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Abstract. The one-dimensionalq-state Potts model with ferromagnetic pair interactions
which decay with the distancer as 1/rα is considered. We calculate, through a real-space
renormalization group technique using Kadanoff blocks of lengthb, the critical temperature
Tc(b, q, α) and the correlation length critical exponentν(b, q, α) as a function ofα for different
values ofq. Some of the very few known rigorous results for generalq are reproduced by our
approach. Several asymptotic behaviours are derived analytically forq = 2, 3 in theb → ∞
limit. We also obtain extrapolated critical temperatures (b = ∞) for arbitrary values ofα > 1
and forq = 2, 3, 4, which we believe approximate the exact ones well, except in the region near
α = 2. Furthermore, the use of another extrapolation procedure suitable only in the vicinity of
α = 2 led us to conjecture that theexact critical temperatureTc(q, α = 2) is the same forany
value ofq. We also verify thatTc(q, α→ 1) ∝ (α− 1)−1 ∀q, which is consistent with a recent
conjecture of Tsallis.

1. Introduction

It is well known that one-dimensional spin models can present an ordered state at low
temperatures if the microscopic interactions fall off slowly enough with the distance [1–
6]. For example, in the case of the spin-1

2 Ising ferromagnet with long-range interactions
proportional tor−αij (where rij is the distance between the spins at sitesi and j ), the
existence of a phase transition at a non-zero critical temperature was proven by Dyson [1]
for 1 < α < 2 and by Fr̈olich and Spencer [5] forα = 2. Moreover, the thermodynamic
properties of the systems (the kind described above) near the critical point frequently present
new behaviours, which are absent in short-range (SR) models. Hence, the study of such
properties is needed in order to gain a deeper comprehension of the general theory of critical
phenomena.

Besides their fundamental theoretical interest in physics, microscopic models with long-
range (LR) interactions are of interest nowadays in view of their relationship with neural
systems modelling [7], where far away localized neurons interact through an action potential
which decays slowly along the axon. Other related problems are spin systems with RKKY-
like interactions (1/rαij cos(arij )) which are present in spin glasses [8], critical phenomena
in highly ionic systems [9], Casimir forces between inert uncharged particles immersed in a
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fluid near the critical point [10], the kinetic Ising model with random spin exchanges (Lévy
flights) [11], phase segregation in model alloys [12] and pattern recognition [13].

In this paper we address theq-state Potts model [14] with LR interactions, i.e. we
consider the Hamiltonian:

H = −J
∑
(i,j)

1

rαij
δ(σiσj ) (σi = 1, 2, . . . , q,∀i; J > 0;α > 0) (1)

where to each site,i, we associate a Potts variable,σi , which can assumeq integer
values (σi = 1, 2, . . . , q), rij is the distance (in crystal units) between sitesi and j (i.e.
rij = ‖i − j‖ = 1, 2, 3 · · ·), J > 0 is the ferromagnetic coupling constant between nearest
neighbours,δ(σi, σj ) is the Kronecker delta function, and the sum

∑
(i,j) runs over all distinct

pairs of sites of a one-dimensional lattice ofN sites. Theα→∞ limit corresponds to the
first-neighbour model, while theα = 0 limit corresponds to the infinite-range ferromagnet
which, after a rescalingJ → J/N , yields basically the mean-field approach.

This model, in its plain formulation (α → ∞ of equation (1)) or in a more general
one with many-body interactions, is at the heart of a complex network of relations
between geometrical and/or thermal statistical models, such as for example various types of
percolation, vertex models, generalized resistor and diode network problems, classical spin
models, etc (see [15] and references therein).

On the other hand, the one-dimensional Potts model with LR interactions has definitely
not been studied so much. In particular, very few rigorous results for generalq are known.
Let us summarize some of the most relevant results to date: (i) this model exhibits LR
order atfinite temperatures [16]T 6 Tc(q, α) for 1 < α 6 2; for α → 1 the critical
temperature diverges and forα 6 1 the thermodynamic limit is not defined and the system
becomes non-extensive; (ii) forα > 2 (SR interactions) it has no phase transition atfinite
temperatures [16] for allq > 1, more precisely,Tc = 0; (iii) it has been proved that for
α = 2 the order parameter is discontinuous atT = Tc 6= 0 for anyq [16]; (iv) for q = 1
the percolation threshold satisfies 1/pc 6 2ζ(α) for 1< α 6 2, whereζ(α) is the Riemann
Zeta function [17].

All the following additional results correspond to theq = 2 case, which is, up to now,
the best one studied: (v) for 1< α < 1.5 the critical exponents are classical [18]; (vi)
the region 1.5< α < 2 shows non-trivial critical exponents, which are not known exactly.
Approximate results in the latter region were obtained by different methods such as (among
others): series expansions [19], finite-range scaling approximations [20], coherent anomaly
method [21], real-space renormalization group [22],ε-expansions [3, 6], aroundα = 2
where the critical behaviour is of an essential singularity type [23], andα = 1.5.

Some approximate results for the critical temperature and the correlation length critical
exponentν were obtained for a wide range of values ofq using finite-range-scaling
calculations [24].

Theα = 2 (i.e. the 1/r2 potential) case is of particular interest because forq = 2 it can
be mapped onto the spin-1

2 Kondo problem [25] (which is related to recent developments in
high temperature superconductivity [26]) and for a general value ofq > 2 it may be related
to higher spin generalizations of the Kondo problem [23].

In order to calculate the critical temperature and the critical exponentν of the q-state
LR Potts model in the extensive region 1< α 6 2 we use a real-space renormalization
group (RG) method, the cumulant method of Niemeijer and van Leeuwen [27], based on
a construction of Kadanoff blocks using the majority rule. Although the convergence of
the cumulant method for a fixed block size can become questionable in some cases (for a
discussion on the advantages and disadvantages of the method see, for example [28, 29]), a
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Figure 1. Renormalization group transformation using Kadanoff blocks of lengthb = 3 in the
one dimensional lattice;rIJ is the distance between the blocksI andJ .

great improvement has been obtained in thenth cumulant result for the critical temperature
of simple ferromagnets as one increases the cell size. In a recent work [22], one of us adapted
the Niemeijer–van Leeuwen RG method [27] to the one-dimensional LR Ising model (in this
case it can be shown that the cumulant expansion becomes a series expansion in powers of
[22] 1/bα). In the case ofq = 2 states the tie-breaking problem in the majority rule can be
easily avoided by considering only blocks with an odd number of sites; forq > 3 this ansatz
does not work. Hence, in this paper we generalize the above technique by introducing an
equally probable tie-breaking majority rule. We expect that this method applied to blocks
of increasing lengthsb, together with our proposed extrapolation forb → ∞, gives good
results for the Potts model, provided the phase transition is a second-order one [15]. The
paper is organized as follows. In section 2 the general RG formalism is described. In
section 3 we present our results which recover those of [22] forq = 2. Finally, the
conclusions are given in section 4.

2. The RG formalism

We start by constructing Kadanoff blocks of lengthb > 1, as shown in figure 1 for the
particular caseb = 3; we will consider, for simplicity, only odd values ofb herein. The
parameterb characterizes therescaling lengthof the RG transformation. The blocks will
be numbered by capital letters. We will assign a block-spin variableσ ′I = 1, 2, . . . , q to
every blockI . Let us denote byσ Ii = 1, 2, . . . , q (i = 1, 2, · · · , b; I = 1, 2, · · · , N/b) the
spin state at theith site of the blockI . Then, defining the dimensionless Hamiltonian

H ≡ −K
N/b∑
I=1

N/b∑
J=1

∑
i∈I

∑
j∈J

1

rαij
δ(σ Ii , σ

J
j ) (i 6= j) (2)

with K ≡ βJ (β = 1/kBT ; hereafter we takekB = 1), a renormalized (block) Hamiltonian
is determined by the following RG transformation:

e−(H
′+C) = Tr{σ Ii }{P({σ Ii }, {σ ′I })e−H}. (3)
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The symbol Tr{σ Ii } denotes a sum over all the configurations of site-spinsσ Ii , C is a spin-
independent constant and

P({σ Ii }, {σ ′I }) =
N/b∏
I=1

PI ({σ Ii }, σ ′I ) (4)

is a weight function which characterizes the majority rule withequally probable tie-breaking,
that means:

PI =
{

1/m if one of them major subgroups of{σ Ii } is in the stateσ ′I
0 otherwise.

(5)

For instance, in the caseb = 5, q = 4 with {σ Ii } = {1, 1, 4, 4, 3} andσ ′I = 4 thenPI = 1
2.

The Hamiltonian,H, can be divided into two parts:H = H0+V , whereH0 =
∑

I HI0
andV = ∑(I,J ) VIJ ; HI0 includes only the interactions between spinsinside the blockI ,
whereasVIJ includes the interactions between spins belonging todifferentblocksI andJ .
Introducing the intra-block expectation values:

〈O〉0 ≡ 1

Z0
Tr{σ Ii }{P({σ Ii }, {σ ′I }) exp[−H0({σ Ii })]O} (6)

with

Z0 ≡
∏
I

ZI0 (7)

and

ZI0 = Tr{σ Ii } PI ({σ Ii }, {σ ′I }) exp[−HI0({σ Ii })] (8)

we can rewrite equation (3) as:

e−(H
′+C) = Z0〈e−V 〉0. (9)

Using a cumulant expansion of〈e−V 〉0, a first-order approximation ofH′ can be obtained
through:

H′ ≈ 〈V 〉0|sdp=
∑
(I,J )

〈VIJ 〉0|sdp (10)

where sdp refers to the spin dependent part on{σ ′I } of the resulted average.
Let rIJ be the distance between the centre sites of the blocksI andJ (see figure 1),

measuredin units of the rescaling length b. For rIJ � 1 we can approximate [22]

rij ≈ brIJ . (11)

Then

〈VIJ 〉0|sdp≈ − K

bαrαIJ

∑
i∈I

∑
j∈J
〈δ(σ Ii , σ Jj )〉0|sdp. (12)

Since the expectation value (6) is carried out with a block-independent probability
distribution it follows that

〈δ(σ Ii , σ Jj )〉0 =
q∑
l=1

〈δ(σ Ii , l)δ(σ Jj , l)〉0 (13)

=
q∑
l=1

〈δ(σ Ii , l)〉0〈δ(σ Jj , l)〉0. (14)

.
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On the other hand, by symmetry, one has that:

〈δ(σ Ii , l)〉0 = ai(K, q, α)δ(σ ′I , l)+ bi(K, α) (15)

whereai andbi are block-independent functions ofK,α, q and the sitei. By combining
equation (15) with equations (10), (12) and (14), and by using the fact that

∑q

l=1 δ(σ
′
I , l) = 1

and
∑q

l=1 δ(σ
′
I , l)δ(σ

′
J , l) = δ(σ ′I , σ ′J ) one obtains that:

H′ = −K ′b(K, q, α)
∑
(I,J )

1

rαIJ
δ(σ ′I , σ

′
J ) (16)

where

K ′b(K, q, α) =
K

bα

[ b∑
i=1

ai(K, q, α)

]2

(17)

is our RG recurrence equation. By using equation (15) we can expressai(K, q, α) as:

ai(K, q, α) = 1

q − 1
[q〈δ(σ Ii , 1)〉0|σ ′I=1− 1]. (18)

Since thenth cumulant of〈exp(−V )〉 is of the order of 1/bnα, approximation (10) can
be seen as the leading term in a series expansion [22] of equation (3) in powers of 1/bα.
Therefore, it is expected that the results will be systematically improved for increasingly
high values ofb.

3. Results

3.1. Analysis of the recurrence equation

We now analyse the recurrence equation (17) and its fixed pointsK∗ = K ′b(K
∗, q, α) as

a function ofα for different values ofq > 2. The typical structure of equation (17) is as
follows. It always shows two trivial fixed points:K = 0 (T = ∞) andK = ∞ (T = 0).
From equation (18) we found thatai(K, q, α) ∼ 1 ∀i, q, α for K >> 1 (T → 0); hence,
from equation (17) we obtain the asymptotic behaviourK ′b(K, q, α) ∼ b2−αK ∀q. For
low values ofα the gradient ofK ′b(K, q, α) at K = 0 is greater than one and it does
not present a (non-trivial) fixed point for finite values ofK. In this case the fixed point
K = 0 is repulsive and thereforeTc = ∞. For intermediate values ofα, K ′b(K, q, α)
possess a non-trivial fixed point at finiteK = Kc(b, q, α) ≡ J/Tc(b, q, α). For α > 2
the gradient ofK ′b(K, q, α) is less than one and there is again no fixed point at finiteK.
In this case, however, the fixed pointK = 0 is attractive and thereforeTc = 0 for all
values ofb, recovering the exact result. Therefore, some valueα1(b, q) exists such that
(i) Tc = ∞ for α 6 α1(b, q); (ii) there is a phase transition at finite temperatureTc(b, q, α)

for α1(b, q) < α < 2 and (iii) Tc = 0 for α > 2.
The borderline valueα1(b, q) is determined by the condition dK ′b/dK‖K=0 = 1. This

equation can be solved by noting that

ai(0, q, α) = γ (b, q) ≡ 1

q − 1

[
q2−b

mmax∑
m=1

Am(b, q)

m
− 1

]
(∀i). (19)

The coefficientAm gives the number of configurations ofb spins (where each one can
be in the statesσ Ii = 1, 2, . . . , q) of a block where one of them major subgroups of{σ Ii }
is in a fixed state, say 1, andσ I1 = 1.
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From equation (17) we obtain that dK ′b/dK‖K=0 = b2−αγ (b, q)2 and therefore

α1(b, q) = 2

[
1+ ln γ (b, q)

ln b

]
.

For q = 2 we have that [22]

γ (b, 2) = (b − 1)!

2b−1
(
b−1

2 !
)2

which for b � 1 behaves asγ (b, 2) ∼ 2√
2π
b−1/2 and we recover the exact result

α1(b, 2)→ 1 in the limit b→∞.
For higher values ofq the calculation of the quantitiesAm involves a lot of combinatorial

analysis. Forq = 3 we found the following expression:

γ (b, 3) = 1

2

{
32−b

[ X∑
l=0

(
b − 1
l

)
2l +

Int(X/3)∑
j=1

X−j∑
j1=2j

(
b − 1
X + j

)(
X + j
j1

)

+
Int( X−2

3 )∑
l=0

(
cb − 1
X + l + 1

)(
X + l + 1
X − l

)
+1

3

(
b − 1
2b/3

)(
2b/3
b/3

)
δ(b, 3n)

]
− 1

}
(20)

wheren = 1, 2, . . ., X ≡ (b − 1)/2 and Int(. . .) represents the integer part of its argument.
This form can be easily evaluated numerically for values up tob ∼ 200. An analysis of
the log–log plot ofγ versusb shows that the asymptotic regime is attained for low values
of b ∼ 7 and clearlyγ (b, 3) ∼ b−1/2 for b → ∞. Therefore,α1(b, 3) also reproduces
the exact result in such a limit. For values ofq > 4 the combinatorial problem becomes
very hard. However, we performed a numerical calculation ofγ (b, q) for q = 4, 5 and
b = 3, 5, 7, 9, finding againγ (b, q) ∼ b−1/2. All these results suggest thatα1(b, q) → 1
for b→∞ for all values ofq > 2.

Closed forms of the functionK ′b(K, q, α) can be obtained analytically for low values
of q andb with the aid of symbolic computer languages. With these expressions the critical
temperatureTc(b, q, α) can be calculated numerically as a function ofα for fixed values of
q andb. The correlation length critical exponent can also be calculated from the expression

ν(b, q, α) = ln b

ln
(

dK ′b
dK (K, q, α)‖Kc

) . (21)

In figure 2 we show our results for different values ofq andb = 3 fixed, while in figure 3
we keepq = 3 fixed and varyb. The corresponding curves for other values ofq are
qualitatively similar.

3.2. α→ 2− asymptotic results

For α → 2− we see thatKc→∞ (Tc→ 0). The asymptotic behaviour of the recurrence
equation (17) in such a limit can be obtained by adding an external fieldh into the
Hamiltonian (2), i.e.HI0 → HI0 + h

∑b
i=1 δ(σ

I
i , 1). Then, in theh→ 0 limit, it is easy to

prove that

b∑
i=1

〈δ(σ Ii , 1)〉0 = ∂ lnZI0
∂h

∣∣∣∣
h=0

. (22)
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Figure 2. Numerical calculations forb = 3 and different values ofq. (a) Critical temperature
Tc(b, q, α)/J versusα; (b) correlation length critical exponentν(b, q, α) versusα.

Figure 3. Numerical calculations forq = 3 and different values of the rescaling lengthb. (a)
Critical temperatureTc(b, q, α)/J versusα; (b) correlation length critical exponentν(b, q, α)
versusα.

ForK →∞ we can expand

ZI0(K, h) ∼ eB1(b,α)K+bh[1+ 2(q − 1)e−B(b,α)K−h + · · ·] (23)

whereKB1(b, α) is the energy of the ground state andKB(b, α) is the energy difference
between the ground state and the first excited state ofHI0. These are given by

B1(b, α) =
∑
(k,j)

1

rαkj
=

b−1∑
n=1

b − n
nα

(24)

B(b, α) =
b−1∑
n=1

1

nα
. (25)
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Then, from equations (22) and (23) we obtain in theK →∞ limit, that

b∑
i=1

〈δ(σ Ii , 1)〉0 ≈ b − 2(q − 1)e−B(b,α)K (26)

which combined with equations (17) and (18) leads to

K ′b(K, q, α) ∼
K

bα

[
b − 2qe−B(b,α)K

]2
(K →∞). (27)

The fixed-point equation derived from equation (27) leads to

Tc/J ∼ −B(b, α)
ln
(
b−bα/2

2q

) . (28)

For α→ 2− the asymptotic behaviour ofTc(b, q, α) is then given by the Cauchy function:

2− α ∼ D(q, b)e−B(b,2)J/Tc (29)

with D(q, b) = 4q/(b ln b). In the b → ∞ limit we haveB(b, 2) → ζ(2) = π2/6 and
D(q, b)→ 0. D(q, b) determines the region aroundα = 2 in which the asymptotic regime
(29) holds. Since the present RG procedure is systematically improved [22] for higher
values ofb, the shrinking of such a region in theb → ∞ limit suggests a non-uniform
convergence to anon-zerovalueTc(α = 2), consistently with the exact result forq = 1, 2.
In other words, the convergence ofTc(b, q, α) towards zero appears to be a mathematical
artefact of the RG approximation, that disappears whenb →∞; the leading behaviour of
Tc(b, q, α) in such a limit will therefore converge to a non-zero value, which is expected to
be a good estimate of the exact result. These facts suggest that the whole region ofα where
the curveTc(b, q, α) versusα shows a negative curvature (and therefore a convergence
towards zero forα → 2) to be spurious. Hence, the inflection point of the curve appears
to be a good choice for estimating the leading behaviour of the curve in the limitb→∞.
In figure 4 we show the asymptotic behaviour (28) ofTc(b, q, α) for q = 3 (similar curves
are obtained for other values ofq) nearα = 2 asb increases. We see that the inflection
points (full circles) converge to a non-zero value atα = 2 for b→∞, while the region of
negative curvature tends to disappear (notice that at these pointsTc/J < 1 ∀b). Hence, we
propose the following ansatz: a good estimate ofTc(∞, q,2) can be obtained by calculating
the value ofTc(b, q, α) at the inflection point of the Cauchy function (29) for finiteb and
then taking theb → ∞ limit (it can be verified that for values ofb > 100 the inflection
point of equation (28) coincides with that of equation (29)). This procedure gives the value

Tc(q, α = 2)/J = B(∞, 2)/2= π2/12 (30)

for all values ofq > 2. This result can be tested forq = 2, since for this case several
results, obtained by different approximated methods, are available. Actually, the present
procedure is almost the same as the one introduced in [22] for the Ising model (q = 2), the
only difference being the criterion of extrapolation. A careful comparison of (30) with the
corresponding values obtained by other methods shows that the choice of the inflection point
is better than the previous one†. In particular, for the Ising modelq = 2 (remember that
(Tc/J )

Ising = 2(Tc/J )
Potts|q=2) we haveTc(2, α = 2)/J = π2/6 ≈ 1.64, which compares

well with other results (renormalization group [25]: 1.57; series expansions [19]: 1.63;
finite range scaling [24]: 1.63;ζ function [30]: 1.69).

† The value ofTc/J = 0.79 for Anderson and Yuval’s result cited in [22] is incorrect, due to a factor of1
2 in the

definition of the Hamiltonian in [25].
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Figure 4. Asymptotic behaviour of the critical temperatureTc(b, q, α)/J when α → 2
(equation (28)) forq = 3. The numbers beneath the curves indicate the values ofb. The
full circles are the inflection points of the corresponding curves. We see a convergence of the
inflection points to a constant valueπ2/12 for b→∞, that results independent ofq.

From equations (21), (27) and (28) one obtains the following asymptotic value for
ν(b, q, α→ 2−):

ν(b, q, α→ 2−) =
{
−(2− α) ln

[
(2− α)
D(q, b)

]}−1

which combined with equation (29) leads to

ν(b, q, α→ 2−) = {(2− α)B(b, 2)Kc}−1.

Using our ansatz equation (30) one, finally, obtains in theb→∞ limit that:

ν(q, α→ 2−) = [2(2− α)]−1 (31)

for all values ofq > 2 provided that the transition is continuous whenα → 2−. Notice
that expression (31) is in contrast with the renormalization group result of Kosterlitz [3]
(νK ∼ [2(2− α)]−1/2) for the Ising case (q = 2).

3.3. High temperature asymptotic results

For α→ α+1 (b, q) we see thatKc→ 0. The fixed point equation assumes then the form

bα/2 =
b∑
i=1

ai(Kc, q, α) (32)

with

bα1/2 =
b∑
i=1

ai(0, q, α1).
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From equation (18) it can be verified that

∂

∂α

[∑
i

ai(K, q, α)

]
K=0

= 0.

Then, expanding equation (32) aroundKc = 0 andα = α1 up to first order inKc and in
(α − α1), and using thatbα1/2 = bγ (b, q) we find that:

1
2bγ (b, q) ln b(α − α1) = Kc

∂

∂K

[∑
i

ai(K, q, α1)

]
K=0

.

SinceZI0 = ZI/q (ZI being the partition function of the blockI ) andZI = qb for K = 0,
we obtain from equations (18) and (24) that

∂

∂K

[∑
i

ai(K, q, α1)

]
K=0

= q

(q − 1)qb−1

{
B1(b, α1)G(b, q)− 1

qb

∂ZI

∂K

∣∣∣∣
K=0,α=α1

A(b, q)

}
(33)

where

G(b, q) = Tr{σ Ii } PI ({σ Ii }, 1)δ(σ Ik , σ
I
j )

b∑
i=1

δ(σ Ii , 1) (34)

A(b, q) = Tr{σ Ii } PI ({σ Ii }, 1)
b∑
i=1

δ(σ Ii , 1)

= bqb−2[1+ (q − 1)γ (b, q)]

(35)

and

∂ZI

∂K

∣∣∣∣
K=0,α=α1

= B1(b, α1)Tr{σ Ii } δ(σ
I
k , σ

I
j ) ∀k, j ∈ I (36)

= qb−1B1(b, α1). (37)

Therefore, we have the asymptotic behaviour

α − α1 ∼ C(b, q)Kc

where

C(b, q) = 2B1(b, α1)

b ln b

{
G(b, q)q2−b − b

q
[1+ (q − 1)γ (b, q)]

(q − 1)γ (b, q)

}
. (38)

Sinceα1 → 1 for b → ∞, this result suggests that the asymptotic behaviour ofTc is
proportional to (α − 1)−1, i.e.

Tc(q, α)/J ∝ 1

α − 1
(39)

for α → 1 holds for all values ofq, provided that the phase transition is a second-order
one.

In view of the proportionality constantC(b, q), equation (38) reduces, forq = 2, to

C(b, 2) = B1(b, α1)

b ln b

(
b − 2
b−3

2

)
γ (b, 2)2b−2

.
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SinceB1(b, α1) ∼ b ln b for b → ∞, we obtain that limb→∞ C(b, 2) = 1. Therefore, we
find in the limit b→∞ that

Tc(2, α)/J ∼ 1

α − 1
(40)

which reproduces known results (see [22] and references therein). It is worth stressing that
expression (40) recovers asymptotically the mean-field one [31].

For q = 3 a closed form ofG(b, q) (and therefore ofC(b, q)) can also be analytically
obtained. The detailed form of it can be seen in the appendix. We found numerically
that C(b, 3) → constant≈ 0.67 ≈ 2

3 for b → ∞. These results are consistent with
C(∞, q) = 2/q∀q > 2, provided that the phase transition is a second-order one.
Eventually it might hold also forq = 1, which would be consistent with Schulman’s
bound [17] 1/pc 6 2ζ(α) (ζ(α) ∼ 1/(α − 1) for α → 1). It is interesting to compare this
result with the mean-field one, which predicts a first-order phase transition forq > 3. We
calculated the corresponding critical temperature following along the lines of Mittag and
Stephen [32], namely

T MF
c /J = (q − 2)

(q − 1)

1

ln(q − 1)
ζ(α)

which for q � 1 (where mean field becomes exact [33]) andα→ 1 behaves as

T MF
c /J ∼ 1

ln(q)

1

α − 1
.

Notice that thisexact asymptotic behaviour ofTc/J for a first-order transition differs
from our result(2/q)(α − 1)−1 which is expected to hold only for continuous transitions.

It is worth stressing that the asymptotic functional form (39) agrees with Tsallis’ proposal
[34] for unifying in a single picture both SR and LR interaction systems. This proposal has
recently been verified for Lennard-Jones-like potential systems [35, 36] as well as for LR
ferromagnetic Ising models [31, 37].

Finally, using the same expansion ofKc = K ′b(Kc, q, α) aroundKc = 0 andα = α1,
and combining it with equation (21) we find that

ν(b, q, α) ∼ 1

α − α1
(∀b, q > 2)

which, together with the resultα1(b = ∞, q) = 1, leads, in theb→∞ limit to

ν(q, α) ∼ 1

α − 1
(∀q > 2). (41)

Forq = 2 the mean-field behaviourν = 1/(α−1) holds for 1< α < 1.5 exactly [6, 18].
Our results suggest that such a behaviour holds, at least asymptotically forα → 1, for all
values ofq > 2. The results of Glumac and Uzelac [24] also suggest such a behaviour for
all q 6 1 and 1< α 6 4

3. So, eventually this asymptotic behaviour forα → 1 might be
true for all q, provided the phase transition is a continuous one.

3.4. b→∞ extrapolations for an arbitraryα

Now, we can use the asymptotic behaviours obtained in the preceding section to extrapolate
the full curvesTc(b, q, α) versusα for b→∞ as follows [22]. First, we define the rescaled
variablesxq ≡ (2− α)/(2− α1(b, q)) andyq ≡ Tc(b, q, α)(2− α1(b, q))/JC(b, q), so that
yq(xq) ∼ 1/(1− xq) for xq → 1 ∀b, q. In figure 5 we plot, forq = 3, yq(xq) versusxq for
different values ofb. This figure clearly shows a data collapse forb > 5 (represented by
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Figure 5. Rescaled critical temperatureyq ≡ Tc(b, q, α)(2 − α1(b, q))/JC(b, q) versus
xq ≡ (2 − α)/(2 − α1(b, q)) for q = 3. All curves with b > 5 coincide, within the used
scale, with the full curve.

a full curve in figure 5). This also appears for other values ofq. Hence, such curves are
expected to be good estimates of theb = ∞ ones. Using the resultsC(∞, q) = 2/q and
α1(∞, q) = 1 (which we know holds at least forq = 2, 3), we revert such curves into the
(Tc, α) variables. The results, which are expected to be good estimates of the exact critical
temperaturesTc(q, α) for values ofα near one, are shown in figure 6(a). In table 1 we
compare our results with those obtained by Glumac and Uzelac [24] through finite-range
scaling (FRS) (as far as we know, these are the only published results forq > 2), and by
Luijten and Bl̈ote [39] (in the caseq = 2) using Monte Carlo simulations, for some typical
values ofα and q. We see that our results show a good agreement with the others for
values ofα ∼ 1 (the percentual discrepancy is below 11% forα < 1.4), but the difference
increases forα→ 2. However, it is not expected that our extrapolation gives reliable results
nearα = 2. First, because the procedure was constructed using the asymptotic behaviours
obtained forb→∞ nearα = 1 and therefore we expect these results to be accurate only in
such regions. Second, we saw in section 3.2 that for finiteb our curves present a spurious
convergence to zero forα → 2, which can be in principle associated with a region of
negative curvature ofTc(b, q, α) that disappears forb→∞. However, for the (relatively)
small values ofb used in this section (the exponential growth withb of the number of terms
in the RG equations rapidly exceeds our computational capabilities) such a region extends
for a wide range of values ofα. Therefore, the extrapolated curves obtained in this section
also presents the spurious behaviour, even far away fromα = 2 (α & 1.7)

The same extrapolation procedure can be applied to the critical exponentν, using the
asymptotic behaviour (41). The numerical results are depicted in figure 6(b) for q = 2, 3, 4;
our asymptotic result equation (31) is also represented by a dotted curve. We also include,
for comparison, the exact value [18] forq = 2 and 1< α 6 1.5 (ν2 = 1/(α − 1)) and the
asymptotic result from Kosterlitz [3]νK for α→ 2 andq = 2 (shown by a broken curve).
The discrepancy between our results in the vicinity ofα = 2 and our previous prediction
(equation (31)) is not surprising since the present extrapolation method forν, similar to that
for Tc, was constructed for reproducing the expected behaviour in the other extreme region
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Figure 6. b→∞ extrapolations for different values ofq. (a) Critical temperatureTc/J versus
α; (b) critical exponentν versusα. The dotted curve represents our asymptotic behaviour
equation (31), while the broken curves correspond to the exact resultν2 for 1< α 6 1.5 and to
the Kosterlitz’s asymptotic resultνK for α→ 2, both forq = 2.

Table 1. Comparison of our RG (b → ∞) extrapolated values, Luijten and Blöte [39] Monte
Carlo calculations and Glumac and Uzelac [24] FRS calculations of the critical temperature
Tc/J for different values ofq andα.

q = 2 q = 3 q = 4

α RG MC FRS RG FRS RG FRS

1.1 10.40 10.500 19 10.787 6.72 7.353 5.16 4.926
1.3 3.48 3.673 61 3.680 2.33 2.589 1.89 2.045
1.5 2.00 2.179 1.41 1.663 1.14 1.402
1.7 1.28 1.463 0.95 1.194 0.78 1.048
1.9 0.77 1.003 0.61 0.874 0.51 0.797

(α → 1). For q > 2 all numerical curves are quite indistinguishable within the resolution
of the plot and with a little departure from theq = 2 case. This fact, together with the
obtainedq-independence for the asymptotic behaviours ofν in both the region nearα = 1
(equation (41)) and the region nearα = 2 (equation (31)), suggests that the critical exponent
may be independent ofq for all 1 < α < 2. In table 2 we compare our results forν with
the exact ones (q = 2 and 1< α 6 1.5) and the corresponding ones obtained by FRS [24]
for q = 2 (our results forq > 2 show a little difference with ours forq = 2). Notice that
although our results forq = 2 are worse than those of FRS when 1< α 6 1.5, we obtain
a divergence forα → 2− (as expected) in contrast with their finite value forν. The main
difference between our results and those of FRS occurs forq > 2, where the FRS values
for ν show a strong dependency onq.

4. Conclusions

The approach adopted here gives an estimate of some critical properties of the LR Potts
model as a function ofα for different values ofq > 2, based on an extrapolation of a
systematic series of RG calculations. This method allows us to obtain analytically several
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Table 2. Comparison of our RGb → ∞ extrapolation, exact results and Glumac and Uzelac
FRS calculations of the critical exponentν for q = 2 and some typical values ofα.

α RG Exact FRS

1.1 10.48 10 9.901
1.3 3.90 3.33̇3 3.322
1.5 2.81 2 2.325
1.7 2.66 — 1.930
1.9 3.90 — 2.469
2.0 ∞ ∞ 3.236

important quantities as functions of the rescaling parameterb. This fact, in turn, permits
us to take theb → ∞ limit, where the results are expected to be highly accurate and
perhaps reproduce the exact ones. This last assumption is supported by the recovery of
several known results forq = 2 and some of the very few rigorous results available for
generalq, giving confidence to the validity of the method. It is worth stressing that two
different extrapolation methods have been used, each one corresponding to different regions
of validity. The first method (section 3.2) applies only to the vicinity ofα = 2. In this
case our method predicts a remarkable new result, namely that the critical temperature
at α = 2 is discontinuous with thesame valuefor all q > 2. On the other hand, the
second method (section 3.4) is based on someb = ∞ asymptotic results obtained for
α→ 1, and therefore we believe that the extrapolated critical curvesTc(q, α) approximate
with high precision the exact ones forα near one. We also believe that the asymptotic
functional form Tc(q, α)/J ∝ (α − 1)−1 for α → 1 might be exact. Notice that this
is consistent with the recent conjectured scalings for generalized thermodynamics which
allow an unification of extensive (α > 1) and non-extensive (06 α 6 1) regimes
[34].

In view of the critical exponentν(q, α), we obtained, through the first extrapolation
method, an asymptotic behaviour forα→ 2− which is the same for allq > 2. Although its
explicit form may not be the exact one (as it differs from the RG prediction of Kosterlitz [3]
for theq = 2 case), it suggests thatν(q > 2, α→ 2−) might be independent ofq provided
that the transition is continuous whenα→ 2−. Some other predictions for arbitraryq and
continuous phase transitions, such as the asymptotic behaviour ofν(q, α) for α → 1 and
its possibleq-independence for all 1< α < 2, are also of interest. It would be worth
testing our conjectures and predictions with other techniques, such as the recent Monte
Carlo method for LR spin models [38, 39].

Finally, one point which requires some discussion is the possible appearance of a first-
order transition for some finiteq > qc (for the two-dimensional SR case it is known exactly
[40] that qc = 4). For the LR (as well as for the SR) case it was proved [33] that the
mean-field theory becomes exact (and therefore the transition is of first order) in the limit
q → ∞. We have not found any evidence of a first-order transition, but it is also known
that the present kind of RG approach does not detect this type of transition in the two-
dimensional SR Potts model [41]. As far as we know, this question remains open since
the FRS results [24] are also inconclusive in this respect. However, this problem could be
solved by introducing appropriately some dilution in the RG formalism [41] and it would
be interesting to apply this ansatz to the present case. Other possible extensions of the
present paper concern higher-dimensional systems, where the crossover between short- and
long-range regimes could be of interest for some real problems [9]. It could also be used
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to treat more complex interactions such as the RKKY one. Some calculations along these
lines are in progress and will be published elsewhere.
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Appendix. Derivation of G(b, 3)

Since expression (34) is independent of the pair of sitesk, j it can be written as:

G(b, q) = 2G1(b, q)+ (b − 2)G2(b, q) (A1)

where

G1(b, q) ≡ Tr{σ Ii } PI ({σ Ii }, 1))δ(σ I1 , σ
I
2 ), δ(σ

I
1 , 1) (A2a)

G2(b, q) ≡ Tr{σ Ii } PI ({σ Ii }, 1))δ(σ I2 , σ
I
3 )δ(σ

I
1 , 1) (A2b)

which can be written as:

Gi(b, q) =
mmax∑
m=1

Gi
m(b, q)

m
(i = 1, 2) (A3)

where
• G1

m ≡ number of configurations ofb spins (σ Ii = 1, 2, . . . , q) of a block where one
of them major subgroups of{σ Ii } is in the state 1, and the spinsσ I1 = σ I2 = 1.
• G2

m ≡ number of configurations ofb spins (σ Ii = 1, 2, . . . , q) of a block where one
of them major subgroups of{σ Ii } is in the state 1, and the spinsσ I1 = 1 andσ I2 = σ I3 .

We found that

G1
1(b, 3) =

X∑
l=0

(
b − 2
l

)
2l +

Int(X/3)∑
j=1

X−j∑
j1=2j

(
b − 2
X + j

)(
X + j
j1

)
(A4a)

G1
2(b, 3) = 2

Int( X−2
3 )∑

l=0

(
b − 2

X + l + 1

)(
X + l + 1
X − l

)
(A4b)

G1
3(b, 3) =

(
b − 2
2b/3

)(
2b/3
b/3

)
δ(b, 3n) (A4c)

G2
1(b, 3) =

X∑
l=0

(
b − 3
l

)
2l +

Int(X/3)∑
j=1

X−j∑
j1=2j

(
b − 3
X + j

)(
X + j
j1

)

+2
X∑
l=2

(
b − 3
l − 2

)
2l−2+ 2

Int(X/3)∑
j=1

X−j∑
j1=2j

(
b − 3

X + j − 2

)(
X + j − 2

j1

)
(A4d)
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G2
2(b, 3) = 2

Int( X−2
3 )∑

l=0

(
b − 3

X + l + 1

)(
X + l + 1
X − l

)
+ 2

Int( X−2
3 )∑

l=0

(
b − 3

X + l − 1

)(
X + l − 1
X − l − 2

)

+2
Int( X−2

3 )∑
l=1

(
b − 3

X + l − 2

)(
X + l − 2
X − l − 1

)
(A4e)

G2
3(b, 3) =

[(
b − 3
2b/3

)(
2b/3
b/3

)
+ 2

(
b − 3

2b/3− 2

)(
2b/3− 2
b/3− 2

)]
δ(b, 3n) (A4f)

wheren = 1, 2, . . . andX ≡ (b−1)/2. A combination of expressions (A1), (A3) and (A4)
leads toG(b, 3).
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