one of the most striking features in the off-equilibrium dynamics of many 
complex systems. It refers to the presence of strong memory effects spanning time 
lengths that in some cases exceed any available observational time. Unfortunately, the 
large body of experimental evidence accumulated on the aging phenomena has not yet 
lead to a substantial understanding of the microscopic principles that can give origin to 
this complex phenomenology. Aging phenomena are so relevant mainly because some 
kind of universality appears in its description which makes it possible to categorize 
different systems as members of different classes. The main feature of aging is the 
conjunction of extremely slow dynamics together with non stationary relaxation 
functions. In fact, a system that ages looses the time translation invariance. That means 
that all statistical quantities that depend on two times, do not depend only on their 
difference, as occurs in an equilibrated state. 
 Although aging has been seen in a wide variety of contexts and systems [27] (some 
of them, actually very simple ones [30]) it is perhaps in the realm of magnetic and 
structural glasses dynamics where a systematic study of these phenomena has been 
carried out (see [27] and references therein). 
 In real materials, aging can be observed, for instance, in a Thermo−Remanent 
Magnetization (TRM) relaxation experiment: the system is abruptly cooled under a 
magnetic field B

#$
 that is switched on at t = 0, when the system is quenched at T < Tc, up 

to a time tw when it is suddenly turned off. One then verifies that the magnetization M at 

time τ + tw depends both on τ and tw, with  One can also 

measure aging by looking at the two−time autocorrelation function C(t, t′ ). Although it 
is hard to measure autocorrelation functions in a real experiment, it is very simple to 
calculate it in a numerical experiment. For an Ising system like the one considered in this 
article, the autocorrelation is defined as: 
 

                                      
(8) 

 
In these numerical experiences it is not necessary to consider an external magnetic field. 
The system is simply quenched at time t = 0 from a very high temperature (usually 
infinite temperature) below the transition temperature and let to evolve during certain 
waiting time tw, when the configuration { Si(tw) } is stored. From then on the two time 
autocorrelation function (8) is calculated. If the system attains an equilibrium state, then 
C(tw + τ, tw) = C(τ). But, if the system does not equilibrate in a reasonable time, then C 
will explicitly depend both on τ  and tw, indicating the presence of aging. 
 There are basically two scenarios within which aging can emerge. On one hand, 
aging appears as a consequence of weak ergodicity breaking [27] and it is related to the 
complex structure of the region of phase space that the system explores in time. This is 
the case, for instance, in the Sherrington-Kirkpatrick (SK) [29] model and other spin 
glass models in which the complexity of the energy function is associated to a certain 
degree of randomness and/or frustration in the Hamiltonian. On the other hand, the onset 
of  aging  in many systems derives    from the presence of coarsening processes that give  
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Figure 11. Autocorrelation function C(tw + t, tw) vs. t for δ = 2.0, T  = 0.25 and different waiting 
times tw. 
 
place to a drastic slowing down of the dynamics. In this case the scaling law of the two-
time autocorrelation function is ruled by the following expression 
 

                          (9) 
 
where L(t) is the mean linear size of the domains at time t [28]. 
 In Fig. 11 we see a typical behavior of C(tw + t, tw) inside the striped phase for δ = 
2.0, T = 0.25 and different values of tw. Clearly we verify the presence of aging, 
identified by the strong dependence on both t and tw. For a given tw we observe that the 
system stays in a quasi−equilibrium state before C(tw + τ, tw) finally relaxes to zero. 
Furthermore, as the time the system spends in the ordered phase tw increases, the time the 
system spends in the quasi−equilibrium state also increases (this phenomenon is the 
origin of the name aging). 
 An insight about the nature of the aging phenomena observed inside the striped phase 
can be obtained by analyzing the scaling properties of C(t + tw, tw) in different regions of 
the phase diagram, which can tell us about the universality  class of the dynamical regime. 
Indeed, there seems to be two different dynamical regimes [24], depending on the value of 
δ. When  δ > δc and T = 0.25, C(t + tw, tw) displays the scaling form:  
 

                      
(10) 

 

while for  δ < δc at the same temperature the results seems to be consistent with a 
logarithmic scaling law of the form [24]: 
 

                    
(11)

 
 
 Let us extract now some conclusion of these results. If the slowing down of the 
dynamics is ruled by the domain growth process, as expected in this kind of model 
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without disorder, after a certain time t one can measure the average linear domain size 
L(t). The time evolution of quantities like the autocorrelation function will then present a 
crossover from the dynamical regime characterized by length scales smaller than the 
domain size L(tw) to a regime at larger scales, dominated by domain growth through the 
movement of domain walls. In this scenario, scaling arguments lead to the following 
(and already mentioned) dependency of C( tw, tw + t) 
 

                
(12)  

 

Hence, when t " tw 
 

               
(13) 

 
is expected. 
 Summarizing, the results for δ > δc are consistent with an algebraic growth of the 
linear domain size of the form L(t) ∝  tψ . But what emerges as a much curious result is 
the behavior observed for  δ < δc, which appears to be consistent with a logarithmic time 
dependence of the average domain size L(t) ∝  (ln (t))ψ predicted by an activated dynamic 
scenario proposed by Fisher and Huse [31] in the context of spin glasses, in which both 
disorder and frustration generate active droplets excitations with a broad energy 
distribution. 
 Another consequence of the loose of the time invariant translation of a system that 
ages during its relaxation, is the violation of the Fluctuation Disipation Theorem (FDT). 
Let us suppose that an inhomogeneous external magnetic field hi(t) is switched on at 
time tw; the conjugate response function at time tw + t can be defined as 
 

                                  
(14) 

 
Let us now assume that the system has attained true thermodynamical equilibrium. Then, 
time translational invariance holds and both the autocorrelation and the response 
functions depend only on the time difference t and the FDT gives us a precise 
relationship between R(t) and C(t): 
 

                   
(15) 

 
 For a system that ages, as the one studied in this paper, one can identify two 
different regimes, as we have already seen: for small values of t (t | tw ! 1) the system is 
a quasi−equilibrium states, at least for large tw, and the all the equilibrium properties 
hold. But in the aging regime, when t" tw, both the time translation invariance and the 
Fluctuation Dissipation Theorem do not hold. In other words, C(tw+ t, tw) and R(tw + t, tw) 
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depend explicitly on t and tw. In particular, for a great variety of disordered models and 
also during some coarsening processes, in this last regime a generalized version of the 
FDT holds, which asserts that 
 

             
 (16)

 
 
with X(t +tw, tw) ≠ 1. Moreover, for large enough values of tw, X(t +tw, tw) becomes a 
function of time only though C(tw + t, tw) = X(C(t + tw, tw)). The function T | X(C) can be 
now interpreted as a non−equilibrium generalized temperature. This kind of analysis has 
also been applied in [25] to model (1). Surprisingly, it was found that the system behaves 
in the same way, irrespectively of the value of δ. Actually it was observed that, as          
tw → ∞, the generalized temperature tends to zero, which is a clear signature of a 
coarsening process. 
 
B. Coarsening 
 As we have already seen, when a magnetic system is suddenly quenched from a very 
high temperature (above the critical temperature Tc) into the ordered phase, small 
clusters of ordered spins form which are usually called domains. Immediately after the 
cooling the system finds itself in a disordered state induced by the abrupt quench, but 
accordingly to the thermodynamical laws, it would evolve into an ordered state. Under 
these circumstances the small domains of ordered states start growing, in a process that 
is usually called coarsening. If we could take a snapshot of the system a few seconds 
after the quench, we would identify a patchwork of small domains, ordered in so many 
different forms as different ground states the system admits. But, since there is a 
interfacial free−energy cost associated with the surface of the boundary between 
domains, as the domains grow they compete with each other in order to impose their 
own order. As a consequence of this competition, the patchwork of domains evolves in 
time, trying to decrease the free−energy of the whole system by decreasing the area of 
the interface region between domains.  
 Coarsening is an ubiquitous phenomenon in nature that largely exceeds the realm of 
magnetism [32]. Even more, coarsening plays a fundamental role in many industrial 
processes, as for instance in molten iron. When the molten iron is suddenly quenched 
below the melting temperature, the originally dissolved fraction of carbon present in the 
system precipitates out. If the quench is fast enough, the carbon can not float to the top 
but stays dispersed through the iron forming small particles, and many of the relevant 
properties of cast iron depends specifically on the size and form of the carbon small 
clusters. Hence, controlling the quality of the iron requires a precise knowledge of the 
coarsening process of carbon particles. Other examples of coarsening in physical 
systems appear in foams, the ordering of binary alloy following a quench from above to 
below its order−disorder transition temperature and the phase separation of a binary fluid 
following the quenching from the one−phase to the two−phase region of its phase 
diagram. 
 The simplest way to characterize the coarsening process is by measuring the time 
evolution of the characteristic domain linear size L(t). This procedure, which is hard to 
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carry out in an experiment, can be easily implemented in numerical simulations of Ising 
models like the ones presented in this article. Coarsening has been vastly studied during 
the last decades, both experimentally and theoretically, but there are still many open 
questions, especially concerning the role of frustration in the time evolution of L(t). The 
domain growth scenario in the ferromagnetic phase of the Ising model is very much alike 
the critical dynamics observed in the neighborhood of a critical point. The competition 
among the different domains trying to impose their order to the whole system (as 
discussed above) fields to a power law behavior of the average linear size L(t) 
 

L(t) ∝  tn                (17) 
 

Note that this critical−like slowing down of the dynamics occurs even far away from the 
critical point. Since the domain linear size L(t) will eventually reach macroscopic length 
scales one can expect that the coarsening exponent n will be independent of many of the 
microscopic details. In other words, there should be only a few dynamical universality 
classes, as in fact occurs in the study of critical phenomena. Two of these universality 
classes are already well understood. The first class corresponds to the case of a 
microscopic dynamics that preserve the order parameter of the system, and they are 
characterized by an exponent n = 1| 3. They are usually called Lifshitz−Slyozov [33] 
growth processes, and a typical realization is the spinodal decomposition. The second 
class is associated to those microscopic dynamics for which the order parameter is not 
conserved, and they are characterized by an exponent n = 1| 2. As we indicated in II B, 
our simulations were all performed using a heat bath or Metropolis Monte Carlo 
dynamics which correspond to this second universality class, usually called 
Lifshitz−Allen−Cahn or Curvature−driven growth [34, 35]. A typical physical example is 
given by the process of grain growing in metals. 
 But, there is also a third universality class observed in systems with imposed 
disorder, i.e., in systems whose Hamiltonian includes, besides the dynamical variables, a 
set of random variables necessary to describe the structural randomness of the system. In 
these cases the coarsening process departs from the usual power law of Eq. (17) and is 
characterized by a logarithmic growth rule of the form: 
 
L(t) ~ ln (t)               (18) 
 
Spin glasses, random field models and models with random quenched impurities, are all 
examples of this third universality class. During many years it was not clear whether this 
behavior was restricted to systems with imposed disorder. Nowadays it is believed that 
the departure from the power law dynamics is related to the existence of free energy 
barriers that the coarsening system has to overcome which grow linearly with L(t) [26]. 
In fact, there are also a few examples of systems with logarithmic coarsening that do not 
present randomness in the Hamiltonian, as for instance the three dimensional Ising 
model with nearest−neighbors ferromagnetic interactions and next−nearest−neighbors 
antiferromagnetic interactions, whose dynamics has been described by Shore, Holzter 
and Sethna in [26] (from now on we will refer to it as the Shore model, even when it has 
already been analyzed by other authors[38]). What seems to be the fundamental 
ingredient for the appearance of logarithmic coarsening is existence of a certain degree 
of frustration in the microscopic interactions. 
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 When coarsening is analyzed at zero temperature, it is relatively easy to determine 
numerically the domain growth law. But when the system is analyzed at a non zero 
temperature new challenges emerge. In particular, it is very hard to distinguish real 
domain structures from occasional small clusters generated by thermal fluctuations. One 
way to overcome this difficulty is to use a technique based on the spreading of damage 
method proposed by Derrida [36] and later on improved by Hinrichsen and Antoni [37]. 
The method compares, as time goes on, the state of a suddenly quenched system with 
replicas of the same system initialized in the corresponding ground states. In particular, 
one needs to take into account the time evolution of so many replicas as possible ground 
states the system admits. Remember that in our case, the system has, depending on the 
value of δ, 4h possible ground states, which makes it very difficult to apply this 
technique for large values of δ. Both the quenched system and all its replicas evolve 
under the same thermal noise or, in other words, using the same random sequence in the 
updating process. All those spin flips that occur simultaneously in the quenched replica 
and in one of the ground state systems are considered thermal fluctuations, and they are 
not taken into account in the calculus of the domain areas. 
 We will summarize now the results of the coarsening dynamics of Hamiltonian (1), 
which are presented in detail in [16]. We focus our analysis in the particular case in 
which the system is quenched into the h1 phase for values of 0.8 ≤ δ ≤1,2 (see Fig. 3). To 
characterize the domain growth, the domain areas A(t), defined as the number of spins 
inside each ordered cluster are first calculated. Then, the characteristic linear domain 
size is calculated as  Note that in this particular case, the spreading of 
damage method required a simultaneous comparison among five different replicas of the 
system (one for the quenched replica plus four for each possible ground state). 
 In Fig. 12 we present the behavior of the characteristic linear domain size L(t) when  
δ = 1.2 and T = 0.2, for three different system sizes N = L × L with L = 24, 36 and 48. 
Remember that in this point of the phase space there are no metastable states (see Fig. 3). 
We observe that after a very short transient the system enters into the expected 
coarsening regime L(t) ~ t1|2 , as corresponds for a dynamics that does not preserve the 
order  parameter.        For large times, we see that L(t) saturates in a value that coincides with  
 

 
 

Figure 12. Characteristic linear domain size L(t) as a function of t for for  δ = 1.1, T = 0.2 and 
three different system sizes. The dashed line indicates the curve L(t) ~ t 1| 2. 



Sergio A. Cannas et al. 20

N1| 2, indicating that the domain sizes have reached the size of the system. However, in II 
D we have seen that inside the ordered phase one can identify two different situations. In 
particular, for δ = 1 we known that at low enough temperatures (actually for T < 0.4) 
there are also metastable states corresponding to stripes of width h = 2. 
 In order to determine the effect of these metastable states in the domain dynamics of 
the model, let us consider what happens when the final temperature of the quenching is 
lowered. In Fig. 13 we show the time evolution of L(t) when δ = 1 and N = 24 × 24 for 
eight different temperatures, ranging from T = 0.2 to T = 0.05. What emerges from this 
analysis is the appearance of a new dynamical regime associated with the existence of 
metastability. When 0.1 < T < 0.2 the system displays always the same behavior 
described in Fig. 12. But, for T ≤ 0.1 a regime of slow growth develops at intermediate 
time scales before the system crosses over to the t1| 2 coarsening regime. As we lower the 
temperature further, this intermediate regime extends to larger time scales; nevertheless, 
all the curves eventually cross over to the n = 1| 2 regime. Note that for short times there 
seems to be a change in the concavity of the curves L(t) when the final quenching 
temperature crosses the value T = 0.1, which coincides, for δ = 1.1 with the spinodal 
boundary of the metastable phase of width h = 2 inside the equilibrium phase of width    
h = 1. 
 To characterize further the behavior of the linear domain size L(t) let us consider the 
crossover time τ, given by the intersection of the power law branch of the curve and the 

horizontal saturation branch. In Fig. 14 we show a plot of τ as a function of T. While for 
temperatures greater than T = 0.1 the crossover time presents a linear dependency  with 
1| T , in the region of metastability T ≤ 0.1 we observe an exponential increasing of τ as 
1| T increases, as can  be deduced from the Arrhenius plot presented in the inset of Fig. 
14. The straight line denotes the best linear fit, given by 
 
τ = 62.5 exp (0.39| T)               (19) 
 

 
Figure 13. Characteristic linear domain size L(t) as a function of t for for δ = 1.1 and N = 24 × 24 
and eight different temperatures indicated in the figure. 
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Figure 14. Crossover time τ vs. T for δ = 1.1 and N = 24 × 24. On the inset, an Arrhenius plot of  
τ vs. 1| t for the four lower temperatures showed in Fig. 14. The straight line in the inset indicates 
the best fitting. 
 
 In Fig. 15 we present a temporal sequence of snapshots of a system of L = 48 spins 
and δ = 1.1 at T = 0.2, where the system does not present the slow intermediate regime. 
The pictures appear in pairs. The left pictures correspond to configurations of the system 
at different times, where black points indicate spins up and white points spins down. In 
the right pictures we can visualize the corresponding domain walls obtained with the 
method of Hinrichen and Antoni [37], previously described. Here the black points 
represent spins inside a domain while the white points indicate spins that belong to the 
domain wall. Starting from the left top the snapshots correspond to time steps t = 1, 10, 
20, 30, 40, 50, 100, 200, 300 and 400. After a few time steps, certain degree of local 
order is achieved, and we can identify small clusters of striped structures. As the system 
evolves small domains appears, which can be identified in the right pictures as black 
areas (see t = 30 and t = 40). These small domains start to grow and the coarsening 
process can be easily observed (compare t = 50 and t = 100). Note that some domain 
walls are still very thick, and seem to persist longer times. The domain walls tend to 
align in a diagonal direction. We can see that once a thick domain wall disappears the 
domain boundary around it quickly moves. In other words, thick walls seem to pin the 
motion of thin walls. 
 Finally, in Fig. 16 we present a new sequence, but now obtained by suddenly 
quenching a system with δ = 1.1 and N = 48 × 48 into the metastability region, at T = 
0.05. Note that the first five snapshots are similar to the first five snapshots of the 
coarsening process at T = 0.2. Small domains appear of stripes of width h = 2 (compare 
the time scales of this figure and the former). In the high temperature coarsening this 
small blocks do not seem to play a fundamental role in the growth of the domains. 
However, in the snapshots of the low temperature coarsening it is clear that this blocks 
slow the domain growth. Even more, these blocks seem to pin the domain walls and 
slow the dynamics. In other words, the crossover from the slow logarithmic regime to 
the t1|2 regime will be characterized by the time needed to depin this blocks and free the 
domain  walls.  These dynamical behaviors present a strong resemblance with the ones 
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observed in the two dimensional Shore model [26]. The presence of NNN 
antiferromagnetic bonds in this model introduce free−energy barriers to domain 
coarsening that are independent of the domain size L[26]. Such barriers in this model are 
a consequence of a corner rounding process which generates structures that block the 
coarsening  dynamics[26].  Hence,  the system is        stuck  and coarsens little on time scales  
  

 
 

Figure 15. Snapshots of the coarsening process when a system with δ = 1.1 and N = 48×48 spins 
was quenched to T=0.2 
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Figure 16. Snapshots of the coarsening process when a system δ = 1.1 and N = 48×48 spins was 
quenched to T=0.05 
 

t ! τB(T) = exp(FB|T) (FB being the height of the barrier), while on time scales t " τB(T)  
the free−energy barrier can be crossed and the t1| 2 behavior emerges. In fact, the time to 
completely shrink squares of h2 phase immersed in an h1 phase coincides with the 
divergence observed in the crossover time from the slow growth to the t1| 2 regime [16]. 
These results are consistent with the presence of free−energy barriers independent of the 
domain size L, associated with blocking clusters of the metastable phase, which 
generates a crossover in the coarsening behavior as we cross the spinodal line. Since the 
cross over time diverges as the temperature is lowered, the very slow behavior at 
intermediate times may be indistinguishable from a logarithmic law. 
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C. Slow cooling 
 As we have already seen, at very low temperatures where metastability effects 
appear, the system displays an intermediate slow regime. Nevertheless, after certain 
period of time that diverges as T → 0, it finally enters into the expected algebraic regime 

L(t) ∝ t1| 2. In this subsection we present another interesting way of analyzing the out of 
equilibrium dynamics of the model. Starting from a thermalized state above the 
transition temperature, we measure the average domain linear size L(t) when the 
temperature is slowly lowered below the transition temperature. 
 To simulate the slow cooling, the procedure is as follows [16]: the system is initially 
thermalized at certain temperature T0 above the transition between the ordered and the 
disordered phases and then we lower the temperature during the Monte Carlo simulation 
at a constant rate 
 
T = T0 − rt ,               (20) 
 
where r denotes the constant cooling rate of the experiment. Once the system has 
reached the state with T = 0 one calculates the average linear domain size L0 at the end of 
the cooling process. Since the dynamics gets trapped by the coarsening process, the 
system will never reach the ground state for any non−zero values of r. Furthermore, L0 

strongly depends on the cooling rate r and on the coarsening universality class of the 
system [40]. For a glassy system, characterized by the logarithmic domain growth law     
(18) the relationship between L0 and r is also logarithmic: 
 
L0 ~ − ln (r)              (21)  
 
while for a system that follows an algebraic coarsening law one finds a much faster 
growth of the form: 
 
L0 ~ rn,               (22) 
 
with n = 1| 2 or n = 1| 3 depending on the particular dynamics. 
 Along the simulations one can also monitor the energy excess δ E(r) = E0(r) − Eg  

where E0(r) is the final value of the energy when the system is cooled at rate r and Eg is 
the energy of the ground state. In Fig. 17 we show the temperature dependence of the 
internal energy E for seven different cooling rates r = 0.02, 0.01, 0.005, 0.002, 0.001, 
0.0005 and 0.0002, for a system of size N = 64 × 64 and for δ = 1.0 (inside the striped 
phase of width h = 1). 
 In Fig. 18 we plot both 1| L0(r) and δ E0 as a function of the cooling rate r. The 
quantity L0(r) was calculated by using the method proposed by Cirilo et al. in [39]. The 
best fits gave for both quantities a power law behavior 
 
δ E(r) ∝ r0.35 and L0(r) = 1.9−0.37            (23) 
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Figure 17. Internal energy E as a function of temperature T for seven different cooling rates, (from 
top to bottom) r = 0.02, 0.01, 0.005, 0.002, 0.001, 0.0005 and 0.0002, for N = 64 × 64 and δ = 1. 
The lowest curve corresponds to a heating process from the ordered states (striped state with         
h = 1). The dashed line indicates the ground state energy Eg = −0.467758. 
 

 
 

Figure 18. Excess energy δ E and 1| L0(r) as a function of the cooling rate r for δ  = 1.0. 
 
which can not be interpreted neither as a logarithmic nor as the n = 1| 2 algebraic law. 
But this behavior can be easily understood: when the system is slowly cooled from the 
disordered phase into the metastability region, it must pass through the fast dynamics 
temperature range, which allows the system to form certain local order at a fast rate, 
before it enters into the slow intermediate regime. 
 To verify the former scheme let us consider the slow cooling of a system with δ = 
1.25, which is near the border between the h = 1 and h = 2 striped phases. We chose this 
value because in this particular case the system passes directly from the disordered phase 
into the metastability region without entering in a fast dynamics regime (see Fig. 3). In 
Fig. 19 we plot again both 1| L0 and δ E vs. r for δ = 1.25. The behavior of L0 can be well 
fitted by a power law with a small exponent 
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Figure 19. Excess energy δ E and 1| L0(r) as a function of the cooling rate r for δ = 1.25. 
 
L0(r) ∝  r−0.12.              (24) 
 
which is very hard to distinguish from a logarithmic law. 
 In order to understand in more details which is the mechanism responsible for this 
drastic slowing down, let us take a direct look into the configurations. In Fig. 20 we see 
four typical realizations of the spin configurations for the same system of N = 64 × 64 
spins with δ = 1 and δ = 1.25, respectively. The snapshots presented were obtained at     
T = 0.2 and T = 0.1. What we observe is that in the region of metastability (δ = 1.25), 
domains of h = 2 structures develop which prevent the system to reach a larger order, 
being responsible of slowing down. On the other hand, we see that in the δ = 1.0 case, 
these structures rapidly disappear, during the fast relaxation regime at intermediate 
temperature.  
 Concluding, we can see that the slow cooling experiments confirm that the 
metastability is the responsible of the slow relaxation dynamics observed in this two-
dimensional model. 
 

IV. Discussion and further directions 
 In this work we have presented a rather detailed description of the present state of 
the art concerning the macroscopic properties of the two dimensional Ising model with 
competition between nearest−neighbors interactions and long−range antiferromagnetic 
interactions in a square lattice. Our analysis focused on the nature of the different 
thermodynamical transitions for low values of δ and on the out of equilibrium dynamics 
in the low temperature phases of the model. 
 One of the most interesting thermodynamical properties is the weak first order 
nature of the order-disorder phase transition for some range of values of δ, predicted by 
extensive Monte Carlo numerical simulations. This result appears to answer the apparent 
contradiction between the prediction of Abanov [17] and Booth et al. results [7].         
The challenge persist to determine experimentally the nature of this transition in ultrathin  



Two dimensional Ising model with long-range competing interactions        27 

 
 
Figure 20. Snapshot of a 64 × 64 cooled at a constant rate r = 0.0001. Upper figures: δ = 1.0; 
lower figures δ = 1.25. The left figures were obtained at T = 0.2 and the right ones at T = 0.1. 
 
magnetic films [18]. A question that remains open refers to the order of the phase 
transition for large values of δ. While a continuos approximation predicts that the 
transition is first order for any value of δ on very general grounds [18], the Monte Carlo 
results appears to be consistent with a change in the order of the transition at some finite 
value of δ, above which the transition becomes continuos. Anyway, if the transition for 
large values of δ is so weak that it becomes indistinguishable from a continuos one, the 
di˙erence could be irrelevant from the experimental point of view. 
 The existence of a first order transition of this type is also interesting for other 
reason. This behavior strongly esembles that observed in the three dimensional Coulomb 
frustrated ferromagnet [22, 41]. Hence, it opens the possibility to observe in a two 
dimensional model dynamical phenomena similar to that seen in fragile glassforming 
liquids [42]. Works along this line are in progress. 
 Another interesting point about the thermodynamics of this model is related to the 
existence of metastable striped states at low temperature for large values of δ, which 
generate complex dynamical behaviors. As we have seen, the existence of metastable 
states at low temperatures reveals the true nature of the different dynamical regimes 



Sergio A. Cannas et al. 28

observed inside the striped phases. Some early works seemed to show contradictory 
evidence on the dynamical behavior of the system. On one side [24], there was evidence 
that for small values of δ the system presents a behavior similar to that observed in 
glassy systems (logarithmic growth of the linear domain size). On the other side, in [25] 
the authors found a behavior proper of a simple coarsening process (algebraic domain 
growth) in the same region. We have shown how different types of dynamical analysis 
allows one to interpret these apparently contradictory results, showing that the 
differences observed can be actually ascribed to the existence, at low temperatures, of a 
metastability region where metastable stripe states of di˙erent width coexist. The analysis 
of the striped domains growth shows that these metastable states trap the dynamics of the 
system during certain transient that diverges as T → 0. When the system is quenched to 
the metastable region, small domains of the metastable phase pin the domain walls of the 
stable phase; such metastable domains generate free energy barriers whose height is 
independent of the domain size L, thus slowing the coarsening process for a finite 
(temperature-dependent) period of time. Measurements taken with observation time 
scales smaller than this characteristic periods display an apparently logarithmic behavior. 
Numerical experiments in which a slow cooling is performed from a thermalized state 
above the transition temperature give further support to this interpretation (see Fig. 20). 
 The existence of multiple metastable ordered states at higher values of δ and very 
low temperatures opens other interesting perspectives. We expect that the domain walls 
of the stable phases should be pinned by clusters of the different coexisting metastable 
phases. Therefore, we expect a slow dynamics characterized by multiple characteristic 
time scales, associated with the different free energy barriers generated by each 
metastable phase. 
 We see that many of the open questions remarked above appear for large values of 
δ. Unfortunately, in this region finite size effects and the strong dynamical slowing down 
make numerical simulations prohibitive, since larger system sizes should be considered. 
The usage of more sophisticated non-Metropolis sampling methods, like a recent 
adaptation of Creutz cluster algorithm [10] or the multicanonical algorithm [43], may 
help, at least for studying equilibrium properties. 
 Finally, one important point of experimental importance [19] that remains to be 
answered concerns the role of defects in the high temperature order-disorder transition. 
Some advances along this line has been done recently in in the triangular lattice [10]. 
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