
Solving arithmetic problems using feed-forward neural
networks.

Leonardo Franco 1

Sergio A. Cannas 2

Facultad de Matem�atica, Astronom��a y F��sica, Universidad Nacional de C�ordoba,

Haya de la Torre y Medina Allende S/N, Ciudad Universitaria,

5000 C�ordoba, Argentina.

e-mail : ffranco, cannasg@.�s.uncor.edu

Abstract

We design new feed-forward multi-layered neural networks which perform di�erent el-
ementary arithmetic operations, such as bit shifting, addition of N p-bit numbers, and
multiplication of two n-bit numbers. All the structures are optimal in depth and are poli-
nomialy bounded in the number of neurons and in the number of synapses. The whole set
of synaptic couplings and thresholds are obtained exactly.

Keywords: Neural Networks, Arithmetic operations, Shifter Circuit.

1Fellow of the Consejo Provincial de Investigaciones Cient���cas y Tecnol�ogicas de la provincia de C�ordoba.
(CONICOR-Argentina).

2Member of the National Research Council. (CONICET-Argentina).

1

1 Introduction

One of the most important issues in the Neural Network �eld is learning [15], i.e., synaptic
modi�cation algorithms (also known as learning algorithms) that allow an arbitrarily con-
nected network to develop an internal structure appropriated for a particular task. Although
learning algorithms can be (in principle) implemented for any kind of neural structure, feed-
forward layered networks presents a simple architecture that makes them specially suitable
for the study of general learning properties (besides their utility for solving speci�cal prob-
lems, see, for instance, [9]). These networks are basically input-output devices: parallel
circuits composed by layers of processing units (neurons) connected by synaptic couplings;
the information
ows in only one direction from the input to the output layer and eventually
passes through one or more hidden layers. The simplest feed-forward network is the so-called
simple perceptron [12], which possesses only two layers: input and output. Learning in feed-
forward networks is achieved by minimizing some cost function in order to associate a set of
inputs (stimulus) to a set of desired outputs (responses).

In this work we consider networks composed of binary neurons, i.e, neurons whose activity
can only take two values: zero and one. The activity of a neuron �i in a given layer is
determined by computing a linear threshold function of the form

�i = �

2
4X

j

WijSj � Ti

3
5 (1)

where �(x) is 1 if x � 0 and 0 otherwise, Wij are the synaptic weights, Sj = 0; 1 are the
activities of the neurons in a previous layer and Ti is the activation threshold of the neuron
�i. In this case, every output neuron computes a boolean function of the input values.

The �rst problem one faces when trying to apply a learning algorithm to a speci�c
problem is that of solvability. There exists a large class of problems (the so-called linearly

inseparable) that cannot be solved by simple perceptrons, being the exclusive-or (XOR)
boolean function the most famous one [5]. Arithmetic problems, the topic of the present
work, also fall into this category. On the other hand, linearly inseparable problems can
always be solved by adding hidden layers. Moreover, it can be easily shown that any boolean
function can be computed using only one hidden layer with a number of neurons which grows
exponentially with the number of variables (or input neurons). However, this exponential
dependency is highly undesirable in practical implementations. Hence, the important point
is to determine the minimum number of hidden layers polinomially bounded in the

number of entries needed to solve a given function. Let us de�ne the depth of a network
as the number of layers with threshold units, i.e., the input layer is not taken into account.
The minimal depths for some arithmetic problems are known. It was proven by A. Hajnal
et al [4] that the addition of N numbers can be computed by networks of depth 2, while
multiplication of two numbers needs at least a depth 3 network. In fact, both problems
are closely related and after solving the former a solution of the latter can be immediately
obtained, as we will show in this work. Generally speaking, arithmetic problems, if soluble
by feed-forward neural networks, admit several solutions with di�erent architectures, and
for some of them analytical solutions have been obtained (see [8,6,3]). Besides the depth,
another important factor to take into account in the choice of a given architecture is the
maximum fan-in of the circuit, which is de�ned as the maximum number of inputs of a
single neuron. Both features (depth and fan-in) are very important by the time of chip

2

implementation. The depth of the network gives the overall delay in computation (which is
also important for parallel processing software) and the hardware puts an upper limit to the
number of inputs of a single gate.

Returning to the general topic of learning in multilayer networks, several optimization
algorithms have been introduced in the last years but, up to now, no general convergence
theorem has been proved for any of them. Moreover, a current problem in the �eld is the
search of standards for performance comparison of di�erent learning algorithms [11].

Even in cases in which the algorithms are successful, their general underlying theory still
remains far from being understood and several important problems remain open. Which is
the minimum number of hidden neurons needed to perform a certain task? Which is the
best architecture for the hidden layers? How many examples are needed for learning certain
input-output mapping and how does the network performance depend on the choice of a
particular set of training examples?

Having exact solutions of particular networks that solve non-trivial problems like the
arithmetic ones aid signi�cantly for the analysis of such type of questions. They also serve
as standards for testing how the di�erent algorithms work. Moreover, statistical mechanics
has often illustrated that exactly soluble models could also reveal unexpected new facts.

In this work we obtain analytically soluble neural networks for three arithmetic problems,
namely, addition of N numbers of p-bit length, multiplication of two n-bit numbers and bit-
shifting of a M -bit number. All these structures are optimal in depth and we analyze their
structures in terms of size, connections, maximum fan-in, etc. The results are also compared
with other implementations.

The bit-shifting problem has an additional interest. Shifter circuits have been proposed
to explain dynamic control of information
ow between arrays of neurons at di�erent levels of
the visual pathway, related to distinct aspects of perception, such as directed visual attention,
stereopsis, and others [2]. Hence, besides its possible utility in neurophysiological modeling,
we think that the present network may serve to design e�cient visual processing networks,
since, to the best of our knowledge, this is the �rst implementation of a shifter network of
depth-2 for an arbitrary shifting range. By the way, this is a constructive proof that
the lower bound for the depth of this problem is two (it is a linearly inseparable problem).

The paper is organized as follows: in section 2 we present the construction of a depth-2
network for addition of N numbers; these results are applied in section 3 to the construction
of a depth-3 network for multiplication of two numbers. In section 4 we construct a network
which shifts an arbitrary number of places all the bits of a number of length M . This
structure is straightforwardly generalized for performing both left and right shifts. Some
conclusions and remarks are presented in section 5.

2 A depth-2 network for addition of N numbers.

It was proven by Hajnal et Al. [4] that the addition of N numbers can be computed by
polynomial size Neural Networks of depth 2. The proof is nonconstructive and up to our
knowledge no such network has been constructed. Recently Siu & Roychowdhury [14] showed
that a depth 2 net is feasible. We have found a depth-2 neural network composed by linear
threshold units, polynomialy bounded in the number of gates and connections, for solving
the problem of adding N numbers of p-bits length. This problem is very closely related to
multiplication, powering and other ones.

3

The main problem we face in designing such net is the di�culty introduced by the carry
from the sum of the bits. In almost all the previous designs the procedure, mainly, consists
of transforming the sum of the N numbers to the sum of two numbers, using techniques as
the Dortmunder method [6], Carry Save Addition [10] and Block Save Addition [8]. These
procedures introduce, at least, 2 intermediate layers of linear threshold units leading to
structures that exceed the known lower bound. Hence, we decide not to use those techniques
and proceed with the sum of the numbers in just one step.

The network architecture is the following: In the input layer there are Np neurons
corresponding to the N p-bit numbers to be added. The output layer has M = log2(N(2p �
1)+1) neurons, enough to express the result from the sum that could be, at most, N(2p�1).
The log operation is assumed to give an integer value result, which is greater or equal than
the exact real result.

Every input number Sj (j = 1; : : : ; N) will be represented by a set of p binary neurons:
Sj = Sp�1

j ; Sp�2
j ; : : : ; S0

j . The input layer is arranged in p groups of N bits each, depending
on its signi�cant value, i.e., the corresponding neurons are arranged in the following order:
Sp�1
N ; Sp�1

N�1; : : : ; S
p�1
1 ; Sp�2

N ; Sp�2
N�1; : : : ; S

p�2
1 ; : : : ; S0

N ; S
0
N�1; : : : ; S

0
1. The signi�cant value of a

bit SpN is 2p and it is assumed that the neurons could take the values one and zero, i.e.,
Si
j = f0; 1g. The output neurons are denoted by So

M�1; S
o
M�2; : : : ; S

o
0.

In this way the total number of neurons will be completely determined by the number of
neurons in the intermediate layer, because the size of the input and output layers is clearly
de�ned by the problem itself. The neurons in the intermediate layer will be arranged in M
groups. The group k will have Nk neurons, whose outputs are connected only to the output
neuron So

k.
We analyze every output bit separately. Let us �rst consider the synapses structure which

determines the least signi�cant output bit So
0 (corresponding to the value 2

0). We shall pay
a special attention to this case, since this structure will be essentially repeated with minor
changes for the other bits.

The least signi�cant bit, namely So
0, has to be one if the result of the sum H of the input

bits

H =
NX
i=1

S0
i (2)

is odd, and zero if it is even:

So
0 =

8><
>:

1 if H is odd

0 if H is even
(3)

In other words, this bit computes the parity of H. The solution of this problem will be
the key to compute the sum of N numbers. It can be solved as follows: �rst, we put in this
part of the intermediate layer (group k = 0) N0 = N neurons �0i = 0; 1 (i = 0; :::; N0 � 1).
The synaptic connections between these neurons and the k = 0 input ones are chosen in
such way that more than half of the intermediate neurons are ON (that means �0i = 1) when
H is odd while less than half of them are OFF (�0i = 0) when H is even.

How should we select the value of the connections? Since in the parity problem all the
bits have the same weight, it is reasonable to set all the connections from the input neurons
to an intermediate one �0i equal to a single value w

0;0
i . Therefore, we have that

�0i = �

0
@w0;0

i

NX
j=1

S0
j � Ti

1
A = �

�
w0;0
i H � Ti

�
: (4)

4

Now we select the following values:

fTig =

(
�1;�3;�5; ::::;

�(N0 � 2); N0 if N0 is odd
�(N0 � 1) if N0 is even

)
(5)

and

w0;0
i =

(
1 if Ti > 0

�1 if Ti < 0
(6)

Notice that, for even values of H, the intermediate neurons whose thresholds have the
same absolute value jTij are always one ON and the other OFF. This is also true when H is
odd for all intermediate neurons except those with jTij = H, which are both ON. Moreover,
for odd values of N the neuron with Ti = N is OFF for all even values of H. Therefore, we
have that

N0�1X
i=0

�0i =

(
> N=2 if H is odd
� N=2 if H is even

(7)

for all values of N , as desired (see table 1). Finally, we can see from table 1 that setting the
synapses from the intermediate group (k = 0) toward the output neuron So

0 all equal to one,

i.e., So
0 = �

�PN0�1
i=0 �0i � T0

�
, and taking

N0=2 < T0 � (N0 + 1)=2; (8)

So
0 computes the parity problem for all values of N . In Fig. 1 we show an example of the

resulting net structure for the least signi�cant output bit.
The solution we have found is a particular and simple one. A more general solution can

be obtained from the previous one by allowing the thresholds fTig to take a wider range of
values. Following the same ideas as before, any threshold that in the previous solution took
the value m (m = �1;�3; : : :) , now is allowed to take an arbitrary value in the interval
(m � 1;m]. For instance, the threshold that was Ti = 1 now can take the values in the
interval (0; 1] and the one that was Ti = �1 now can be in the interval (�2;�1]. All the
other values of thresholds and synapses remain as before.

Having computed the least signi�cant output bit, we consider the other output bits. To
compute the second least signi�cant output bit So

1, we have to perform the addition of the
N input bits belonging to the group k = 1 (corresponding to the signi�cant value 21) plus
the carry from the N input bits of the group k=0 (signi�cant value 20). We proceed in the
same manner as before, but considering that two bits of signi�cant value 20 are necessary to
form one with signi�cant value 21. Hence, the bits of signi�cant value 20 are connected to
the intermediate neurons by synapses that are half of the value of the synapses that connect
these neurons with the corresponding ones with absolute value 21.

Now, we proceed as if we were summing N1 = N + int(N=2) bits (therefore we have to
put this number of intermediate neurons) and we repeat the procedure we used in the �rst
case (the int operation takes the integer part of the argument).

Therefore, we have that

�1i = �

2
4w1;1

i

NX
j=1

S1
j + w1;0

i

NX
j=1

S0
j � Ti

3
5 (9)

5

for i = 0; : : : ; N1 � 1, with

fTig =

(
�1;�3;�5; ::::;

�(N1 � 2); N1 if N1 is odd
�(N1 � 1) if N1 is even

)
(10)

and

w1;j
i =

(
1

21�j
if Ti > 0

� 1
21�j if Ti < 0

(j = 0; 1) (11)

This procedure can be further generalized to any output bit. When k < p, the output bit
So
k results from the addition of the N input bits of the group k, plus the carrying from the

preceding k � 1 input groups. This operation is equivalent to the addition of Nk numbers,
where

Nk = Int
�
N +N=2 + � � �+N=2k

�
=

= 2N � Int
h
N

2k

i
for k < p. On the other hand, when p � k �M � 1, the output bit So

k results only from the
carrying of the p input groups, because there are no input groups with k0 � p. Therefore,
the number of intermediate neurons in the group k will be

Nk =

8<
: 2N � Int

h
N
2k

i
if k < p

Np

2k�p+1
= Int

h
N

2k�p
(1 � 1

2p+1
)
i

if k � p
(12)

and

�k
i = �

2
4 kX
l=0

wk;l
i

NX
j=1

Sl
j � Ti

3
5 (13)

for i = 0; : : : ; Nk � 1, with

fTig =

(
�1;�3;�5; ::::;

�(Nk � 2); Nk if Nk is odd
�(Nk � 1) if Nk is even

)
(14)

and

wk;l
i =

(
1

2k�l
if Ti > 0

� 1
2k�l if Ti < 0

(l = 0; : : : ; k) (15)

The total number of neurons in the intermediate layer results:

NI =
p�1X
k=0

�
2N � Int

�
N

2k

��
+

M�1X
k=p

Int
�
N

2k�p
(1�

1

2p+1
)
�
'

' 2Np � 2 + Int
�
N

2p
�

1

2p � 1

�
(16)

Finally, we set

So
k = �(

Nk�1X
i=0

�k
i � T k

0) (17)

with
Nk=2 < T k

0 � (Nk + 1)=2 (18)

for k = 0; : : : ;M � 1:

6

The whole structure of a net for summing N numbers of p bits involvesO(3Np) neurons
and a number of synapses O(N2p2).

As seen, all the sum procedure could be carried out just knowing how to compute the
parity problem.

The full structure of a net for the particular case N = 3 p = 2 is shown in �gure 2. Some
network parameters for di�erent values of N and p are shown in table 2.

3 Depth-3 Neural Multiplier

The two n-bit number multiplier consists of a 4-layer neural network. The multiplication
is performed in two transformation steps. The �rst one transforms the product of the
multiplicand and the multiplier to a sum of n numbers of 2n-1 bit length. The second
transformation adds all these n numbers.

We begin by arranging the two n-bit numbers in the input layer.
The �rst transformation step consists in multiplying the bits of the multiplicand by every

bit of the multiplier, in the same way as in hand calculations. We need no intermediate layer
for this process, since it involves binary products, which are equivalent to perform a bit to
bit boolean operation AND, which is indeed linearly separable [5]. Hence, the �rst step can
be carried out by a simple perceptron. We obtain n numbers of 2n-1 bits that have to be
added. We arrange them in the �rst hidden layer. Notice that just n out of the 2n-1 bits of
every number are di�erent from zero. This fact allows us to reduce the number of neurons
from 2(n2 � n) down to n2 in this layer. The neurons from this layer are connected to the
input by two synapses, one to a bit from the multiplicand and one to the multiplier. The
values of the synapses and the thresholds can be chosen in a simple form. It is enough to
set all the synaptic weights equal to +1 and all the thresholds to +2 to compute the above
operation. This is a simple particular solution, but a more general form is to put every
threshold (T) to a positive value and the two correspondent synapses (W1;W2) such that:

W1;W2 < T �W1 +W2: (19)

In this way the �rst transformation step involves 2n neurons in the input layer, n2 in the
�rst hidden layer and 2n2 synapses between both layers.

The second and last transformation consists in adding the n numbers of 2n-1 bits, we
have obtained from the �rst step. We have solved this problem in the previous section in
a more general form of adding N numbers of p bits. For this case, in which the numbers
come from a product, a minimization can be done in the number of neurons, due to the fact
that n-1 bits of every number are zero. Thus, this second step needs 2n2 � n neurons in
the second hidden layer that, together with the 2n in the output layer totalizes 3(n2 + n)
neurons for the whole net. The number of required connections is of order n4.

An example of the structure of a multiplier for the case of two numbers of 2 bits length
is shown in �gure 3.

In table 3 some parameters of the network for some classical sizes, as well as for the
general case, are shown.

7

4 A bit shifting network

Given an input number of M -bits S = SM�1SM�2::::S1S0, with Si = f0,1g, a 1-place left
bit-shifting consists in obtaining a new M -bit number in which all the bits from the input
number are carried one place to the left and a zero is put in the remaining empty site (see
�gure 4). The leftmost bit SM�1 is simply thrown away.

Generalizing this procedure, a c-bit shifting consists on the transformation in which we
carry all the input digits c places to the left and put zeros in the c empty places from the
right, while the c bits SM�1; : : : ; SM�c are discarded.

We constructed a depth-2 network which performs this operation. It is optimal in depth
because it can be shown that this is a linearly inseparable problem.

The structure is the following. The input layer contains the M bits of the input number
S plus K = log2(M + 1) neurons indicating the number c of places to be shifted (c � M),
i.e., c = Sc

K�1 : : : S
c
1 S

c
0. The output layer contains just M neurons corresponding to the

shifted number So = So
M�1 : : : S

o
1S

o
0. In our model the intermediate layer acts as a set of

gates letting pass the correspondent values of the input bits towards the output, depending
on the values of the indicating neurons.

This network is straightforwardly generalized to a bi-directional shifter which allows to
perform both left and right shift in a single structure.

In order to explain the functioning of the intermediate layer, let us start presenting the
simple case of a 1-bit shifting. This structure will be generalized later (with minor changes)
to a c-bit shifter.

4.1 The 1-bit shifter

For the 1-bit shifting it is necessary to put just one indicating neuron Sc = Sc
0. When Sc

0 = 0
the output will be equal to the input So

i = Si 8i (no shift is performed), while for Sc
0 = 1

we shift all the input bits one place, i.e., So
i = Si�1 for i = 1; : : : ;M � 1 and So

0 = 0. We
see that the state of the output neuron So

i depends only on the values of Si, Si�1 and Sc
0.

Hence, we put only two intermediate neurons �i;0 and �i;1 in every group i (see Fig.5) for
i = 1; : : : ;M �1 (the i = 0 case will be considered later). The leftmost neuron �i;0 will carry
the information about the value of Si toward So

i , letting pass this value or not depending
on the state of Sc

0. Therefore, it will be connected only to Si (via a synapse ui;i) and to Sc
0

(via a synapse v0i;0). On the other hand, the neuron �i;1 will carry the information about
the state of the previous neuron Si�1 toward So

i , and therefore it will be connected only
to Si�1 (with synapse ui;i�1) and to Sc

0 (with synapse v0i;1). Denoting by Ti;j the thresholds
of �i;j (j = 0; 1) we have that

�i;j = �
h
ui;i�jSi�j + v0i;jS

c
0 � Ti;j

i
(i = 1; : : : ;M � 1 ; j = 0; 1) (20)

The intermediate group i = 0 has to be considered separately. Since there is no previous
input bit to i = 0 we need only one intermediate neuron �0;0 = �

h
u0;0S0 + v00;0S

c
0 � T0;0

i
.

Finally, both neurons �i;0 and �i;1 will be connected to So
i with synapses wi;0 and wi;1:

So
i = � [wi;0�i;0 + wi;1�i;1 � Ti] (21)

In �gure 5 a schematic structure of a group i is shown.

8

The structure works as follows: when Sc
0 = 0 we have that �i;0 = Si and �i;1 = 0 8i. On

the other hand, when Sc
0 = 1 we have that �i;0 = 0 and �i;1 = Si�1 for i = 1; : : : ;M � 1.

This results are summarized in table 4 and replacing them into Eq.(20) we �nd that

ui;i � Ti;0 > 0 (22)

v0i;0 < Ti;0 � ui;i (23)

for i = 0; : : : ;M � 1 and

0 < ui;i�1 < Ti;1 (24)

0 < v0i;1 < Ti;1 (25)

ui;i�1 + v0i;1 � Ti;1 (26)

for i = 1; : : : ;M � 1. From table 4 we see that So
i must satisfy So

i = �i;0 if Sc
0 = 0 and

Sc
0 = �i;1 if Sc

0 = 1. Since �i;0 and �i;1 can never be both equal to one at the same time,
the above condition can be satis�ed if So

i = (�i;0OR�i;1) (logic OR operation). This last
operation can be performed by taking Ti � 0 and

wi;j � Ti (j = 0; 1) (27)

for all i.
We have completed the construction of the 1-bit shifting net, obtaining a structure which,

for an input number ofM -bits, is composed by 4M�1 neurons, 6M�3 synaptic connections
and a maximum number of inputs per neuron equal to two.

4.2 The c-bit shifter

We will now consider the most general case of a c-bit shifter, which allows to shift from none
to all the bits of the input number.

In this case the intermediate group i has to be able of carrying information about the
state of any one of the i + 1 input neurons fSi; Si�1; : : : ; S1; S0g towards the output So

i ,
letting pass only the value of Si�c. Therefore, we put in this group i + 1 neurons �i;j with
j = 0; : : : ; i, which give a total number of M(M + 1)=2 intermediate neurons; �i;j will be
connected to Si�j through a synapse ui;i�j and to all the K indicating neurons Sc

l through
synapses vli;j (l = 0; : : : ;K � 1):

�i;j = �

"
ui;i�jSi�j +

K�1X
l=0

vli;jS
c
l � Ti;j

#
(i = 1; : : : ;M � 1 ; j = 0; : : : ; i): (28)

Now, the synapses fui;i�j; vli;jg will be set in such a way that, for a c-bit shifting we will
have, in every group i, �i;j = 0 for j 6= c and �i;c = Si�c.

Let start with the �rst intermediate neuron of every group �i;0. We have that

�i;0 =

(
Si if Sc

l = 0 8l
0 otherwise:

(29)

Replacing into Eq.(28) we �nd that

9

ui;i � Ti;0 > 0 (30)

vli;0 < Ti;0 � ui;i 8l (31)

for i = 0; : : : ;M � 1. Note that all the synapses are inhibitories except ui;i.
Let us now consider the rest of the intermediate neurons. Since �i;j = 0 8j > 0 if Sc

l = 0
8l, we �nd from Eq.(28) that Ti;j > 0 for all values of i and j, and

ui;i�j < Ti;j 8j > 0 (32)

For the second neuron of every group �i;1 we have that

�i;1 =

(
Si�1 if Sc

0 = 1 and Sc
l = 0 8l 6= 0

0 otherwise
(33)

for i = 1; : : : ;M � 1. Replacing into Eq.(28) we �nd that

v0i;1 < Ti;1 (34)

ui;i�1 + v0i;1 � Ti;1 (35)

Ti;1 � (ui;i�1 + v0i;1) > vli;1 8l 6= 0: (36)

From Eqs.(32), (34) and (35) we see that ui;i�1 > 0 and v0i;1 > 0, i.e., both synapses are
excitatory while the rest are all inhibitory. Notice that a similar set of inequalities will be
encountered for the synapses associated with any intermediate neuron that can be ON when
only one indicating bit Sc

l is ON, i.e., when c = 2m with m = 0; 1; : : : ;K�1. In other words,
for any group i � 2m we have that

�i;2m =

(
Si�2m if Sc

m = 1 and Sc
l = 0 8l 6= m

0 otherwise
(37)

and therefore

0 < vmi;2m < Ti;2m (38)

ui;i�2m + vmi;2m � Ti;2m (39)

Ti;2m � (ui;i�2m + vmi;2m) > vli;m 8l 6= m: (40)

Then, in all these cases only the two synapses ui;i�2m and vmi;2m are excitatories and less
than their respective threshold, while all the rest of the synapses are inhibitories according
to (39) and (40).

The above outlined procedure can be applied to any one of the intermediate neurons.
Then, given �i;j, suppose that there are p bits Sc

l = 1 when c = j. Let fl1; : : : ; lpg the set of
index for which Sc

l = 1. Then

0 < vli;j < Ti;j 8l 2 fl1; : : : ; lpg (41)

10

ui;j + vli;j � Ti;j 8l 2 fl1; : : : ; lpg (42)

Ti;j � (ui;j +
X

8l2fl1;:::;lpg

vli;j) > vl
0

i;m 8l0 62 fl1; : : : ; lpg: (43)

Finally, note that for any value of c only the neuron �i;c = Si�c for every group i � c,
while the rest of the intermediate neurons �i;j = 0 8j 6= c. Hence, the output So

i can be
calculated as So

i = (�i;0 OR �i;1 OR : : : �i;i�1 OR �i;i). This operation can be performed by
setting Ti > 0 8i and wi;j � Ti for j = 0; : : : ; i.

This procedure leads to a 3-layer structure for a M -bit shifter with a total number of
neurons of order O(M2), 2(M2 +M) synapses and with a Fan-in Max equal to M .

A scheme of a left bit shifter for the case M=3 is shown in �gure 6, and some net features
for di�erent sizes are shown in table 5.

4.3 Bi-directional shifter

The previous structures can be generalized in order to allow both left and right shifting. The
functioning scheme is esentially the same as the previous one, but with the addition of new
intermediate neurons to perform the right shift.

A net for right shifting would have the same structure described in the preceding subsec-
tion, with the di�erence that the intermediate neurons have to be arranged in a reverse way:
the intermediate neurons corresponding to the �rst output bit have to be swapped with the
ones corresponding to the last output bit and so on.

Finally, both structures can be combined into a single bi-directional shifter with the addi-
tion of a new input neuron Ssh that indicates which operation have to be carried out: Ssh = 0
corresponds to a left shift and Ssh = 1 to a right one. In this case every intermediate group i
containsM neurons �i;j with j = i�(M+1); i�M; : : : ;�1; 0; 1; : : : ; i, each one connected to
one input neuron Si�j and to all the indicating neurons Sc

l . Ssh has an inhibitory connection
with all the neurons �i;j for j = 1; : : : ; 0, so that �i;j = 0 when Ssh = 1 independently of the
input. This e�ect can be seen as a dynamic raising of all the thresholds for this subgroup
of neurons when Ssh = 1. The reverse e�ect can be obtained for the intermediate neurons
�i;j with j = i � (M + 1); i �M; : : : ;�1 as follows. We raise all their thresholds so that
�i;j = 0 for any input when Ssh = 0 and we put an excitatory connection from Ssh to all of
them that supress this e�ect when Ssh = 1. This dynamic switch of the thresholds can be
modelled as follows:

�i;j = �

"
ui;i�jSi�j +

K�1X
l=0

vli;jS
c
l � T 0

i;j(Ssh)

#
; (44)

for = 1; : : : ;M � 1, j = i� (M + 1); i�M; : : : ;�1; 0; 1; : : : ; i, with

T 0
i;j(Ssh) =

(
Ti;j + Ji;j(1� Ssh) for j = i� (M � 1); : : : ;�1
Ti;j + Ji;jSsh for j = 1; : : : ; i

(45)

where Ji;j > ui;i�j +
PK�1

l=0 jvli;jj � Ti;j and all the parameters
n
ui;i�j; v

l
i;j; Ti;j

o
remain as

before. The intermediate neurons �i;0 are the only ones that are not connected to Ssh since
they only carry information towards the output neuron So

i when no shift is performed. This
network has M2 intermediate neurons and a total number of M2(K + 3) �M synapses.

11

In Fig. 7 we present an example of a bi-directional shifter with 5 input neurons. (the
connections between the input and the intermediate layers are not shown for clarity). In this
example the input is 01010 and the network performs a 1-place right shift giving the ouput
00101.

5 Conclusions and Remarks

We have presented the construction of 3 neural nets for the multiplication of two n-bit
integers, the addition of N integer numbers and for the bit-shifting problem. The design
of the �rst two compared favorably with the previous designs [8,6], with the remarkable
advantage of reducing the numbers of layers down to the optimal depth, 4 and 3 layers
respectively. The adder network presents a backward connection structure, i.e., hidden
neurons in a given group i are only connected to neurons of the corresponding input group and
to all the preceding input neurons. The corresponding synaptic weights decay exponentially
with the distance to the input neuron (see eq. (15)). This structure results from the carry
process and it has been already encountered in other networks for a related problem [3].
Di�erent features of a network for adding N integers numbers of N bits by di�erent methods
are shown in table 6.

We constructed a depth-2 bi-directional shifter. The depth of this network is independent
on the shifting range 2k. This is, to the best of our knowledge, the �rst solution of the
shifting problem with this characteristic. This result has to be compared to that proposed
by Anderson and Van Hessen [2], which is composed of k hidden layers.

The same ideas used for the construction of our shifter can be readily extended to two
dimensions.

It is worth noting that, being the shifting problem a linearly inseparable one, the con-
struction of a depth-2 network proves that this is the optimal depth.

Acknowledgments

This work was partially supported by the following agencies: CONICET (Argentina), CON-
ICOR (C�ordoba, Argentina) and Secretar��a de Ciencia y T�ecnica de la Universidad Nacional
de C�ordoba (Argentina).

12

References

(1) N. Alon and J. Bruck, Explicit constructions of depth-2 majority circuits for compar-
ison and addition, SIAM J. Discrete. Math. 7 (1991) 1-8.

(2) C.H. Anderson and D.C. Van Essen, Shifter circuits: A computational strategy for
dynamic aspects of visual processing, Proc. Natl. Acad. Sci. USA 84 (1987) 6297-6301.

(3) S. Cannas 1995. Arithmetic Perceptrons, Neural Computation 7 (1) (1995) 173-181.
(4) A. Hajnal, W. Maass, P. Pudlak, M. Szegedy and G. Turan, Threshold Circuits of

bounded depth, IEEE Symp. Found. Comp. Sci. 28 (1987) 99-110.
(5) J.Hertz, A. Krogh and R. Palmer, Introduction to the Theory of Neural Computation

(Addison Wesley, Santa fe Institute, 1991).
(6) T. Hofmeister, W. Hohberg and S. Kohling, Some notes on Threshold Circuits and

multiplication in depth 4, Inform. Proccesing Lett. 39 (1991) 99-110.
(7) E. Klingman, Microprocessor systems design (Prentice Hall, New Jersey, 1977) 54-65.
(8) R. Lauwereins and J. Bruck, E�cient Implementation of a Neural Multiplier, IBM

Research, Tech. Report RJ 8138 (1991).
(9) B. Muller and J. Reinhardt, Neural Networks: An introduction. (Springer Verlag,

Berlin, 1991).
(10) M. Paterson, N. Pippenger and U. Zwick, Optimal Carry Save Networks, Research

Report RR166, Dept. of Computer Science, Univ. of Warwick, Coventry, UK. (1990)
(11) L. Prechelt, A Quantitative Study of Experimental Evaluations of Neural Network

Learning Algorithms: Current Research Practice, Neural Networks 9 (3) (1996) 457-462.
(12) F. Rosenblatt, Principles of Neurodynamics (Spartan, New York, 1962).
(13) K. Siu, J. Bruck and T. Kailath, Depth E�cient Neural Networks for Division and

Related problems, IEEE Transactions on information Theory 39 (3) (1993).
(14) K. Siu and V. Roychowdhury. On optimal depth threshold circuits for multiplication

and related problems. SIAM J. Discrete Math. 7 (2) (1994)
(15) T.L.H. Watkin, A. Rau, and M. Biehl, The statistical mechanics of learning a rule,

Rev. Mod. Phys. 65 (2) (1993) 499-556.

13

Captions for �gures and tables

Fig. 1: Net structure example for solving the addition of the rightmost bit (correspond-
ing to 20) of three binary numbers Sj (j = 1; 2; 3). The numbers inside the circles indicate
the thresholds values of the corresponding neurons.

Fig. 2: Net structure for adding three 2-bit numbers. The values inside the circles
indicate the thresholds of the corresponding neurons. (see the text for the synapses values).

Fig. 3: Schematic network architecture for computing the product of the two 2-bit
numbers: �a = �1a�

0
a and �b = �1b�

0
b (�i

a;b = 0; 1), where �0 = �a � �b is the output.
Every neuron in the �rst hidden layer performs a binary product between one bit of the
multiplicand �a and one bit of the multiplier �b. The second hidden and output layers are
designed, as described in Section 2 to perform the addition of the previous results, like in
hand calculations. Filled and open circles indicate active (ON) and rest (OFF) neurons
respectively. In this particular example the input �a = 10 and �b = 11 is transformed into
the numbers ho = 10 and h1 = 100, which in turn are added to give the output S0 = 0110.

Fig. 4: Schematic representation of a 1-bit shifting transformation. In this example the
input number S = S3S2S1S0 (Si = 0; 1) is transformed into So = So

3S
o
2S

o
1S

o
0 with So

i = Si�1

for i = 1; 2; 3 and So
0 = 0.

Fig. 5: Network connectivity associated with the ith output neuron So
i for a 1-bit (left)

shifter. The variables inside the open circles are the thresholds of the corresponding neurons,
while the variables besides the solid lines are the synaptic weights.

Fig. 6: Network architecture for a bit shifter of a 3-bit number S = S2S1S0. The
number of shifting places is given by Sc = Sc

1S
c
0. (see text for details).

Fig. 7: Example of a 1-place right shift with a bi-directonal shifter. Filled and open
circles indicate active (ON) and rest (OFF) neurons respectively. In this example the input
is 01010, Ssh = 1, and Sc = 01, so the network performs a 1-place right shift.

Table 1: Number of neurons OFF and ON in the intermediate group (k = 0 : �o
i ,

i = 0; : : : ; N0 � 1), for di�erent parity combinations of N0 and the sum of the input bits H
(Eq. 2). The last column indicates the desired values of the output So

0, in order to compute
the parity of H (Eq. 3).

Table 2: Several network parameters for classical size values of a Neural adder.
Table 3: Several network parameters for classical size values of a Neural multiplier.
Table 4: Activation states of the intermediate neurons associated with the output bit

S0
i for a 1- bit shifter.
Table 5: Several Networks parameters for classical size values of a bit-shifter.
Table 6: Comparison between the principal parameters of di�erent methods for con-

stucting a network that computes the Sum of N numbers of N -bit length.
(y) Lauwereins & Bruck (1991).

14

~ ~ ~

��
��

��
��
��
��

"!

"!

"!

"!

1 -1 3

3

~ ~ ~

Intermediate

layer and
thresholds

OUTPUT LAYER AND THRESHOLDS

Synapsis values

Synapsis
values

INPUT LAYER

1 -1 1

1

So
3

So
2

So
1

So
0

S1

3
S1

2
S1

1
S0

3
S0

2
S0

1

Figure 1 - Franco

~ ~ ~

��
��

��
��
��
��

��
��
��
��
��
��

��
��
��
��

"!

"!

"!

"!

��
��

3321

~ ~ ~
k = 1 k = 0

So
3

So
2

So
1

So
0

INPUT

OUTPUT

��
��

1 1 -1 1 -1 3 -3 1 -1 3

k=2k=3

Figure 2 - Franco

| l | |

| l | l

l ||ll l

| ll |
S3 S2 S1 S0

�1a �0a �1b �0b

h1
1
= �0a � �1b h1

0
= �1a � �0b h0

0
= �0a � �0bh2

1
= �1a � �1b

1 0 = �a
�

1 1 = �b

1 0 = �a � �0b = h0

0 = �a � �1b = h11

1 0 = S1

Input

bit to bit
boolean AND layer

Addition layer

Output

0

Figure 3 - Franco

~ ~ ~ ~

��
��
��
��
��
��
��
��

0

�
�
�
�
�
��/

�
�
�
�
�
��/

�
�
�
�
�
��/

�
��	

S3 S2 S1 S0

So
3

So
2

So
1

So
0

INPUT

OUTPUT

Figure 4 - Franco

~ ~ ~

��
��

��
��

��
��

Si Si�1 Sc
0

Ti;0 Ti;1

Ti

So
i

q q q q

�i;0 �i;1

wi;0 wi;1

ui;i ui;i�1 v0i;0 v0i;1

Figure 5 - Franco

~ ~ ~ ~ ~

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

S2 S1 S0 Sc
1

Sc
0

T2;2 T2;1 T2;0 T1;1 T1;0 T0;0

T2 T1 T0

Input

gates layer

Output

So
2

So
1

So
0

Figure 6 - Franco

e e e e e e e e e e e e e e e

|l|

Sign bit Indicating bits

e e e e e e e e e e

l l l l l

l l l l l

| |

||

p uu

INPUT

OUTPUT

0 1 0 1 0 1 0 1

0 0 1 0 1

@
@
@
@
@@R

@
@
@
@
@@R

@
@
@
@
@@R

@
@
@
@
@@R

Figure 7 - Franco

H=Sum Result No Neurons ON Neurons OFF So
0

odd even (No=2) + 1 (No=2)� 1 ON

odd odd (No + 1)=2 (No � 1)=2 ON
even even No=2 No=2 OFF
even odd (No � 1)=2 (No + 1)=2 OFF

Table 1 - Franco

Size (N; p) Neurons Synapses Depth Fan-in Max
(4 , 4) 50 352 2 15
(8 , 8) 195 5016 2 63

(16 , 16) 772 73936 2 255
(32 , 32) 3077 1121664 2 1023
(N , p) O(3Np) O(N 2p2) 2 Np� 1

Table 2 - Franco

Size Neurons Synapses Depth Fan-in Max
4x4 60 341 3 16
8x8 216 4743 3 64

16x16 816 70539 3 256
32x32 3168 1087763 3 1024
nxn 3(n2 + n) O(n4) 3 n2

Table 3 - Franco

Sc
0 �i;0 �i;1 S0

i

0 Si 0 Si

1 0 Si�1 Si�1

Table 4 - Franco

Size Neurons Synapses Depth Fan-in Max
4 21 40 2 4

8 56 144 2 8
16 177 544 2 16

32 597 2112 2 32
M O(M 2) 2(M 2 +M) 2 M

Table 5 - Franco

Method Neurons Synapses Fan-in Max Depth

Block Save Addition (BSA) y O(N3) O(N4logN) O(N2) 3

BSA optimized & Dortmunder y O(N2) O(N3logN) O(NlogN) 3
Our O(N2) O(N4) O(N2) 2

Table 6 - Franco

