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Abstract

Cellular automata models are increasingly used in ecology, since
they permit integrate space, ecological processes and stochasticity in
a single predictive framework. We constructed a cellular automaton
model to analize the regeneration of Alerce (Fitzroya Cupressoides),
a long-lived tree species (3,600 years) endemic of Southern Argentina
and Chile. This species regenerates in open areas produced by large
disturbances like landslides and volcanic events. Regeneration in gaps
produced by fallen trees is probably less important on large time scales.
Using a stochastic dynamic rule and the Monte Carlo method we sim-
ulate the long term population dynamics of Alerce in competition with
other species, to determine the possible extincion risk of this species
of great economic and conservation importance.

In cellular automata models information from different sources can be
translated into a set of transition rules which define the behaviour of the
system[1]. Thus, factors central to the explanation of plant spread, such
as biological interactions and stochasticity, and the explicit consideration
of space are easily incorporated in these models, increasing their ecological
realism. In this work we constructed a cellular automaton model to analise
the regeneration of Alerce (Fitzroya cupressoides), a long-lived tree species

*Member of the National Research Council, CONICET (Argentina)



endemic of Southern Argentina and Chile. This species is considered a relict
in the sense that it is better adapted to past climate conditions than to the
present ones; consequently, it cannot compete effectively with other tree
species better adapted to the present climate (e.g. Nothofagus spp.), and it
is now restricted to adverse habitats at high altitude, on infertile soils, or
on poorly drained sites[2, 3].

It has been observed that this species regenerates well in open areas
produced by large disturbances like landslides and volcanic events (hereafter
generically referred as “catastrophes”) frequent in the Andean Cordillera[3,
4], leading to the hypothesis that, on large space and time scales, these events
may be important to the survival of the species in the area[3]. In order to
check such hypothesis we implemented a cellular automaton model which
simulates the dynamics of F. cupressoides in mixed forests with Nothofagus
spp. and in the presence of random catastrophes. The model is based on
the following assumptions: a) the periodic catastrophic disturbances provide
favourable conditions for regeneration of F. cupressoides in high altitudes
4, 6, 8,9, 10]; b) F. cupressoides is slow-growing, shade-intolerant, and
survives on sites where competition with other tree species is low, where
form pure or mixed forests with Nothofagus spp. spp.[12, 4, 7]; ¢) significant
seed production occurs every ten or twenty year for F. cupressoides and
every two year for Nothofagus spp.[7]; d) age of reproductive maturity (seed
production) is about seventy year for F. cupressoides and twenty year for
Nothofagus spp.[7, 10]; ) F. cupressoides establishment on a disturbed site
accelerates soil development[12].

The model consist of a square lattice of N sites with open boundary
conditions, where each site represents a forest fragment patch with an area
of 6 K'm?, which is the average size observed in the present forest patch
distribution[6]. Therefore, each sites does not represent a single tree, but a
full forest patch that can contain both F. cupressoides and Nothofagus spp..
This approach is based on the assumption that the large scale dynamics
of the forest is dominated by its observed patched structure, differing from
the “individual-based models” approach[11] of recent application in forest
ecology[13]. Each site has associated three discrete dynamical variables a;, b;
and s;; a; and b; represent the reproductive maturity of the populations of F.
cupressoides and Nothofagus spp. at site ¢ respectively, with 0 < a; < amag
and 0 < b; < bmag; a; = by = 0 represents an unoccupied site; s; = 0,1
represents the soil state at site i: s; = 0 is a recently site that can only
be colonised by F. cupressoides, while s; = 1 means a rich soil that can be
colonised both by F. cupressoides and Nothofagus spp..



We consider a random initial site occupation, with a fraction of sites
fa =03 and fp = 0.5 occupied by F. cupressoides and Nothofagus spp.
respectively, estimated from the present patch distribution[7]. States of
variables a;, b; and s; are also chosen randomly. We use a parallel dy-
namics, with a time unit representing a period of ten years, based on the
following dynamical rules: once a site is colonised, the population maturity
increases by a unit at every time step. We don’t allow self-regeneration of
F. cupressoides sites, that means, the population of a pure F. cupressoides
site dies when a; = amaz. Once established, F. cupressoides updates site
state to s; = 1 after tg = 15 time steps. After that, Nothofagus spp. can
also colonise the same site. When Nothofagus spp. reaches its maximum
maturity at a mixed site, F. cupressoides suffers a local extinction, that is,
a; is updated to zero. We take ampqr = 60 and by, = 30. We consider
a colonisation probability that depends only on the occupation of nearest-
neighbour sites whose population maturity exceed a minimum value t? =7
for F. cupressoides, and tl} = 2 for Nothofagus spp..

Then, the updating rule for a single site ¢ at time ¢ can be summarized
as follows:

1) A catastrophe occurs with probability p, which we assume for simplic-
ity independent of the site. In this case s;(¢) = a;(t) = b;(t) = 0; otherwise:

2) if s;(t — 1) = 0 then s;(t) = b;(t) = 0 and

1 with probabilituy pf(t) ifa;(t—1)=0
CLZ'(t) = bz(t — 1) +1 if 0 < ai(t — 1) < Qmazx (1)
0 if a;(t — 1) = amag

3) if s;(t — 1) = 1 then

1 with probability pl(¢) if bj(t —1) =0
bz(f) = bz(t — 1) +1 if 0 < bz('/' — 1) < bmaz (2)
bmam if bz(t - 1) Z bmam

1 with prob.p¢(t) ifa;(t—1)=0and b;(t—1)=0
a;i(t)=1¢ ai(t—1)+1 if 0 < a;(t —1) < Gmag and bi(t — 1) < byaq
0 if a;(t — 1) = amag or bi(t — 1) = bpax
(3)
4) if a;(t) = tp then s;(t) = 1.
We assume for the colonisation probability p{* (a = a,b) of site i the
simple model pf(t) = izj nn i Oaj(t — 1) — 1$), where the sum 3

jnni



runs over all nearest-neighbour sites of ¢ and O(z) is the Heaviside step
function.

Using Monte Carlo simulations we analized the temporal behaviour of the
mean occupation densities of F. cupressoides and Nothofagus spp. pa(t) =

(1/N) Y, (n8(t)) and pp(t) = (1/N) >, <nf(t)> respectively, where the oc-
cupation variables are defined as n{*(t) = ©(a;(t)) (o = a,b) and (.. .) means
an average over different samples of the stochastic noise (typically 400). We
repetead the simulations for several systems sizes up to N = 1200, verifying
that the results becomes almost independent of N for N > 400.

We observed that, after some transient period 7, where p4 and pp typ-
ically exhibit dumped oscilations, they always relax asymptotically to a
stationary state that we call the equilibrium, that is, pa(t) — p% and
pp(t) — p4 when t — co. While 7 depends on the initial distributions
fa and fp, we verified in all the simulations that p$ and p} are inde-
pendent of the initial conditions but depends strongly on the catastrophe
probability p. In Fig. 1 we show the equilibrium densities as a function of
p for N = 400. We see that the long time behaviour presents four different
regimes or dynamical phases: a) there exists a value p = p; such that for
p < p1 we have a total extinction state, that is, pzq = p%q = 0; b) there
exists a value p = py such that for p; < p < py we have a coexistence state
where populations of both species stabilize at finite values; c¢) there exists a
value p = ps such that for ps < p < p3 only F. cupressoides survives and d)
for p > p3 we have again a total extinction situation.

The first case is the most interesting one. Here the catastrophe proba-
bility is not enough to allow the regeneration of F. cupressoides. Since there
is a small but finite catastrophe probability, once F. cupressoides is extinct,
disturbed sites cannot be regenerated and also Nothofagus spp. becomes
extinct for large enough times. The behaviour of the equilibrium densities
around this transition point strongly reminds that of the order parameter
of a critical phenomena. In order to check this possibility we analized two
other quantities.

First, we calculated the relaxation time 7, defined as the time such that
lpa(t) — p| < € and |pp(t) — p| < € for all times ¢ > 7, where € is some
arbitrarily chosen small number (we take e = 0.001). In Fig. 2 we show a
numerical calculation of 7 for fixed initial conditions, as a function of p, in
the neighbourhood of p = p;. We see that 7 presents a sharp peak around
p1, that is, the system presents something like a critical slowing down.

Second, we calculated the autocorrelation functions



Cas(t:t) = (1/N) Y (ne (O (#)) — (2 (1) (n] (1))

1

where o, 3 = a,b. In the equilibrium ¢,¢' > 7 we have that Cyp(t,t') =
Cop(t — ') and Cop(t’) ~ (1/N)Y, <ng(t")n§?(0)> — %%, Tn Fig. 3 we
show a log-log plot of Cuq(t). The other correlation functions behave in a
similar manner. The linear dependence exhibited by C,,(t), as p approaches
p1 from above, shows that it develops a power law tail for long times, in the
neighbourhood of the transition point. This behaviour is another signature
of a critical phenomena. Critical behaviour implies strong fluctuations and
an extreme sensitivity to external perturbations that we expect will rise the
extinction probability. In Fig. 4 we can see a calculation of the extinction
probability during the first ¢ years of the evolution, as a function of p. For
low values of t this probability depends on the initial conditions, but for
longer times it converges to a single curve that is independent of the initial
conditions. We see that this probability is very high around the critical
point, even in the coexistence state, taken a value about 40% at p = p1.

Finally, we checked the above calculations for different sets of values of
bmazs Gmaz, tB, ‘ch and tl}. The general behaviour showed to be qualitatively
independent on such variations and also the quantitative differences were
almost negligible, evidencing the robustness of the model to uncertainties in
these parameters.

Summarizing, we showed that a long term stationary state in which the
average population density of forest patches occupied by F. cupressoides
remains constant is possible areas where colonisation and coexistence with
other species are mediated by catastrophe occurrence. Such state is highly
sensitive to the catastrophe rate p, showing several regimes or dynamical
phases as p is varied. In particular, at low values of p the system presents a
transition between a total extinction and a coezistence state at p = py, with
characteristics of a critical phenomena, such as very large relaxation times
and power law temporal correlations. Such critical behaviour lead to a high
extinction probability in the neighbourhood of pi1, even in the coexistence
state. Since the probability of disturbances per unit area and unit time p
depends on the total area of the F. cupressoides forest, the stretching of
such area, either by human action or modification of climatic variables due
to global change, could enhance the extinction probability of F. cupressoides.
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Figure Captions

Figure 1: Equilibrium densities of occupied sites by F. cupressoides qu
and Nothofagus spp. p{ vs. the catastrophe probability p, for N = 400 (the
error bars are smaller than the symbol sizes).

Figure 2: Relaxation time 7 vs. the catastrophe probability p (the error
bars are smaller than the symbol sizes).

Figure 3: Log-log plot of the equilibrium autocorrelation function for
alerce sites Cyq(t) for different values of the catastrophe probability p around
the critical point p; ~ 0.0033. The results were obtained by averaging over
2000 samples of the stochastic noise (the error bars are smaller than the
symbol sizes).

Figure 4: Extinction probability for F. cupressoides during the first ¢
years vs. the catastrophe probability p, starting from f4 = 0.3 and fp = 0.5
and averaging over 2000 samples of the stochastic noise (the error bars are
smaller than the symbol sizes).
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Figure 1: "Modelling Plant spread in Forest Ecology..."
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Figure 2: "Modelling Plant Spread in Forest Ecology..."
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Figure 3: "Modelling Plant Spread in Forest Ecology..."
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Figure 4: "Modelling Plant Spread in Forest Ecology..."



