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The Ising model with ferromagnetic interactions that decay as 1/r a is analyzed in the nonextensive regime
0<a<d, where the thermodynamic limit is not defined. In order to study the asymptotic properties of the
model in theN→` limit (N being the number of spins! we propose a generalization of the Curie-Weiss model,
for which theN→` limit is well defined for alla>0. We conjecture that mean-field theory isexactin the last
model for all 0<a<d. This conjecture is supported by Monte Carlo heat-bath simulations in thed51 case.
Moreover, we confirm a recently conjectured scaling by Tsallis that allows for a unification of extensive
(a.d) and nonextensive (0<a<d) regimes.

It has been known for a long time that systems with long-
range microscopic interactions can exhibit nonextensive be-
havior ~see Refs. 1–3, among many others, and references
therein!. In other words, if the effective range of the interac-
tions between the constituent particles decays slowly enough
with the distance, the free energyF52b lnZ, with
Z[Tr exp(2b H) (H being the Hamiltonian of the system
andb[kBT) will grow faster than the numberN of micro-
scopic elements whenN→` and the so-called thermody-
namic limit will be not defined.

Besides their fundamental theoretical interest in physics,
microscopic models with long-range interactions which de-
cay slowly are of interest nowadays, in view of their rela-
tionship with neural systems modeling,4 where far away lo-
calized neurons interact through an action potential that
decays slowly along the axon. Other related problems are
spin sytems with Ruderman-Kittel-Kasuya-Yosida-~RKKY !
like interactions, which are present in spin glasses,5 critical
phenomena in highly ionic systems,6 Casimir forces in fluid
near the critical point,7 kinetic Ising model,8 and phase seg-
regation in model alloys.9 Many of these problems can be
studied using some variation of the Ising model~e.g.,
Hopfield model of neural network, Edward-Anderson of spin
glasses, etc.!, or its lattice-gas version, as in model alloys.9

Moreover, even systems not directly related with magnetic
ones present often critical properties that fall in the univer-
sality class of some magnetic systems, the Ising model being
the most simple nontrivial one. Hence, a deep comprehen-
sion of the general properties of the Ising model with long-
range interactions is relevant to understand the behavior of
this kind of system. As we will show, even the most simple
case, i.e., the ferromagnetic model, presents nontrivial non-
extensive behaviors and therefore it represents a good start-
ing point to the study of more complex models.

In this paper we consider an Ising ferrromagnet withlong-
range interactions, that means, a system described by the
Hamiltonian

H52(
~ i , j !

J~r i j !SiSj ~Si561 ; i !, ~1!

with

J~r i j !5
J

r i j
a ~J.0; a.0!, ~2!

wherer i j is the distance~in crystal units! between sitesi and
j , and where the sum( ( i , j ) runs over all distinct pairs of sites
on a d-dimensional simple hypercubic lattice. Thea→`
limit corresponds to the first-neighbor model. Thea50 limit
corresponds, after a rescalingJ→J/N, to the Curie-Weiss
model.

Let us introduce the sumsf i(a)5( jÞ iJ(r i j ). A suffi-
cient condition~and believed to be necessary10! for the ex-
istence of the thermodynamic limit of this system is that

f~a!5 lim
N→`

1

N(
i

f i~a!,`. ~3!

Let us now take ad-dimensional hypercube of side
L11 andN5(L11)d, and leti50 be the central site of the
hypercube. We have that

f~a!5 lim
N→`

f0~a!. ~4!

Then

f0~a!5J (
i151

L/2

••• (
i d51

L/2
1

~ i 1
21 i 2

21•••1 i d
2!a/2 . ~5!

Using the Euler-McLaurin sum formula13 we can approxi-
mate, forL@1,

f0~a!'J2d E
1

L/2

dx1 •••E
1

L/2

dxd
1

~x1
21x2

21•••1xd
2!a/2

}J E
1

L/2

dr r d212a.

Hence,f0(a) shows the following asymptotic behavior for
N@1:
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f0~a!;JCd~a!2aH 1

12a/d
~N12a/d21! if aÞd,

ln N if a5d.
~6!

.
In other words,

lim
N→`

~12a/d!

~N12a/d21!J2a f0~a!5Cd~a! for aÞd, ~7!

and

lim
N→`

f0~d!

J2dlnN
5Cd~d!, ~8!

whereCd(a) is a continuous function ofa independent of
N, with Cd(0)51. Therefore, the thermodynamic limit is
well defined fora.d ~where the system presents extensive
behavior!, while for a<d the system becomes nonextensive,
the critical temperature becomes infinite, and the standard
Maxwell-Boltzmann formalism cannot be applied.11,12 The
system undergoes a second-order phase transition at finite
temperature for alla.d when11 d>2 and for 1<a<2
when14 d51. Fora→d1, the critical temperature shows the
following asymptotic behavior:11

kBTc;Jf~a!. ~9!

We now introduce a model that generalizes the Curie-
Weiss one. Such model is described by the Hamiltonian

H852(
~ i , j !

J8~r i j !SiSj ~10!

with

J8~r i j !5
J~r i j !

N* ~a!2a , ~11!

where

N* ~a!5
1

12a/d
~N12a/d21!, ~12!

which behaves as

N* ~a!;5
1

a/d21
for a/d.1,

lnN for a/d51,

1

12a/d
N12a/d for 0<a/d<1,

~13!

for N→`. This model reduces to the Curie-Weiss one for
a50 and to our original model Eq.~1! @after rescaling
J→J(a/d21)/2a# for a.d. From Eqs.~3!, ~4!, and~6! we
see that the thermodynamic limit of this model is well de-
fined for all a>0. We expect this system to show a phase
transition at finite temperature for alla>0 whend>1 and
for 0>a>2 whend51.

The mean-field theory for this model predicts a critical
temperaturekBTc85JCd(a)2

a, which isexactfor a50 and

for a→d1. Hence,we conjecture the critical temperature
reproduces exactly the mean-field prediction for all
0<a<d. This conjecture is difficult to verify ford.1,
since for systems with long-range interactions it is hard to
obtain reliable numerical data for the exact critical tempera-
ture. In what follows we show thatC1(a)51 for 0<a<1
and then we will test our conjecture through a Monte Carlo
numerical simulation.

Let us consider thed51 system. In this case
f052J(n51

L/2 (1/na). Then, for a.1 f(a)52Jz(a)
@z(x) is the Riemann zeta function# and the critical tempera-
ture diverges as14 kBTc;2J/(a21) for a→11 . Using the
asymptotic behaviors13

(
n51

M

n2z;
M12z

12z
for Re~z!.21 and zÞ1, ~14!

(
n51

M
1

n
; lnM , ~15!

for M→`, we get fora,1

f0;H 2a
N12a

12a
for 0<a<1,

2 lnN for a51
~16!

and

C1~a!5H 1 for 0<a<1,

a21

2a21 z~a! for a.1.
~17!

For d51 the following necessary condition must be sat-
isfied in order to have a finite critical temperature:15

lim
N→`

(
n51

N

nJ~n!5`. ~18!

Using Eq.~14!, we see that

(
n51

N

nJ8~n!;
J

N* ~a!2a

N22a

22a
.

Hence, the critical temperature ford51 will be finite
;0<a<2.

If we denote byu8, s8, and f 8 the energy, entropy and
free energy per particle associated with the Hamiltonian
H8, i.e.,

f 8~T!5 lim
N→`

2
b

N
lnZ8,

with Z[Tr $Si %
exp(2b H8),

u8~T!5 lim
N→`

1

N
Tr$Si % H8exp~2b H8!

and

f 8~T!5u8~T!2Ts8~T!,
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we see that the generalized thermodynamic behavior associ-
ated with the Hamiltonian~1! can be accommodated,for all
a>0, with the following scalings~in the limitN→` and for
T.0):

U~N,T!;NN* u8~T* !, ~19!

S~N,T!;Ns8~T* !, ~20!

F~N,T!;NN* f 8~T* !, ~21!

with T*[T/N* , as was recently conjectured by Tsallis for
general systems with long-range interactions.17 Moreover, it
can be easily shown that this type of scaling preserve the
Legendre transformation structure of the thermodynamics,
even in the long-range regime17 0<a<d. It is also expected
that the magnetization M̄[^( iSi& scales as
M̄ (N,T);Nm(T* ). Therefore, the suitable plot for looking
for data collapse in a numerical simulation will be
M̄ (N,T)/N vs T/N* .

Let us consider thed51 case. We performed a Monte
Carlo simulation on a chain ofN spins with Hamiltonian~1!,
using heat-bath dynamics, forN575, 150, 300, 600, 1200,
and 2400. We calculated the root mean square of the mag-
netization of the systemM (N,T) as a function of the tem-
peratureT for a5 0, 0.25, 0.5, 0.75, and 1.5. The results
were averaged overK samples with different random num-
ber sequences (K5100, 50, 20, 20, 10, and 5 forN575,
150, 300, 600, 1200, and 2400, respectively!. For every
value ofa we obtained an extrapolated magnetization curve
Ma(T), by performing a numerical extrapolation of
M (N,T) in 1/N to N→`.

In Fig. 1 we show our results forM (N,T)/N vs

T/(N* 2a) for a50.5 and 1.5. These curves show clearly
the data collapse above mentioned. Moreover, for 0<a,1
our results show that all curvesMa(T) fall into a single one,
which coincides with the well-known exact solution for the
Curie-Weiss model (a50 case!, i.e., the solution of the
equationm5tanh(m/T8) @m[M /N; T8[T/(N* 2a)]. This
last result is impressive. It does not only confirm our conjec-
ture concerning the critical temperature (Tc851), but also
shows that the full equation of statem5m(T) at zero mag-
netic field becomes independent ofa in the nonextensive
regime 0<a<1, suggesting that all the thermodynamic
functions are those predicted by the mean-field theory. These
results are consistent with recent Monte Carlo simulations of
the correlation function, which reproduce the mean-field be-
havior in the same region16 0<a<1.

In this paper we have found a scaling for the Ising model
with long-range interactions that allows us to get a well-
defined thermodynamic limit for any value ofa. In particu-
lar, for a50, we recover the well-known Curie-Weiss scal-
ing, which has been vastly used in the context of magnetic
systems. With this scaling we were able to obtain the gener-
alized thermodynamic behavior forN→` @Eqs. ~19!–~21!#
in the ferromagnetic case, which had been previously con-
jectured in a more general context by Tsallis.17 It is worth
stressing that with this scaling both extensive and nonexten-
sive behaviors can be accommodated in a unified and elegant
formalism and the~until now almost unexplored! 0<a<d
case becomes tractable. In the same way the nonextensive
fully connected Ising model showed to be a very useful tool
when suitable rescaled~Curie-Weiss model!, we believe that
the model here analyzed can represent not only a useful ap-
proach but also a more realistic one for certain problems
such as neural networks and spin glasses among others.

On the other hand, due to the distance dependence of the
interactions it becomes very difficult to obtain exact analyti-
cal results even in thed51 case. We calculated the critical
temperature in the mean-field approximation for any value of
d and presented some numerical evidence that,~at least for
d51) not only does it reproduce the exact value in the
whole nonextensive regime 0<a<d51, but also the full
magnetization curveM (T)/N is given by the mean-field one.
We believe that the critical temperature satisfies that property
for all d. This conjecture is partially supported by the fact
that it holds fora50 anda→d1. Moreover, since the criti-
cal exponents are those of the mean-field theory both for
a50 anda→d1, we conjecture that all the critical proper-
ties will reproduce the mean-field behavior for 0<a<d.
Monte Carlo simulations of the correlation function16 for
d51 also support this statement. These results, although in-
tuitive, are nontrivial and important, especially concerning
spin glasses and biological systems~neural networks, immu-
nology, etc! where a common approximation consists of con-
sidering fully connected models instead of the more realistic
ones with slow decaying interactions~e.g., RKKY!. Our re-
sults show that mean-field behavior is robust against varia-
tions of the range of the interactionsa within the nonexten-
sive region, at least ford51. If our conjecture were true, this
would have important practical implications: if you are con-
sidering systems with slow enough decaying interactions
then you do not need sophisticated approximations, at least
as far as critical properties are concerned.

FIG. 1. Monte Carlo calculations of root mean square of the
magnetization per spinM (N,T)/N vs the scaled temperature
T/(N* 2a) using Hamiltonian~1!, for a50.5, 1.5, and different
values of the number of spinsN in the one-dimensional lattice. In
all cases the error bars are smaller than 0.01. The dashed lines are
theN5` extrapolation ofM (N,T)/N. The extrapolated curves for
a50, 0.25, and 0.75 are indistinguishable from the previous one.
The solid line is the exact solution of the Curie-Weiss model.
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It would be very interesting to extend the present analysis
to more general systems of interacting particles with long-
range interactions.

We are indebted to Constantino Tsallis for many fruitful
suggestions and discussions about this beautiful problem.
Useful discussions with G. Raggio are acknowledged. We
also acknowledge warm hospitality received at the Centro

Brasileiro de Pesquisas Fı´sicas~Brazil!, where this work was
partly carried out. This work was partially supported by
Grants No. B11487/4B009 from Fundac¸ão Vitae ~Brazil!,
No. PID 3592 from Consejo Nacional de Investigaciones Ci-
entı́ficas y Técnicas CONICET ~Argentina!, No. PID
2844/93 from Consejo Provincial de Investigaciones Cientı´-
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