Long-range interactions and nonextensivity in ferromagnetic spin models
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The Ising model with ferromagnetic interactions that decay 8% i$/analyzed in the nonextensive regime
O0<a=d, where the thermodynamic limit is not defined. In order to study the asymptotic properties of the
model in theN— <o limit ( N being the number of spihsve propose a generalization of the Curie-Weiss model,
for which theN— oo limit is well defined for alla=0. We conjecture that mean-field theoryeisactin the last
model for all 0<a=<d. This conjecture is supported by Monte Carlo heat-bath simulations id=thk case.
Moreover, we confirm a recently conjectured scaling by Tsallis that allows for a unification of extensive
(a>d) ard nonextensie (0<a=d) regimes

It has been known for a long time that systems with long- J
range microscopic interactions can exhibit nonextensive be- J(rij)=—=
havior (see Refs. 1-3, among many others, and references
therein. In other words, if the effective range of the interac-

tions between the constituent particles decays slowly enoug ! and where the suii;;, runs over all distinct pairs of sites

with the distance, the free energf=—pInZ, with 4, 5 4 gimensional simple hypercubic lattice. The— o
Z=Tr exp(~pH) (H being the Hamiltonian of the system ;i corresponds to the first-neighbor model. Tae:0 limit

and =kgT) will grow fasterthan the numbeN of micro- ¢, raqhonds; after a rescalidg-J/N, to the Curie-Weiss
scopic elements wheN— and the so-called thermody- ,5qel.

namic limit will be not defined. Let us introduce the sume;(a)=2;.J(r;j). A suffi-

Besides their fundamental theoretical interest in physmsciem condition(and believed to be necess¥hyfor the ex-

microscopic models with long-range interactions which de4gsence of the thermodynamic limit of this system is that
cay slowly are of interest nowadays, in view of their rela-

tionship with neural systems modelifigyhere far away lo-

a (J>0; a>0), (2)
ij

herer;; is the distancéin crystal unitg between sites and

calized neurons interact through an action potential that #(a)= lim EE bi(a)<oo. 3
decays slowly along the axon. Other related problems are N N7

spin sytems with Ruderman-Kittel-Kasuya-YosidRKKY )

like interactions, which are present in spin glassestical Let us now take ad-dimensional hypercube of side

phenomena in highly ionic systerisasimir forces in fluid | 11 andN=(L+1)% and leti=0 be the central site of the
near the critical poinf,kinetic Ising modef and phase seg- hypercube. We have that

regation in model alloy8.Many of these problems can be
studied using some variation of the Ising model.g. — i

. - = lim . 4
Hopfield model of neural network, Edward-Anderson of spin ¢(a) Nﬂw%(a) @
glasses, ety or its lattice-gas version, as in model alldys.
Moreover, even systems not directly related with magneticrThen
ones present often critical properties that fall in the univer-

sality class of some magnetic systems, the Ising model being L/2 L2 1
the most simple nontrivial one. Hence, a deep comprehen— do(a)=1J 2 2 e E— LS (5)
sion of the general properties of the Ising model with long- =1 ig=1 (ig+ig+ - +ig)

range interactions is relevant to understand the behavior of
this kind of system. As we will show, even the most simple  Using the Euler-McLaurin sum formufwe can approxi-
case, i.e., the ferromagnetic model, presents nontrivial normate, forL>1,
extensive behaviors and therefore it represents a good start-
ing point to the study of more complex models. L2

In this paper we consider an Ising ferromagnet vathg- o @)~ J2° f dxy
range interactions, that means, a system described by the !
Hamiltonian

Li2 1
d
X (XT+ X5+ - - +x5)°"2

L/2
] drrd=—1-e
. 1
H==2 J(ry)SS (S==1 Vi), (1)
I, . . .
: Hence,¢q(a) shows the following asymptotic behavior for
with N>1:
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for a—d*. Hence,we conjecture the critical temperature

(NPed—1) if a#d, reproduces exactly the mean-field prediction for all
~ al 1—ald
bol@)~ICu(@)2 e O<a=d. This conjecture is difficult to verify ford>1,
InN if a=d. since for systems with long-range interactions it is hard to

(6) obtain reliable numerical data for the exact critical tempera-
ture. In what follows we show tha®,(«)=1 for O<a<1

In other words, and then we will test our conjecture through a Monte Carlo
numerical simulation.
(1—ald) Let us consider thed=1 system. In this case

N"an (NTa—1) g2 Po(@)=Cal@) for a#d, (7) 4 53512 (1n%). Then, for a>1 ¢(a)=23¢(a)
[£(x) is the Riemann zeta functidpand the critical tempera-
and ture diverges a8 kgT,~2J/(a—1) for a—1" . Using the
Sl asymptotic behaviofs
0

h'j'inxm—cd(d% (8 M oM
Z n*~—— for R(z)>-1 andz#1, (14
whereCy(«) is a continuous function of independent of =t
N, with C4(0)=1. Therefore, the thermodynamic limit is Moy
well defined fora>d (where the system presents extensive > Z~InM, (15)
behavioj, while for e<d the system becomes nonextensive, n=1

the critical temperature becomes infinite, and the standar
Maxwell-Boltzmann formalism cannot be appli€t? The for M=o, we get fora<1

system undergoes a second-order phase transition at finite N
temperature for alle>d whent! d=2 and for lI<a<?2 207 for O<e<l,
when*d=1. Fora—d™", the critical temperature shows the do~ « (16)
following asymptotic behaviof! 2InN  for a=1
keTc~J¢(a). 9 and
We now introduce a model that generalizes the Curie- 1 for O<a<l1,
Weiss one. Such model is described by the Hamiltonian
Ci(a)=y a—1 17)
Fg(a) for a>1.
H':—(Z)J'(r”)sﬁsj (10
I . .
_ : For d=1 the following necessary condition must be sat-
with isfied in order to have a finite critical temperatdre:
I ()= J(rij) 11 N
()= N ()2 11 im 3 n3(n)=c-. (19)
N—o N=
where )
Using Eq.(14), we see that
N*(a)= (N*-/9—1), (12 N 3 N
1-ald S ()~ e
=1 N* ()2 2—«

which behaves as
Hence, the critical temperature fat=1 will be finite
Vo=sa<2.

ald—1 for a/d>1, If we denote byu’,_s’, andf’_the energy, entropy anql
N*(a)~{ NN for a/d=1, (13) Egeiinergy per particle associated with the Hamiltonian

— N ¥ for O<ald<1,
1-ald £(T)= |im—§|nz',
for N—oo, This model reduces to the Curie-Weiss one for N=e
a=0 and to our original model Eq(l) [after rescaling with Z=Trs, exp(-B H),
J—J(ald—1)/2*] for a>d. From Egs.(3), (4), and(6) we '
see that the thermodynamic limit of this model is well de- 1
fined for all «=0. We expect this system to show a phase u'(T)= lim STrs) H'exp(— B HY)
transition at finite temperature for al=0 whend=1 and N=e
for 0=a=2 whend=1. and
The mean-field theory for this model predicts a critical
temperaturékgT.=JCy(a)2¢, which isexactfor =0 and f'(T)y=u'(T)=Ts'(T),
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— 17— T/(N* 2%) for «=0.5 and 1.5. These curves show clearly
14 o Nesoo - the data collapse above mentioned. Moreover, faraG<1
o Nesoo ] our results show that all curvéd ,(T) fall into a single one
12 - A N=1200 i which coincides with the well-known exact solution for the
v N=2400 ] Curie-Weiss model 4=0 case, i.e., the solution of the

i equationm=tanh@/T’) [m=M/N; T'=T/(N*2%)]. This
] last result is impressive. It does not only confirm our conjec-
_ ture concerning the critical temperaturé &1), but also
| shows that the full equation of state=m(T) at zero mag-
i netic field becomes independent afin the nonextensive
regime O<a<1, suggesting that all the thermodynamic
functions are those predicted by the mean-field theory. These
results are consistent with recent Monte Carlo simulations of
the correlation function, which reproduce the mean-field be-
] havior in the same regidh0<a<1.
. . . . ‘ " In this paper we have found a scaling for the Ising model
00 02 04 06 08 10 12 14 with long-range interactions that allows us to get a well-
THN29) defined thermodynamic limit for any value ef In particu-
lar, for «=0, we recover the well-known Curie-Weiss scal-
FIG. 1. Monte Carlo calculations of root mean square of theind, Which has been vastly used in the context of magnetic
magnetization per spirM(N,T)/N vs the scaled temperature systems. With this scaling we were able to obtain the gener-
T/(N*2%) using Hamiltonian(1), for «=0.5, 1.5, and different alized thermodynamic behavior fof— o [Egs. (19)—(21)]
values of the number of spirs in the one-dimensional lattice. In in the ferromagnetic case, which had been previously con-
all cases the error bars are smaller than 0.01. The dashed lines gectured in a more general context by Tsatfidt is worth
the N=o extrapolation oM (N, T)/N. The extrapolated curves for stressing that with this scaling both extensive and nonexten-
a=0, 0.25, and 0.75 are indistinguishable from the previous onesive behaviors can be accommodated in a unified and elegant
The solid line is the exact solution of the Curie-Weiss model. formalism and thg(until now almost unexplorgdd= a<d
case becomes tractable. In the same way the nonextensive
we see that the generalized thermodynamic behavior assogiilly connected Ising model showed to be a very useful tool
ated with the Hamiltoniartl) can be accommodatetr all  when suitable rescald@urie-Weiss modg) we believe that
=0, with the following scalinggin the limit N—o and for  the model here analyzed can represent not only a useful ap-
T>0): proach but also a more realistic one for certain problems
such as neural networks and spin glasses among others.
U(N,T)~NN*u'(T*), 19 On the other hand, due to the distance dependence of the
interactions it becomes very difficult to obtain exact analyti-
S(N,T)~Ns'(T*), (200 cal results even in thd=1 case. We calculated the critical
temperature in the mean-field approximation for any value of
F(N,T)~NN*f"(T*), (21)  d and presented some numerical evidence tfztleast for
d=1) not only does it reproduce the exact value in the
whole nonextensive regimesOa<d=1, but also the full
magnetization curvé1(T)/N is given by the mean-field one.
We believe that the critical temperature satisfies that property
Sor all d. This conjecture is partially supported by the fact

M(T,NYN

with T*=T/N*, as was recently conjectured by Tsallis for
general systems with long-range interactibhMoreover, it

can be easily shown that this type of scaling preserve th
Legendre transformation structure of the thermodynamic

- _ H $ S i H . N o
even in the long-range regn’r?eo_a d. Itis also expected that it holds fore=0 anda—d™. Moreover, since the criti-

that —the — magnetization M=(Z;S) scales @S g exponents are those of the mean-field theory both for
M(N,T)~Nm(T*). Therefore, the suitable plot for looking ,—0 anda—d*, we conjecture that all the critical proper-
for data collapse in a numerical simulation will be ties will reproduce the mean-field behavior fo@<d.
M(N,T)/N vs T/N*. Monte Carlo simulations of the correlation functtérfor

Let us consider thel=1 case. We performed a Monte d=1 also support this statement. These results, although in-
Carlo simulation on a chain & spins with Hamiltoniar{1),  tuitive, are nontrivial and important, especially concerning
using heat-bath dynamics, féf=75, 150, 300, 600, 1200, spin glasses and biological systefngural networks, immu-
and 2400. We calculated the root mean square of the magwlogy, et¢ where a common approximation consists of con-
netization of the systerM(N,T) as a function of the tem- sidering fully connected models instead of the more realistic
peratureT for a= 0, 0.25, 0.5, 0.75, and 1.5. The results ones with slow decaying interactiofs.g., RKKY). Our re-
were averaged ovef samples with different random num- sults show that mean-field behavior is robust against varia-
ber sequencesk(=100, 50, 20, 20, 10, and 5 fad=75, tions of the range of the interactiomswithin the nonexten-
150, 300, 600, 1200, and 2400, respectiyelfor every sive region, at least fat= 1. If our conjecture were true, this
value of« we obtained an extrapolated magnetization curvewould have important practical implications: if you are con-
M,(T), by performing a numerical extrapolation of sidering systems with slow enough decaying interactions
M(N,T) in 1/N to N—oe, then you do not need sophisticated approximations, at least

In Fig. 1 we show our results foM(N,T)/N vs as far as critical properties are concerned.
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