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Abstract. A feed-forward Neural Network for the Sum problem of two numbers
is implemented. The Error function is studied exhaustively showing many interesting
features such as local minima (that does not appear in the 1-bit problem), plateaus, at
minima, etc. Di�erent optimization strategies are implemented for the learning problem.

Using the local minima structure of the error, we analyze how the selection of examples
in the training set inuences the learning perfomance.

We obtain an upper bound for the minimal number of examples needed for general-
ization for the general case of adding two numbers of N -bits length.

Introduction

In 1996 Sprinkhuizen-Kuyper & Boers showed in Ref.[1] that the simplest XOR function
has no local Minima. We decide to study more complicated functions to see if local
minima appear, trying to understand why they do appear, and with this information test
di�erent algorithms through the learning process.

We study the energy function of a network that performs the sum operation of two
numbers of N-bit length, which reduces for the 1-bit case to the XOR function.

The Structure of the Network to sum two N-bit num-

bers.

The network is a perceptron with one hidden layer, that solves, with determinated weights,
the sum problem. See [2] for a complete description of the structure. The input layer has
2N units, the hidden layer has N, and the output layer has N+1 neurons. We consider
the symmetric case, where synapses connecting one neuron to input bits with the same
signi�cant values are equal.

The energy of the network,E, is de�ned as the di�erence between the output calculated
by the network and the desired output (target), calculated over the training set:

Efwj;Kig =
KX

i=1

(Sifwj;Kig �OifKig)
2; (1)

where K is the number of examples in the training set, Ki is a particular example,
and fwjg are the synaptic weights.
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The generalization error is similar to the energy but takes into account all possible
examples.

Existence of Local minima

We study the sum of two numbers of 2-bit in the symmetric case, restricting our study
to the second output bit, because the study of the �rst output bit was exhaustively done
in [1], and also because it is a particular case of the second output bit problem. The
structure for computing this second output bit is shown in �g. 1.

The Output neuron, S, computes the following function:

S = �[w1�(x1+x2)+w2��(w3�(x1+x2)+w4�(x3+x4)�h1)+w5��(w6�(x3+x4)�h2)�h0]

where wi are the synaptic weights, hi are the thresholds, and xi; (i = 1; ::; 4) are the
input bits, where x1, x2 are the bits with signi�cative value 21 corresponding to the two
input numbers and x3 and x4 are the bits with value 20. The activation function, � that
neurons compute is a sigmoid transfer function of the form:

�(x) =
1

1 + e�x
:

The input neurons (xi; i = 1; ::; 4) are set with binary values f0,1g depending on the
example to be evaluated. The desired outputs are binaries, but as the output of the
network is continuous, we set the targets to �xed values, to avoid an excessive growing of
the synapses, as follows:

� � in the case corresponding to an output 0 (Neuron OFF).

� 1� � in the case corresponding to an output 1 (Neuron ON).

We select � to be 0.1 but any small positive number can be used.
For the case of adding two numbers of two-bit length (N=2), the number of di�erent

training patterns (examples) is 16, but just 9 of them are independent due to the simmetry
imposed to the synapses.

To �nd the possible local minima of Eq.(1) is necessary to solve the 9 equations:

@E

@wi

=
@E

@hi
= 0 8i

This procedure leads to a set of 9 equations with 9 variables too complicated to solve
analytically. Our approach use optimization methods to �nd local minima and then try
to show that they are indeed local minima. This procedure involves the calculus of the
eigenvalues of the Hessian Matrix corresponding to Eq.(1), and to see that a point is a
local minima all these eigenvalues should be positive de�nite. The elements of the hessian
matrix coming from Eq.(1) has the form;

Hij =
@2E

@2wij

Numerical problems appear trying to demostrate the positiveness of the eigenvalues,
but we have strong evidence that many local minima exist for this problem.
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The Energy Landscape and the behaviour of the ex-

amples.

Through the use of the optimization algorithms we encounter di�erent characteristic el-
ements of the landscape, Flat minima, Plateaus, High barriers, etc. All these com-
ponents turn the optimization procedure very complex, slowing down the rate of learning
and the probability of success searching for the global minima. In �gure (2) we show the
energy along the direction between two minima one local and the other global.

The energy landscape function Eq.(1) is sum of many particular energies of the individ-
ual examples. We study these individual energies obtaining the following characteristics:

Around the global minima we can clearly distinguish two kinds of examples, according
to its contribution to the energy function; those with output 0.1 (OFF) and the others with
output 0.9 (ON). Also, at the global minima there are some examples whose contribution
to the energy its greater than the others. See �gure (3).

We analyze the di�erent local minima classifying them in two groups: The �rst one,
where all the examples have the same residual energy, as shown in �gure (4), and the
second group where we can clearly distinguish between examples that have been learnt
and others that have not.

Data collected from many local minima show that examples involving bit-carry are
the most di�cult ones to be learnt.

Improving Generalization: Selection of Examples

It was shown by Kinzel & Ruj�an [2] among others, that selection of examples is a good
way to improve generalization. With the information obtained from the study of the
energy landscape we make a selection of examples for the sum problem. For simplicity,
we consider a network with binaries neurons, instead of the continuos ones used before,
and we study the case N = 3 because the previous one, with (N = 2), has too few
examples, 9, to test a selection. For the case N = 3, we analyze the 27 equations for
every particular energy of the examples, �nding that 10 selected examples are enough to
obtain generalization.

This result can be generalized for arbitrary N. In this way, we �nd analytically an
upper bound for the minimal number of examples needed for perfect generalization, Nm:

Nm � 2(2N � 1):

Comparing this number with the total number of synapses of the net for the whole
sum problem, Ns:

Ns =
1

2
(N2 + 5N � 2);

we have, for N � 1, that the relation between them behaves as:

Nm

Ns

� O(
1

N
)

.
We also test the generalization properties through numerical simulations (simulated

annealing) for N = 3; 4; 5, using random equiprobably chosen examples. We �nd for this
case that the average minimal number of examples, hNmi, behaves as:
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hNmi � O(N2)

.

Conclusions

We analyze the energy landscape of the sum problem of two N -bit numbers, founding
that, for N > 1, it shows a very complex structure, with local minima, at minima

and plateaus. The analysis of this structure leads to the conclusion that some classes
of examples strongly inuence the energy landscape and therefore, they must be included
in the selection in order to obtain good generalization.

We �nd analytically an upper bound to the minimal number of examples for optimal
generalization, Nm � O(N), which compares very well to the average minimal number of
randomly chosen examples, hNmi � O(N2):

All these results can be used for develop general criteria for improving the general-
ization procedure by selection of examples. Works along these lines are in progress.
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Captions for �gures

� Figure 1: Network Structure for the second Output bit for the Sum Problem of two
numbers.

� Figure 2: Energy landscape along the direction between a global minimum and a
local one.

� Figure 3: Behaviour of the examples near a global minima. In dotted line the Total
energy and in dashed lines the energy corresponding to the examples.

� Figure 4: Local minima where all the examples have the same non-zero energy equal
to 0.08.
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