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The violation of the fluctuation-dissipation theorem~FDT! in a two-dimensional Ising model with both
ferromagnetic exchange and antiferromagnetic dipolar interactions is established and investigated via Monte
Carlo simulations. Through the computation of the autocorrelationC(t1tw ,tw) and the integrated response
~susceptibility! functions we obtain the FDT violation factorX(t1tw ,tw) for different values of the tempera-
ture, the waiting timetw and the quotientd5J0 /Jd , J0 and Jd being the strength of exchange and dipolar
interactions, respectively. For positive values ofd this system develops a striped phase at low temperatures, in
which the nonequilibrium dynamics presents two different regimes according to the value ofd. In each regime
C(t1tw ,tw) displays different scaling laws. Our results show that such different regimes are not reflected in
the FDT violation factor, whereX goes always to zero for high values oftw in the aging regime, a result that
appears in domain growth processes in nonfrustrated ordered systems.

The competition between long-range antiferromagnetic
dipolar interactions and short-range ferromagnetic exchange
interactions can give rise to a variety of unusual and inter-
esting macroscopic phenomena. Recent works in two-
dimensional uniaxial spin systems, where the spins are ori-
ented perpendicular to the lattice and coupled with these kind
of interactions, have shown a very rich phenomenological
scenario concerning both its equilibrium statistical
mechanics.1,2 and nonequilibrium dynamical properties.3

Moreover, recent results have shown some similarities be-
tween the nonequilibrium dynamical properties of these
kinds of ordered systems and that of glassy systems.4

Magnetization processes in these kinds of systems are of
interest due to aspects related to information storage in ultra-
thin ferromagnetic films. For instance, the magnetization size
unit and its thermal stability are of great importance for
magneto-optical recording performance. These factors de-
pend on the pattern and dynamics of the magnetic domains
~see Ref. 3 and references therein!. There are also several
contexts in which a short-ranged tendency to order is pertur-
bated by a long-range frustrating interaction. Among others,
model systems of this type have been proposed to study
avoided phase transitions in supercooled liquids5 and charge-
density waves in doped antiferromagnets.6–8

The above-mentioned systems can be described by an
Ising-like Hamiltonian of the type
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3
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where the spin variables i561 is located at the sitei of a
square lattice, the sum(^ i , j & runs over all pairs of nearest-
neighbor sites, and the sum( ( i , j ) runs over all distinct pairs
of sites of the lattice;r i j is the distance~in crystal units!
between sitesi and j; d represents the ratio between the

exchangeJ0 and dipolarJd coupling parameters, where the
energy is mesured in units ofJd , which is assumed always
antiferromagnetic (Jd.0). Hence,d.0 means the ferro-
magnetic exchange copling.

There are few numerical results concerning the equilib-
rium statistical mechanics, i.e., the finite-temperature phase
diagram of this model. MacIsaac and co-workers2 have
shown that the ground state of Hamiltonian~1! is the anti-
ferromagnetic state ford,0.85. Ford.0.85 the antiferro-
magnetic state becomes unstable with respect to the forma-
tion of striped domain structures, that is, to state
configurations with spins aligned along a particular axis
forming a ferromagnetic strip of constant widthh, so that
spins in adjacent strips are antialigned, forming a super lat-
tice in the direction perpendicular to the strips. They also
showed that striped states of increasingly higher thicknessh
become more stable asd increases fromd50.85. Moreover,
they showed that the striped states are also more stable than
the ferromagnetic one for arbitrary large values ofd, sug-
gesting such a phase to be the ground state of the model for
d.0.85. Monte Carlo calculations on finite lattices at low
temperature2,3 gave further support to this proposal, at least
for intermediate values ofd. Furthermore, such simulations
have shown that striped phases of increasingly higher values
of h may become thermodynamically stable atfinite tempera-
tures for intermediate values ofd. This results are in agree-
ment with other analytic results.1,6 For small values ofd the
system presents an antiferromagnetic phase at low tempera-
tures. At high temperatures, of course, the system becomes
paramagnetic.

The dynamics of the model in the striped region is char-
acterized by the formation and growth of magnetic domains,
dominated by the competition between the exchange and the
dipolar interactions. Monte Carlo studies of the dynamics at
low temperatures have shown the existence of two different
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dynamical regimes, according to the value ofd. First, for d
.dc;2.7 the magnetization relaxes exponentially,3 with a
relaxation time that depends both on the temperature andd.
For d,dc the magnetization presents a power-law decay,
with an exponent independent ofd. Second, strong hysteresis
effects appear3,4 for d.dc , which are almost absent ford
,dc . Finally, different types of aging behaviors have been
observed in both regimes.4

Aging effects, that is, history dependence in the time evo-
lution of correlations and response functions after the system
has been quenched into some nonequilibrium state, appear in
a variety of ordered and disordered systems which are essen-
tially out of equilibrium on experimental time scales.9 Aging
can be observed in real systems through different experi-
ments. A typical example is the zero-field-cooling10 experi-
ment, in which the sample is cooled in zero field to a sub-
critical temperature at timet0. After a waiting time tw a
small constant magnetic field is applied and subsequently the
time evolution of the magnetization is recorded. It is then
observed that the longer the waiting timetw the slower the
relaxation.

Although aging can be detected through several time-
dependent quantities, a straightforward way to establish it in
a numerical simulation is to calculate the spin autocorrela-
tion function

C~ t1tw ,tw!5
1

N (
i

^s i~ t1tw!s i~ tw!&, ~2!

where^•••& means an average over different realizations of
the thermal noise andtw is the waiting time, measured from
some quenching timet050.

A second quantity of interest is the conjugated response
function to an external magnetic fieldhi(t):

R~ t1tw ,tw!5
1

N (
i

]^s i~ t1tw!&
]hi~ tw!

. ~3!

In a variety of disordered systems and also in some domain
growth processes in ordered onesC(t1tw ,tw) and R(t
1tw ,tw) are found to satisfy the generalized fluctuation-
dissipation relation proposed by Cugliandolo and Kurchan:11

R~ t1tw ,tw!5
X~ t1tw ,tw!

T

]C~ t1tw ,tw!

]tw
. ~4!

At equilibrium C(t1tw ,tw) andR(t1tw ,tw) satisfy time
translational invariance~TTI!, the functions depend only on
the times differencet, andX(t1tw ,tw)51, that is, Eq.~4!
reduces to the usual fluctuation-disspation theorem~FDT!.
Out of equilibrium such properties are not expected to hold
depending on the observation time scales. The following sce-
nario has been proposed in the context of spin glasses:11 for
small values oft(t/tw!1) the system is in quasiequilibrium
and equilibrium properties hold; in the aging regimet/tw
@1 both TTI and FDT do not hold, i.e.,C(t1tw ,tw) de-
pends explicitly ont and tw andX(t1tw ,tw)Þ1. Moreover,
for large values oftw , X(t1tw ,tw) becomes a function of
time only through C(t1tw ,tw): X(t1tw ,tw)5X@C(t
1tw ,tw)#. This functionX(C) has been interpreted in terms
of an effective temperature.12

At high temperaturesX equals one since the system al-
ways equilibrate at large times and the equilibrium properties
hold. At low temperatures, where aging phenomena appear,
the departure ofX(C) from 1 characterizes the FDT viola-
tion.

This scenario has been verified in several models of spin
glasses,13 in the Lennard-Jones glass,14 in kinetic Ising
models,15 and in polymers in random media.16 It has also
been verified in the domain growth dynamics of ferromag-
netic systems17 in dimensionsd52 and 3, whereX has been
found to be zero in the aging regime.

Instead of analyzing the responseR(t1tw ,tw) we look at
the integrated response function~proportional to the mag-
netic susceptibility!, that is, in a zero-field-cooling numerical
experiment we observe the growth of the magnetization un-
der a constant external field applied attw :

M ~ t1tw ,tw!5E
tw

t1tw
R~ t1tw ,s!h~s!ds. ~5!

Using Eq.~4! we can rewrite Eq.~5! for long times as

T

h
M ~ t1tw ,tw!5E

C(t1tw ,tw)

1

X~C!dC. ~6!

If FDT is satisfied Eq.~6! reduces to a linear relation

T

h
M ~ t1tw ,tw!512C~ t1tw ,tw!, ~7!

while a departure from this straight line in anM vs C para-
metric plot indicates a violation of FDT and gives informa-
tion aboutX(C).

In this work we present the results of Monte Carlo simu-
lations in the two-dimensional Ising model defined by the
Hamiltonian ~1! on an N530330 square lattice with free
boundary conditions. We chose the heat-bath algorithm for
the spin dynamics and time is measured in Monte Carlo steps
per site. For each run the system is initialized in a random
initial configuration corresponding to a quenching from infi-
nite temperature to the temperatureT at which the simulation
is done. We computeC(t1tw ,tw) as a function of the ob-
servation timet, for different values oftw , d, andT. In the
striped phase at low temperatures this function decays
quickly from C(tw ,tw)51 to a constant value that persists
for t/tw!1; at t.tw it decays more slowly towards zero with
a scaling law that depends on the ratio4 h(t)/h(tw). The
scaling functionh(t) appears to be linear ford.dc;2.7 and
logarithmic for d,dc . It was also observed3 that the mag-
netization~for a fully magnetized initial state! relaxes expo-
nentially ford.dc , with a relaxation time that depends both
on the temperature and ond, while it presents a power-law
decay ford,dc , with an exponent independent ofd. These
behaviors suggest a different domain growth dynamics in
every one of the dynamical regimes.4 Hence, it is of interest
to check whether such different dynamics are reflected in the
FDT violation factor or not.

At time tw we take a copy of the system, to which a
random magnetic fieldh( i )5he i is applied, in order to avoid
favoring one of the different phases;17 e i are taken from a
bimodal distribution (e i561) and the strengthh of the field
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is taken small (h50.01) to ensure linear response. We then
compute the staggered magnetization17

M ~ t1tw ,tw!5
1

N (
i

^s i~ t1tw!e i&, ~8!

whose conjugate field ish and where the overline means an
average over the random variablese i . We then obtain para-
metric plots ofTM(t1tw ,tw)/h vs C(t1tw ,tw) for several
values of the temperature, the waiting timetw52n(n
55,7,9,11), and ford52,dc andd54.dc . We first made
some checks at high temperatures where the system equili-
brates quickly, verifying that both TTI and FDT are satisfied.

In Fig. 1 a parametric plot of the integrated response vs
autocorrelation is shown ford52, T50.5 and waiting times
tw52n(n55,7,9,11) from top to bottom. We made an aver-
age over 400 realizations of the random field. The straight
line corresponds to the FDT relation~7! with constant slope
21. For fixed tw and observation timest!tw FDT holds,
and the system is in the stationary regime. For timest;tw
the curves begin to depart from the FDT line signaling a
crossover region where the system begins to fall out of equi-
librium. Finally, whent@tw the system is out of equilibrium
with the correlations decaying to zero ast˜`. In this last
regime the integrated response keeps growing for the small
tw but, astw grows it tends to stabilize in a constant value.
Furthermore, this value decreases astw grows. The older the
system the smaller the memory of the past history. This be-
havior is similar, e.g., to what happens in the coarsening
dynamics of ferromagnets.17,18 It is not at all obvious that
this would be the case. It is important to note that the system
is in a region (d52) where the ground state is the striped
phase with stripe widthh which grows with2 d. For this
value of d the scaling of the autocorrelations in the out of
equilibrium regime is logarithmic:4 C(t1tw ,tw)
} log(t)/log„t(tw)…. This slow decay is typical of activated
dynamics in systems with a broad distribution of relaxation
times. This may be a consequence of the degeneracy of the
striped ground state, a problem that deserves further study.
So naively one would expect rather strong memory effects as

a consequence of the slow logarithmic decay in the correla-
tions, at variance with what is observed in the simulations.

The flatness of the integrated response for long times im-
plies an FDT violation factorX(t1tw ,tw)50 for tw˜`. If
we interpretT/X as the ‘‘effective temperature’’ for the sys-
tem in this time regime, this implies an infinite effective
temperature.12

The FDT plot for d54 is presented in Fig. 2. This is
qualitatively similar to the plot ford52. The main differ-
ence is that the integrated response flattens to a value which
is roughly half of that corresponding tod52. In this case the
ferromagnetic term of the Hamiltonian is clearly dominant.
This is reflected, e.g., in the scaling form of the autocorrela-
tions in the aging regime,4 i.e., C(t1tw ,tw)}t/t(tw). We
must note, however, that the stable phase still corresponds to
the striped one2 but with increasing value of the width of the
stripes asd increases. For a fixedtw in the aging regime, the
striped domains are wider withd54 than withd52. Con-
sequently, the domain walls have smaller total length in the
latter case. This implies a smaller contribution for the stag-

FIG. 3. Integrated response versus autocorrelations fortw527

andd52. The different curves correspond, from top to bottom, to
temperaturesT51,0.7,0.5. The straight line corresponds to the FDT
relationTM/h512C.

FIG. 1. Integrated response versus autocorrelations forT50.5
andd52. The different curves correspond, from top to bottom, to
waiting timestw525,27,29,211. The straight line corresponds to the
FDT relationTM/h512C.

FIG. 2. Integrated response versus autocorrelations forT50.5
andd54. The different curves correspond, from top to bottom, to
waiting timestw525,27,29,211. The straight line corresponds to the
FDT relationTM/h512C.
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gered magnetization while the bulk contributions are roughly
the same. So it is reasonable to expect a smaller response in
this case. In other words, as the systems become more ‘‘fer-
romagnetic’’ the long term memory becomes weaker. A de-
tailed analysis of the bulk and domain walls contributions to
the response has been recently done for a ferromagnet by
Berthieret al.18

In Fig. 3 we show a parametric plot for different values of
the temperatureT51, 0.7, and 0.5~from top to bottom! and
a fixedtw527 for d52. Equilibrium dynamics is restored at
T51. It would be interesting to know if the change of dy-
namical regime at this temperature coincides with a thermo-
dynamic phase transition or is a purely dynamic effect.

We have studied the FDT violation in the coarsening pro-
cess of an Ising model with dipolar long-range interactions.
Going throughdc;2.7 the aging dynamics of the autocorre-
lations presents a crossover from a logarithmic decay ford
,dc to an algebraic decay ford.dc , probably related to
some dynamical phase transition related with the change of

the strips width. We asked weather this difference would
manifest itself in the responses and FDT violation factorX. It
turns out that this is not the case. For long waiting times in
the aging regimeX˜0 in both cases, signaling that the long
term memory is weak in both regimes. In fact, recent work
on the connection between equilibrium and nonequilibrium
properties of systems with short-range interactions indicate
thatX(C) should go to zero asymptotically in systems which
do not present replica symmetry breaking, like the one we
have studied in this work.19
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