Effects of refractory periods in the dynamics of a diluted neural network
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We propose a stochastic dynamics for a neural network which accounts for the effects of the refractory
periods(absolute and relativein the dynamics of a single neuron. The dynamics can be solved analytically in
an extremely diluted network. We found a very rich scenario that presents retrieval phases and a period
doubling route to chaos in the attractors of the overlap order parameter. Our model incorporates some char-
acteristics that make it biologically appealing, such as asymmetric synaptic efficacies, dilution of the synaptic
matrix, absolute and relative refractory periods, complex retrieval dynamics, and low levels of activity in the
retrieval regime.
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[. INTRODUCTION several of the previously mentioned characteristics.
Our main aim is to introduce and study the effects of

Models of associative memory have been introduced andbsolute and relative refractory periods the dynamics and
intensively studied in recent yeaf$,2]. It has been found memory properties of an asymmetrically diluted model. It is
that very simplified models, which preserve only a few basicwell known that after firing a spike, a neuron is unable to fire
features of real brains, can display many interesting behavagain, irrespective of its afferent potential, for a period of
iors that resemble biological memories. These models cortime of the order of 1-2 msec. This short period is known as
sist essentially of a network of two state unifsrmal neu-  absolute refractory periodAfter that period the neuron can
rong connected by symmetrical synapses. A simplefire again, but with a potential threshold higher than the usual
threshold dynamics makes the state of the neurons evolve ifiesting one. This second period is known r@ative refrac-
time until the network reaches a stable configuration which igory period The presence of refractory periods will lead us
identified with a memory. After having attained a reasonabldo discuss the process of retrieval and the role of attractors as
understanding of the properties and capabilities of the simmemories of the system. In this scenario, the retrieval is an
plest models, the efforts turned out to improve them toward€ssentially dynamical phenomenon, in which fixed point at-
more biological plausibility. In this direction, several im- tractors are replaced by periodic or even chaotic orbits in
provements have been made introducing, eagalog neu- state spacgl3]. The paper is organized as follows: in Sec. I
rons that generalize the two states onéd, dilution and we introduce and completely define the model; in Sec. Ill we
asymmetryin the synaptic matri{4—7], distinguishing be- define some order parameters that characterize the retrieval
tweenexcitatory and inhibitory synapsé8,9], and consid- scenario and solve its dynamics in the limit of extreme dilu-
ering the effects oflynamical thresholds and refractory pe- tion; in Sec. IV we discuss the behavior of the system in the
riods[10,11]. It was found that the memory properties of the absence of fast noiggero temperatuyeand finally the con-
original models are robust, i.e., their capabilities as memorglusions are presented in Sec. V.
storage machines were not only preserved in more general
conditi_ons, but they also improvgd_ in several cases, e.g., with Il. MODEL
very diluted synapses ardw activity patternd4,12].

In this simplified scenario a memory is understood as a In order to simulate the absolute and relative refractory
static phenomenon and very few attempts were made tgeeriods in the dynamics of a neural network wiNmeurons,
wards modeling the much more complex picture of the dywe define a three state neuron at every site
namics of spikes and bursts that seem to be essential for{& =0, =1, i=1,... N}
realistic interpretation of the memory functigal]. Up to Only a neuron such thag(t)=1 will be in the active
now almost all works focused on one of these biologicalstate, i.e., firing at timé. The other two states will represent
ingredients; a satisfactory unified treatment is very difficultdifferent states of a resting neuron. At zero temperature, the
to achieve because the models are very complex and geneabsolute refractory periodvill be modeled requiring that a
ally untractable. In this paper we introduce and study ananeuron which is activgS;(t)=1] at timet be at rest in the
lytically an attractor neural network model that incorporateszero state in the next time stég-1 [S;(t+1)=0]. In the

following time stept+2 it may flip to S(t+2)=—1 or to
the active state again, but in this case with a greater thresh-
*Also at Centro Brasileiro de PesquisasiEas, Rua Xavier Si- old. This last process mimics threlative refractory period

gaud 150, 22290-180, Rio de Janeiro, Brazil. The complete stochastic refractory dynamics can be mod-
"Member of the National Research Cour(@onsejo Nacional de eled by the following set of probabilities for the different
Investigaciones Cierficas y Tenicag CONICET, Argentina. states:

5146 53



53 EFFECTS OF REFRACTORY PERIODS IN THE DYNAMICS OF ... 5147

N
1.0 1 I I
P(S=1) h?(t):cij; Jijsi(1), ©)
oSt i where the synaptic matrid;; is defined by the Hebb rule,
l p
0.0 . ' ' Jj=y 2 e @
-4 2 0 2 4 h u=1

The set of quenched variabl¢g”,n=1, ... p} can take

10 the values+ 1 with equal probability and represent a set of

p binary patterns memorized by the network. Note that with
this prescription half of the neurons are active in a pattern.
Thec;;=0,1 are random independent parameters responsible
for the dilution and asymmetry of the synaptic matrix, and
are chosen according to the following probability distribu-
tion:

0.5

0.0
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P(Cij):N5(Cij_1)+ 1_N)5(Cij)1 5)

whereC/N represents the mean connectivity per neuron.
Note that the PSP presents self-interaction terms, i.e.,
h;(t) depends on the state of the neuron at the same .site
This self-interaction is intended to produce a kind of self-
inhibition. Whenever neuroni is active at time t
[Si(t)=1], thenh;(t)=0 and from Eqs(1) we see that, at
zero temperature, the neuron will be at rest in the next time
step [Si(t+1)=0] or absolute refractory period. If
S(t)=0, thenhi(t)zhio(t)—R, with R being an activation
FIG. 1. ProbabilitiesP(s) for the three neuron states as a func- threshold. Wher(t)=—1 the PSP will behi(t)zhio(t).
tion of the post-sinaptic potentials or local fieldsfor 5=1 and  Comparing the last two situations we see that, for a threshold
h.=2 (see text R+#0, it is easier to flip to the active state from thel state
than from the O one. This situation mimics the relative re-
1 fractory period and one can say that, although both states
P(si(t)=1)= 5 {1+tani(BLhi(t) —hc])}, S =0 andS,= — 1 represent the neuron at rest, the zero state
is a deeper one.
1 In this way the model is completely defined, and we will
P(si(t)=—-1)= E{l—tanr(ﬁ[hi(t)JrhC])}, (1)  see in the next section how the dynamics can be solved ana-
lytically for some relevant quantities as overlaps and activ-
itities.

1.0
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1
P(si(t)=0)= 5 {tanh(B[h;(t) + hc]) — tanh(BL hi(t) — hc);-
ll. THE DYNAMICS: ANALYTICAL SOLUTION

) o IN THE LIMIT OF EXTREME DILUTION
B (inverse temperatuyeepresents a source of stochasticity

in the system of fast noise, as opposed to the static noise First of all, we will introduce some suitable definitions of
generated by the stored patterns that tend to destabilize thglevant quantities. The overlap between the state of the net-
retrieval of a particular oneh, defines a range for the PSP Work at timet and theuth pattern is defined as

values in which the neuron is more likely to be in the zero 1

state. The probibmtles_deflned by_ E_q}s) are shown in Fig. me(t) = _Z 4 (5(1))), (6)

1 for the casg3=1, h,=2. In the limit of zero temperature N\

the probabilities become step functions. The post-synaptic

potential(PSH on neuroni at timet is defined by where(- - -) means both a thermal average and over an en-

semble of initial conditions at=0 [for example, all initial
conditions having a fixed overlap(o) over the first patterh

and the functiorf(s)=s?+s—1 maps the states 0 an€l

This form of the PSP on neurandeserves a detailed discus- to the —1. This is because there is no difference between
sion. hi0 is equal to the PSP of the Hopfield model with these states for memory purposes. The fraction of neurons in
asymmetric dilutior{1,4]. the zero state at timeis given by

hi() =hY ([ 1-si(H/2—s(1)/2]+[s(D) —1]R.  (2)
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1 with the p—1 other memories, sm*=O(1/y/N) for u#1.
q(t)=1- NZ (sZ(t)), (1) Following the method introduced by Derridd al. [4], we
' were able to find a set of two coupled recurrence equations
while the activity of the networkfraction of active neurons  '0f mandg at timet+1 in terms of those quantities defined
is at timet. Then the values om(t) andq(t) determine the
1 mean activitya(t). The full solution can be found in the
_ limit known as “extreme dilution” in whichC<InN and the
aH= ZNZ- EaUCIOMIE ® strong correlations between the states of different neurons at
a given time are destroyed. In this limit it can be demostrated
We considered the case in which the stored memories an@at the PSFh;(t) has a Gaussian distribution whose mean
uncorrelated (¢/£7)=6,,) and the initial state of the net- and variance can be calculated. Performing the limits
work has a macroscopic overlap with one of the patternsC—c, p—o (with a=p/C= cons} after takingN— o, we
e.g., the first one, sm*(0)=m, and has vanishing overlaps obtained the following set of equations:

m(t+1)= %f Dx(tanH B[ m(1—m)/2—gR— hc+x\/Z]}+tanr{,B[m(1+ m)/2+gR+ hc—x\/E]}), 9
1
q(t+ 1)=Zf Dx(tanH B[ m(1—m)/2— qR+ he+xy/a]} — tanH B[ m(1—m)/2— qR— he+x/a]} + tan{ BA{m(1+m)/2+qR
+he—x\al}—tan{ B[ m(1+m)/2+gR—h,—Xx\/a]}), (10
1 1
a(t+1)=5+ Zf Dx(tanH B[m(1—m)/2— qR—h¢+x\/a]} — tan{ B[ m(1+m)/2+ qR+ h.— X /a]}), (11)

whereDx=e "2/ 2.

m(1—m)/2—gR—h,
In the next section we present and discuss the solutions of a(t+l) =5+ er

these equations in some relevant cases. V2a
m(1+m)/2+qR+h
—erv{ ( 4 e ] (14)
IV. RESULTS FOR ZERO TEMPERATURE V2a
In the limit of zero temperature, |Q&_>oo the equations where erfé() is the usual error function. We solved these
for m, g, anda reduce to equations for different values of the parametBsa, and
h..
A. CaseR=0

m(1—m)/2—gR—h,

1
m(t+1)= E{ erf

V2o In this case the two resting stat&s= 0,— 1, will have the
same value for the PSR;=h”. This means that for a neu-
m(1+m)/2+gR+h, ron at rest in any of the two possible states, the probability of
+erf 2a ] ' (12 becoming activated in the next time step is the same for both

states. This can be interpreted as considering only the abso-
lute refractory period. Nevertheless, we will see that this case
will show an extremely rich variety of effects. F&t=0,

Egs. (12—(14) decouple and the dynamics for the overlap
m(t) is determined by the following one-dimensional map:

m(t+1)=F[m(t)]

m(1—m)/2—gR+h,

1
q(t+1)=Z{eri{ 2a

[ m(1-m)/2—qR—h,]

—erf 2a _ E orf m(1—m)/2—h,
] ] 2 V2a

+erf m(1+m)/2+gR+h,

er m(1+m)/2+h

I V2a ] +erv{¥ ] (15
m(1+m)/2+qgR—h,

—erf , (13 . .

V2a while q(t) anda(t) are functions ofn(t).
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FIG. 4. Period doubling route to chaos for the attractors of the
overlap order parameter as a function of the storage capadity
a typical value ot .

o
FIG. 2. Critical curves in the plarie.— « separating the regions
with m=0 (upper regionsfrom them# 0 solutions(lower region$
for several values of the activation thresh&d

Equation (15) has a fixed point solutiom=0 for any
value of the parameters andh.. This solution character-
izes a nonretrieval phase. The stability of the=0 solution
is determined by

h. and asa decreases, thmm=0 solution presents a reen-
trance at small values af. This surprising behavior may
signal, as will be discussed soon, that the dynamics is more
complex than one presenting only fixed point attractors. An-

IF(m) 1 , other fact that can be gathered from Fig. 2 is that the param-
=— = exp— hi2a. 16 eterh., which determines the weight of tHf®&=0 state in
am m—0 \/ﬁ p_ c ( ) Cc g I’&

the dynamics(see Fig. 1, must be kept smallh;<1) in
o order to mantain stability of thm+ 0 solution.

For A\>1 (<1) them=0 solution is unstablestable. In Fig. 3 we show then(a) curves for several values of
The borderline casex=1 corresponds toh.=hg(a) h.. We first note that, as a direct consequence of the abso-
=\—a In(2ma) (see Fig. 2 Forh,<hg them=0 solution |ute refractory period, the retrieval is not perfeai<1) for
becomes unstable and a fixed point solution witk-m*  any value ofa. In spite of this, the system retrieves the
#0 appears continuously. As can be seen in Fig. 2, for fixedtored patterns reasonably well, and the critical storage ca-

pacity for typical values oh. is comparable to that of the
1.0 : : : Hopfield model @.~0.14). Second, a#. increases, the

fixed point retrieval solutions are destabilized, an effect that
08| i 0.8
0.7 —/N‘/k\v.,\ <m>
0.6 | . 0.6
£ 0.5 -
0.4 |- ] 0.4
0.3
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FIG. 3. Overlap curves in the region of fixed point attractors as o
a function of the storage parameter for several valueb.oédnd FIG. 5. Mean values of the order parametersand q in the

R=0. corresponding attractors of Fig. 4.
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FIG. 6. Different dynamical regimes of the overlap order param- t
eterm in the h.— a plane, forR=0, showing regions with fixed FIG. 8. Time evolution of the mean activity in the chaotic at-

point solutions, 2 and 4 cycles and chaos. Cycles of period greateractor fora=0.001, h.=0.05, andR=0.
than 4, although present in the exact dynamics, are not shown due
to the scale of the plot. A region of coexistence of solutions is als

shown (see text OF|g. 5, where we plotted the temporal mean value of the

order parameters in the attractdra) and(qg). Even in the
regions corresponding to periodic cycles and chaos the mean
value of the overlap is of the same order of magnitude as in
the fixed point regionfi~0.7). Consequently, although the
stem never stabilizes on a pattern, it evolves jumping be-
een states that stay near one of them. In this sense it can be
' said that the systerdynamically retrieveghe information

is dramatic already for values &f,~0.2. Finally it can be
noted that the curves do not continue downate-0. This

. S
behavior could be expected as a consequence of the reett\)y\-,
trance of them=0 solution. Nevertheless we found that

before the zero solution reenters, ne-0 fixed point solu- stored in the patterns. It is worth noting that, even in the

tion loses stability, and a penod' doublm'g route to.(.:haosregion of fixed point attractors for the overlap, the micro-
appears aa decreases. The chaotic behavior was verified by i gynamics of the network statesverreaches a fixed
a numerical calculation of the Liapunov exponent. point as a consequence of the absolute refractory period

In Fig. 4 we show the attractor as a function®@ffor a  \hich forces an active neuron to be at rest in the next time
typical value ofh.. Note that this kind of attractor still per- . tarval.

mits the system to recognize the patterns, as can be seen in ), Fig. 6 we present the complete phase diagram for

R=0. Compare the scales of the axes with those of Fig. 2.
' ' ' For o> a4~0.01 the system presents a retrieval region with
05} fixed point attractors withm+ 0, which disappears continu-
ously ath,=h¥(«) . For a<a; there is a retrieval region
({m)#0) with fixed points, cycles, and chaos. These attrac-
tors may coexist in some regions with thre=0 fixed point
attractor. In other words, foxr and h, fixed, the system is
driven into one of the different attractors depending on the
initial value of m. The retrieval region was determined by
the condition(m)#0 in attractors whemm(0)=1. At the
dashed line fora<ea; in Fig. 6, (m) changes discontinu-
ously from{(m)=0 to (m)#0. For h.=0 the system pre-
sents a retrieval phase with cycles of period two for
O<a<a; (a1~0.0075) and fixed points for;<a<a,
with «.=1/27 and it undergoes a continuous transition to
m=0 ata=a,.
' . . In Fig. 7 the curves showing mean activity vs alpha are
o.g 00 0.05 0.10 0.15 0.20 plotted in the region of fixed point dynamics for several val-
' ) ' ' ’ ues ofh.. As expected, the activity of the network is low-
o ered adh. increases, an effect similar to that observed for the
FIG. 7. Curves showing mean activity as a function of the stor-overlap curves. Interestingly, the activity stays below 0.5 for
age parameter in the region of fixed point solutions for severavalues ofa in the retrieval region. This characteristic is bio-
values ofh, andR=0. logically appealing, although in biological neural networks

0.4 |-

02|

01|
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the activity levels are much lower. This behavior has to bedently, to our knowledge this is the first time they are con-
compared to that of the Hopfield model where the mearsidered all together in a unique model. The main effect of
activity is 0.5. In our model, although the patterns storedthese elements, when compared, for example, with the
have 50% of neurons active, the overall activity is lower dueHopfield model, is to prevent the system from reaching a
to the effect of the refractory periods in the dynamics. Figurehermodynamical equilibrium regime; they produce an es-
8 shows the evolution in time of the activity for a particular sentially dynamical system. In particular, it is well known
choice ofh, and « inside the chaotic attractor. It is possible that asymmetric dilutions can yield tmicroscopicchaotic
to distinguish three stages: when the instantaneous activity isajectories in the phase space, as was verified for both Ising-
high (=0.5), in the next time step it falls down to a very low like neurong4] and continuous neurorig]. However, such
value (~0.05) and then it raises to a value around 0.25 sigirajectories correspond always to a fixed point attractor for
naling the presence of an intermedigatefractory period. the macroscopicorder parameter. By considering a limit of
Finally, the same rich scenario with retrieval cyclic and extreme dilution of synapses we were able to solve the dy-
chaotic trajectories persists at low temperature. The observethmic equations for the order parameters of the model, from
behavior at finite temperature is qualitatively similar to thewhich we were able to study its retrieval properties. Our
T=0 one, i.e., the complex dynamics of tieacroscopic main result is to show that the presence of both asymmetric
parameters introduced by the refractory periods is robust tdilution and refractory periods can lead to an even more
small amounts of noise. For higher values of the temperatureomplex dynamical behavior with periodic cycles and cha-
the retrieval region shrinks until it disappears for some criti-otic trajectories, not only in the phase space, but also for the
cal temperature. order parameters. We showed that, in spite of the complexity
of the dynamics, the system is still abledgnamically rec-
B. CaseR=0 ognizethe stored patterns. In the retrieval region the micro-
. . scopic states of the network never reach a fixed point but
In this case the full coupled maps given by E(2) and 55y evolve near a pattern. In this case the paramaters
(13).must be considered. Notice that the order.p'a.rameters a%dq can also vary chaotically in such a way that the tem-
not independent. It can be seen from the deﬂmt@jsand poral averages on the attractor are sufficiently high to iden-
(7) that for a random patterg(®, m“(t) andq(t) satisfy the i, 4 retrieval process. The mean overlap is always distinctly
relationm-+q=1, which is preserved by the map defined by pigher than the overall mean activity. A similar kind of be-
Egs. (9 and (10. Therefore, the initial condition payior was reported in a model which considered excitatory
(m(0),q(0)) must be chosen within such a constraint. neurons as responsible for the retrieval prog&$sAnother
~ The general behavior of the system R0 is qualita-  pjplogically appealing characteristic induced by the refrac-
tively similar to the cas&®=0. Figure 2 shows the retrieval tory periods is that the mean activity is lower than that of the
boundaries for typical values d®. It can be seen that the gtgred patterns in the retrieval region.
retrieval region shrinks for increasing valuesRofAll curves For small enough values tf. we found a critical storage
end ata= a=1/2m for h.=0. The region with cycles and capacity @,~0.16 that is essentially independent of the
chaos with(m)#0 also shrinks folR#0; cycles of period  strength of the relative refractory periddl This value e,
two betweenm=0 andm#0 can also be present for rela- may be compared with those obtained for the fully connected
tively high values ofR>0.2 and small values o&<0.05. Hopfield model[1] (a,~0.14) and for its extreme diluted
The curves for the overlap and activity versashave the  yersjon[4] (a.~0.66).
same aspect as those fr=0, although quantitavely they |t would be interesting to extend this model by consider-
show a deterioration of the retrieval capacity and even Iowerng biased patterns and study the effects on retrieval and
values for the mean activity. The main consequence of havactivity.
ing R#0 is a greater difficulty for single neurons to become
activated giving lower values for the overlap. ACKNOWLEDGMENTS
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