Out-of-equilibrium dynamics of the Hopfield model in its spin-glass phase
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In this paper, we study numerically the out-of-equilibrium dynamics of the Hopfield model for associative
memory inside its spin-glass phase. Aside from its interest as a neural network model, it can also be considered
as a prototype of a fully connected magnetic system with randomness and frustration. By adjusting the ratio
between the number of stored configuratignand the total number of neurorid, one can control the
phase-space structure, whose complexity can vary between the simple mean-field ferrdmbgngt=1)
and that of the Sherrington Kirkpatrick spin-glass modet a properly taken limit of an infinite number of
patterns. In particular, little attention has been devoted to the spin-glass phase of this model. In this paper, we
analyze the two-time autocorrelation function, the decay of the magnetization and the distribution of overlaps
between states. The results show that within the spin-glass phase of the model, the dynamics exhibits aging
phenomena and presents features that suggest a non trivial breaking of replica symmetry.

PACS numbs(s): 75.10.Nr, 64.60.Ht

In recent years, the off-equilibrium dynamics of spin  Moreover, within each of those basins, which divide the
glasses below the freezing temperature has been the subjesgtstem into independent ergodic components, there is as well
of a great number of studies in the field of complex magneti@a complex structure of subvalleys within subvalleys sepa-
systems[1], both experimental and theoretical. Real spinrated by barriers with a continuous distribution of heights.
glasses are characterized by such an extremely slow dynar#ithin the framework of this complicated phase-space ge-
ics that they may never attain equilibrium within experimen-ometry, the ensuing dynamics turns out to be of an extremely
tal time scales. Under these circumstances, a theoretical delow character and a wide range of new time-dependent phe-
scription of the actual physics of real spin glasses requires Bomena are observed, which collectively are referred to as
dynamical approach. aging phenomenaStarting from random initial conditions,

Statistical physics models, despite their simplificationssuch a system may never achieve true equilibrium; therefore,
have shown to be very useful in the understanding of thdtS inherent physics must be interpreted as dynamical in na-
behavior of these materials. Among them, perhaps the mod¢re. Whether this picture is shared by low-dimensional sys-
relevant one in the development of this subject, is the well1€MS or not, is still under enduring discussions.
known Edwards-AndersofEA) model. Since a complete  1he Hopfield model of neural networks has been thor-
analytical description of this model has not been achieved ugughly studied in connection with its static and dynamical
to now (due to the enormous mathematical difficulties in- roperties of retrieval, which together determine its useful-

: . . . ess as an associative memory model. Aside from its value
volved), numerical simulations emerged as the main tool of! " Ty ,
as a neural model, it is possible to look upon the Hopfield

re_search in this area. However, n order_to implement themmodel in the broader context of complex magnetic systems.
it is necessary to provide the system with an adequate de this sense, we can consider it as another kind of long-

namics, usually accomplished by means of a Sto,ChaSt'Fange spin-glass model with a different choice of coupling
(Monte Carlg process. Although thesad hoc dynamics  gistribution, and with the added advantage of having a
were originally introduced to compute equilibrium quanti- yhase-space structure whose complexity can be controlled.
ties, quite surprisingly they have also proved to be very usegoth static and dynamical studies of the Hopfield model
ful in simulating the actual dynamical processes observed ifaye concentrated mainly on the retrieval phase and close to
real materiald2]. This agreement opened up a whole newthe basin of attraction of a stored memory pattern; conse-
range of possibilities in statistical physics research by allowquently, in such circumstances, the very rich spin-glass
ing physicists to simulate, with simple models and Montestructure underlying the free-energy landscape has received
Carlo dynamics, the complex out-of-equilibrium behavior oflittle attention so far.
spin glasses and other magnetic materials. The thermostatics of the Hopfield model has been com-
Concerning equilibrium properties, the long-range versiorpletely solved assuming that replica symmetry holds. While
of the EA model due to Sherington and Kirkpatrig¥ (SK  this seems to be the correct solution within the retrieval zone
mode), has raised particular interest owing to the fact that ar(except for very low temperatur¢6]), it has not been obvi-
exact solution is known for its thermostatieg and insight-  ous until now, as far as we know, which symmetry-breaking
ful approximations have been found even for its dynamicsscheme vyields the correct solution within the spin-glass
[5]. The picture that emerges for this model is that of a phasehase of the model.
space with a very intricate hierarchical structure of basins, In particular, some corrections, due to symmetry-breaking
whose number and depth diverge with the size of theeffects, have been found at very low temperat(ifdsnone-
system-as depicted by the solution due to P4#dsi theless, it has always been sustained that the influence on the
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1.5

retrieval capabilities of the network, induced by a breaking
in replica symmetry, do not have any noticeable effect on the
retrieval performance of the systdi.

The main objective of this paper is twofold. First, it aims
to get insight into the underlying structure of the spin-glass
phase of the Hopfield model. This will eventually help to
find the correct Ansatz to solve its thermodynamics. On the
other hand, since it is possible to control the richness of its T
phase-space structure, ranging from a simple ferromagnet,
when only one pattern is stored, to the SK at the other ex-
treme for a properly taken limit of an infinite number of
patternd 8], it will allow us to extract important conclusions
concerning the influence of such structure on the off-
equilibrium dynamics of magnetic systems.

The outline of this paper is as follows: first we describe
the model we used and the methods of our simulations. Then
we present the results and their interpretation within the
framework of long-range spin glasses, and finally we discuss FIG. 1. Phase diagram for the Hopfield model. See the main text
our conclusions and suggest further paths of research on tlier a brief explanation. After Amiet al. [6].
subject.
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dynamical attractors, therefore the system performs well as
an associative memory device. Still, we need to discriminate
between two distinct zones associated with the retrieval
states that differ in their phase-space structure. Inside the
region below theT, line, the retrieval attractors represent
absolute minima of the free energy. A different structure is
found in the region between thk. and theT), lines where

I. MODEL

The Hopfield model of neural networks is described by
the following Hamiltonian 10]:

1
HDJ=~5 % J;SS;, (1)
where the sum goes over all the possible pairsThe vari-
able S; represents the state of thih Ising spin(neurorn at
the discrete time, andJj; is the coupling constant between
the ith and thejth neurons. The coupling matrixis built
according to Hebb’s rule in order to store a definite sep of
randomly chosen configuratioripatterns.

1 p

S et i i
5= N;lé.éj j
0 ifi=j,

)

where we denote each of the patterns asé"z{gi“} (u
=1,...p, i=1,... N, whereN is the total number of
sping.

the global minima correspond to spin-glass states totally un-
correlated with the patterns. However, the retrieval attractors
still stand as local minima of the free energy, thus allowing
the system to work as an associative memory as long as the
dynamics is initiated close enough to a retrieval basin. Then,
as theT,, line is crossed, the retrieval states disappear
abruptly and the spin-glass states become the only ones
present. This spin-glass phase covers all the region beyond
the Ty line and belowT ;—the latter having a simple math-
ematical expression, namelyy=1+ Je. Finally, aboveT

all the free-energy structure is lost as the system enters a
paramagnetic phase. The line labelggl shows the limit of
validity of the replica-symmetry ansatz.

We performed simulations on systems with a number of
spins ranging between 128 and 4000, with particular empha-
sis inN=500 andN=1000. Throughout this work, the time
is measured in units of whole Monte Carlo sweeps over the

The time evolution of the model is governed by a standard'etwork of N spins.
heat-bath Monte Carlo process with sequential update, and

we say that it performs as an associative memory system if
each of thep stored patterns is close enough to an attractor of
the dynamics. In fact, when this happens, the structure of thgi
phase space is fairly complex, as a huge number of other

attractors also appear alongsidel]. The simplest of them

II. RESULTS

In this section, we present and describe the results of our
mulations for a range of values of the parameigcover-
ing the spin-glass phase of the Hopfield model.

are the reverse states, i.e., the actual patterns with all the

spins inverted. Other states that are stable points of the dy-

namics are the spurious attractdraixture statesand the

A. Aging
In attempting to characterize the dynamics of the model,

spin-glass states. A complete solution of the model can beve first carried out some numerical experiments focused on
found in [6] and we reproduce in Fig. 1 the phase diagranrevealing the presence of slow dynamics in conjunction with

obtained therein.

history-dependent phenomena, iaging These features are

The labeled curves delineate the borders of qualitativelymost easily found numerically in simulations concerning the

differentiated regimes of the Hopfield model in tiea
plane, wherex=p/N. All over the roughly triangular sector

two-time autocorrelation functio@(t,t’), which turns out to

show a strong explicit dependence on both times over a wide

enclosed by theTy, line, the stored patterns are close torange of time scales. For a system that has achieved equilib-



PRE 62 OUT-OF-EQUILIBRIUM DYNAMICS OF THE HOPFIELD. .. 5723

rium, it is expected thaC(t,t’) is homogeneous in time,
depending ort andt’ only through their difference. How-
ever, in spin-glass systems in their glassy phase exhibiting
aging phenomena, a much more complicated behavior arise
that reveals the basis for the scenario that has been calle
weak ergodicity breakingWEB) [13]. In the realm of long-  ~
range spin glasses, the onset of slow dynamics and historyx
dependent phenomena below a definite transition tempera<
ture is normally associated with a highly complex free-
energy surface with a plethora of metastable states. In ¢
system evolving through an energy landscape so complex a
that found in long-range spin glasses, the many basins withir

basins may play the role of dynamidaéps that, having a o8 —— e ————rrr————rry
continuous distribution of heights without bounds, can 1 10 100 1000 10000
thereby confine the system in such a way that the averagc t

escape time goes to infinity. . FIG. 2. Two-time autocorrelation functio(t,, ,t+t,,) vst for
We can write down the basic features of the WEB SC€%he SK model, witiN= 1000, afT = 0.4T, and with couplings taken

nario more explicitly, regarding the behavior observed in theyom 4 Gaussian distribution. The waiting times are 2, 8, 32, 128,
two-time autocorrelation function, as follows: 512, 2048, 8192. The exhibited data are an average over 400 real-
izations of the couplings, initial conditions and thermal baths.
IC(t t+t) _ o 9C(t ) Ping
=

=0,
o M and it pertains to a system witN=1000, =1, and T
©) =0.4T4; inside the spin—glass phase and far enough from
lim C(t,,,t+t,)=0 V fixed t,, the Ty line to avoid strong size effects. The behavior of the

autocorrelation function confirms clearly the presence of ag-
ing in the Hopfield model in this region, in agreement with
wheret,, indicates the time that the system has been left tdhe WEB picture described by E¢). The curves show an
evolve after a sudden quench from infinite temperature to &xplicit dependence on both times indicating that equilibrium
low temperature state, ands the time measured since the has not been attained within the time of the simulation. Fur-
waiting time t, . thermore, its decay becomes slower for longer waiting times
In all our simulations we chose a setpfandom patterns, as it is expected within the context of aging phenomena. It is
where each of thé/’s is taken from the following distribu- Wworth noticing that the qualitative features of the graph are
tion: roughly similar to those found in the SK model, in particular
for the longest waiting times.
1 From the standpoint of this result, it is expected that simi-
P(&)=5[a(&f — 1)+ (& +1)]. (4 ar features of aging are found for larger valuesagfsince
we know that fora— oo the Hopfield model converges to the
In order to take measurements of the two-time autocorrelaSK model. A more delicate point to be concerned with refers
tion function, we computed numerically the following ex- to the behavior of the Hopfield model in regions of its spin-
pression:

t—o

1 N
ty,t+ty) =< t)S(t+ty) | 8t
C( )=|N 2 S(twS(t+ty) (5) 08

av 0.6 4

where we have denoted Hy - - ],, an average taken over
several realizations of the random patterns and thermal bathe ** |
The abrupt quench from infinite temperature to the glassy o3 |
phase was emulated by always starting our simulations frong
random initial configurations. 02 |
In many occasions in this paper we shall refer to the SK
model for comparison, and consequently we have included ir
Fig. 2 the results of a simulation carried out on that model— " g
which although performed by us for this work, it is a result  o.1 S
that had already been reported in the literatftd]. This ! 10 100 1000 10000
figure corresponds to a system with= 1000 spins and with t
couplings taken from a Gaussian distribution normalized so G, 3. Two-time autocorrelation functio®t,, ,t+t,,) vst for
that Ty=1. In this case the temperature of the thermal bathhe Hopfield model, withN=1000, atT=0.4T, and @=1. The
was chosen a§=0.4T,. The graph show€(t,, ,t+t,) vst  waiting times are 2, 8, 32, 128, 512, 2048, 8192. The exhibited data
for different waiting times ranging frorh,=2 tot,,=8192.  are an average over 200 realizations of the set of memory patterns,
The first result for the Hopfield model is shown in Fig. 3, initial conditions and thermal baths.




5724 MONTEMURRO, TAMARIT, STARIOLO, AND CANNAS PRE 62

0.8

0.7 4

0.6 1

C(t+t,.t,)

Clt, t+t)

0.5 4

Extrapolated curve

M CrrTTTy v ML | v AL | v AL |
1 10 100 1000 10000
t

04 ——rr—— T —— i
1 10 100 1000 10000

t FIG. 6. Two-time autocorrelation functiofX(t,, ,t+t,) vst for

FIG. 4. Two-time autocorrelation functio@t,, ,t +t,,) vst for the Hopfield model, witiN=1000, atT=0.4T and «=10. The
the Hopfield model, with,,= 128, atT=0.4T, =0.2 and differ- rest of the parameters are the same as those of Fig. 2.
ent sizes =500, 1000, 2000, and 4000 from top downwarithe
lowest curve(full circles) corresponds to the extrapolated values. To analyze the finite-size effects, we carried out simula-

tions with system sizes ranging frol= 500 toN=4000. In

glass phase closer to the retrieval zone. To address that issygg. 4 we showC(t,,,t+t,,) vst for t, =128 andN=500,
we studied the dynamics of the model for a value®f 1000, 2000, 4000open symbols from top downwardvhere
=0.2, which is close to the retrieval zone and at the samgve see that even for the largest size we considered the de-
time lies at a safe distance from the critichl, transition pendence o is still strong. Since larger systems are be-
line, whose exact location shifts toward larger valuesxof yond our computational capacity we decided to extrapolate
due to finiteness of the system. Besides, we had to deal witthe data toN—, assuming that th&€y(t,,,t+t,) varies
other manifestation of finite-size effects, in this case relate@moothly with 1N, and keeping terms up to second order.
to the less degreee of frustration in the couplings as the valughe lowest curvefull symbols in Fig. 4 corresponds to the
of @ is lowered. It is worth stressing that this strong depen-extrapolated values obtained fgy=128. In Fig. 5 we plot
dence onN was not observed for larger values af(see  all the extrapolated curved(t,,,t+t,) vst.
belOM. This can be easily understood in the foIIowing terms: In F|gs 6 and 7 we show the results far=10 and «
higher values ofx imply more frustration in the couplings, =100 (with N=1000 andN =500, respectively, since as
and so higher energy barriers between metastable states. FAtreases the results have less dependencél)oriet us
small values ofa the system can then quickly thermalize, observe that the behavior shown by the Hopfield model in
and the time it requires for thermalizing depends strongly onhis range ofa values is much like that of the SK model.
N. On the other hand, for large values ®@fthe sizes of the Another quite relevant issue is finding an appropriate scal-
energy barriers make the thermalizing time increase far being law for the aging curves. As has already been pointed out
yond our simulation times and therefore we observe nonin the literaturg5,12], systems that exhibit a continuous dis-
equilibrium phenomena that do not depend on the size of thgibution of relaxation times, like the SK, may not obey a
system. simple scaling relation. Instead, for systems with a unique
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FIG. 5. Extrapolated two-time autocorrelation functions FIG. 7. Two-time autocorrelation functioXt,, ,t+t,) vst for
C(ty ,t+t,) vst for the Hopfield model, aT=0.4T4 and «=0.2. the Hopfield model, witiN=500, atT=0.4T, and «=100. The
The rest of the parameters are the same as those of Fig. 2. rest of the parameters are the same as those of Fig. 2.
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FIG. 8. Two-time autocorrelation functioX(t,, ,t +t,,) vst/t,,
for the Hopfield model, witiN=1000, atT=0.4T, anda=1. The FIG. 9. Extrapolated two-time autocorrelation functions
rest of the parameters are the same as those of Fig. 2. C(t,,t+t,) vs In¢+t,)/In(t,) for the Hopfield model, atT

=0.4T; and «=0.2. The rest of the parameters are the same as
relevant time scaléfor instance, the-spin model it is pos-  those of Fig. 2.
sible to find simple laws that cause all the aging curves to
collapse into a single one. As an example, let us put forwar@raph bears a remarkable resemblance to the one obtained

the simplest of those scalings, usually calleive scaling  for the SK model in referencgl2] using the same scaling
which takes the following fornf9]: expression 7. This also applies to the little departures from a

correct superposition observed whér 1. Thus, we can
t conclude that in the spin-glass phase we do not find any
Cltw,t+ty)= f(r)- (6) critical value of« (at least larger than 0.Delow which the
v replica-symmetry ansatz holds. On the contrary, our evi-
A likewise dependence is observed in other models that caglence suggests that the spin-glass phase has a phase-space
be well described by theories in which full replica symmetrystructure very similar to that observed in the Sherrington-
holds[9]. The graph in Fig. 8 shows(t,, ,t+t,) vst/t, for  Kirkpatrick model.
the data displayed in Fig. 3x=1), and brings the Hopfield
model even closer to the SK, as it depicts exactly the same B. Decay of the magnetization
patterns found in that mod¢l2]. That is, on the one hand
the roughly common crossing point #ft,, (with a corre-
sponding value of approximately-1T/T4 on the autocorre-
lation axi9; on the other, the dependence shownGiy,, ,t
+t,,) for increasing values df, whenr=t/t,, is kept fixed:
it increases whem>1, whereas it decreases for 1.

The observed lack of agreement between the scaled
curves serves as an indication of the complexity of the many
time scales involved—as was already mentioned in connec-
tion with the SK model. Next we tried the following more
complex expression, which had already been used on the SK 44
model yielding a better scalind.2]:

In systems that possess a huge number of metastable
states in the presence of quenched disorder, like the SK, the
decay to equilibrium of physical quantities usually obeys
power laws. We ran a series of simulations in which we
started the Hopfield model from tatally magnetizedstate,

In(t+t,)
In(ty)

In Figs. 9-11, we have plottedC(t,,,t+t,) vs Int
+t,)/In(t,,) for «=0.2, 1 and 10, respectivelyhe curves for
a=0.2 were obtained from the extrapolated values displayed ]
in Fig. 5. By analyzing the graphs, we notice that the data

fall into two different groups, depending on the particular 0 ' K ) 4
age(waiting time) of the system. In the first place, the curves In(t+t,)n(t,)

for t,=2 andt,, =8, which are associated to a very young "

system, do not show a good scaling in any of the figures. On  FIG. 10. Two-time autocorrelation functior@(t,, ,t+t,) vs

the other hand, the data corresponding to all the otheft+t,)/n(t,) for the Hopfield model, withN= 1000, atT=0.4T,
(longen waiting times are appreciably better scaled by rela-and a=1. The rest of the parameters are the same as those
tion (7). As regards Fig. 11, it is worth noticing that the of Fig. 2.

. (7)

E-:;O.G-
<

Clty, t+t,)= f(
(@]
0.4
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FIG. 11. Two-time autocorrelation functior8(t,,,t+t,) vs FIG. 13. Overlap distributiorP(q,t) vs g, for a system with

In(t+t,)/Int,) for the Hopfield model, wittN= 1000, atT=0.4T, N=128 anda=1. The different curves correspond to the following

and «=10. The rest of the parameters are the same as thodémes: 2,4,8,16,64,512,4096,32768. A total of 15 replicas were
of Fig. 2. used in each of 744 runs with different realizations of the random

patterns and thermal noise.

i.e.,, S(0)=1V i, and let it relax in contact with a thermal

bath and no external fields applied. In this case we monitored o ) ) .
the quantity The overlap distribution contains much information re-

garding the geometric structure of phase space, and its
1 asymptotic form may unveil a complex arrangement of many
m(t):[ﬁ EI S(t)} . (8) metastable states. We performed a numeric computation of
av the time-dependent overlap distributi®{q,t). To that pur-
pose we started randomly a set of 15 replicas of the system
Then we fitted the obtained data with the same expressioﬂnd Igt them evolve with mdependgnt th(_ermal baths and no
used in[12]; couplings between them; at prescribed times we took mea-
surements of all the possible overlaps between the replicas,
and repeated this procedure for several realizations of the set
of random patterns. Finally, we made a histogram with all
the gathered data.
As it evolves, each system shall probe different regions of
2the complex free-energy landscape, searching stochastically
for basins of increasing depth. Hence, their mutual

=500 anda=1. The exponent turns out to be a linear func- overlaps—at large times—are expected to render some in-

tion of temperature in a striking agreement with the behaviorSight i.nto the deeper structure of phase space. The corre-
shown by the SK moddl12]. sponding overlaps between each pair of replicas were evalu-

ated according to the following expression:

C. Distribution of overlaps

m(t) =m,,+mt =M. (9)

The results of the simulations are presented in Fig. 1
where we have plotted(T) vs T for a system withN

1N
0.65-] qeP(t)= N izl SHOEA() (10

0.60 -
: where the superscripts denote different replicas. The results
0.55 of this simulation can be seen in Fig. 13 and correspond to a

- ] system size oN=128 spins andl =0.4Tg. As we started
& 0504 the replicas from random initial conditions, for short times
1 the distributions must be approximately Gaussian. Subse-
0454 quently, the nearly Gaussian shape distorts by broadening at

the base, reaching an almost uniform distribution tferl6
(stars in the graph From that time on the curve two clearly
defined peaks begin to develop, which grow in height and
o4 02 03 o4 05 06 sharpen while converging asymptotically to the final shape
T for long times. It is also interesting to notice that the data
’ converge rapidly to a limiting value far=0 that is different
FIG. 12. Magnetization-decay exponeiffl) vs T/T,. The data  from zero. From the above mentioned facts we conclude that
corresponds to a system with=500 anda=1. the distribution fort—o consists of two Diracs functions

0.40
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(corresponding ta-qg) plus a continuous distribution be- phase-space structure of the Hopfield model is much more
tween them. This is the same result that has been obtainemmplex than that expected for a long-range magnetic sys-
both numerically{14] and analytically for the SK model. tem in which replica symmetry holds. Likewise, the failing
The Edwards-Anderson order parameter stands as a gein-trying to collapse all the aging curves into a single one by
metric indicator that roughly establishes ieeof the deep- means of a simple scaling law may as well indicate the pres-
est basins visited by the system in its evolution. The usuaénce of a continuous range of temporal scales in the dynam-
way of estimating its value numerically is by measuring theics.
position of the two peaks in the distributidA(q,t) for t In the intermediate region on the scale the decay of the
—o, Hence, from the data of our simulations we obtainmagnetization was found to obey a power law, indicating the
approximatelyq°”~0.73. Furthermore, we have tested existence of a great number of metastable states. In addition,
this result against the value predicted by the replicathe decay exponent showed a linear dependence on tempera-
symmetric solution of the Hopfield model by solving nu- ture, notably like that observed in the SK model. This last
merically the saddle—point equations[6f; the calculations ~ fact let us go a step further and suggest a very similar orga-
yieldeda(g,';’p)zo.slﬁ?, which differs considerably from the nization of the vast collection of metastable states in the two
measured one and in fact falls quite close to the value opM0dels. . o
tained for the SK model within the replica-symmetric ap- . The chgractensucs_of the overlap dlstrlput|on at long
times contribute some important facts regarding the structure

proximation[3]. These results may be compared with the Po
value of the order parameter predicted by Parisi's solution off e most profound basins in the free-energy hypersurface.
On one side we noticed the evidence of a continuous portion

the SK model, which is given with good approximation by e
in the distribution, and on the other, the Edwards-Anderson

the following expressiofl5]: ) ;
order parameter that we obtained for the Hopfield model—
for a=1 andT=0.4T;—is very much close to the theoret-
3(T)\? ical value found analytically from Parisi’s theory for the SK
a&’=1-5|—| . (11) : :
2 model. Once more, these facts point at an inherent resem-
blance of the two models under comparison.
. (SK) ) Summing up the numerical results altogether, we have
For T/Tg=0.4, Eq. (11 yields qgx”=0.76, in good  grrived at the following picture for the Hopfield model in the
agreement with our data for the Hopfield model. The slightsiydied range of parameteis:the spin-glass phase the free-
discrepancy might be due to am dependence in the energy landscape of the Hopfield model differs from that of
Hopfield model jointly with size effects. the SK model mainly in the regions farthest away from the
These facts altogether support strongly what has alreadyeepest basins, which are precisely the ones that a randomly
been suggested by our aging simulations on the Hopfieldtarted configuration is very much likely to visit first. Never-
model—that the dynamics for long times is essentially thatheless, as the system evolves and diffuses into the rugged
of the SK model. high-dimensional free-energy surface it encounters a geo-
metric structure that is essentially the same as for the SK
IIl. CONCLUSIONS model
Among the extensions of the present paper, we mention
at there are ongoing studies aimed at determining the na-
re of thea dependence of the phase-space structure in the
etrieval phase below thg,, transition line, where the simul-

g

In our simulations we have analyzed the glassy dynamica1
of the Hopfield model in the intermediate region between its,[u
retrieval phase and the SK limit far—«. So far, no ana-

lytical solution has been found for the model’s dynamics tha aneous presence of different types of attractors may lead to

incorporates a full breaking qf repllca symmetry;_therefor_e,the emergence of complex aging behavior.
our results may shed some light in the asymptotic behavior

that ought to be required in analytical treatments of the prob-
lem.

The first and foremost conclusion is that the Hopfield This work was partially supported by grants from Consejo
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a—shows a complex dynamics that fits neatly into the sceCONICET (Argenting, Consejo Provincial de Investiga-
nario of weak ergodicity breakingComparing the two-time ciones Cienficas y Tecnolgicas CONICOR(Cordoba, Ar-
autocorrelation curves found for the Hopfield and SK mod-genting, and Secretéaa de Ciencia y Tecnologide la Uni-
els, we conclude that for long times, both systems behaveersidad Nacional de Qdoba SECYT (Cordoba,
similarly in the whole range o&’s we studied. The numeri- Argenting. D.A.S. was partially supported by CNPq
cal evidence we collected supports the conclusion that th&Brazil).
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