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In this paper, we study numerically the out-of-equilibrium dynamics of the Hopfield model for associative
memory inside its spin-glass phase. Aside from its interest as a neural network model, it can also be considered
as a prototype of a fully connected magnetic system with randomness and frustration. By adjusting the ratio
between the number of stored configurationsp and the total number of neuronsN, one can control the
phase-space structure, whose complexity can vary between the simple mean-field ferromagnet~when p51)
and that of the Sherrington Kirkpatrick spin-glass model~for a properly taken limit of an infinite number of
patterns!. In particular, little attention has been devoted to the spin-glass phase of this model. In this paper, we
analyze the two-time autocorrelation function, the decay of the magnetization and the distribution of overlaps
between states. The results show that within the spin-glass phase of the model, the dynamics exhibits aging
phenomena and presents features that suggest a non trivial breaking of replica symmetry.

PACS number~s!: 75.10.Nr, 64.60.Ht
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In recent years, the off-equilibrium dynamics of sp
glasses below the freezing temperature has been the su
of a great number of studies in the field of complex magne
systems@1#, both experimental and theoretical. Real sp
glasses are characterized by such an extremely slow dyn
ics that they may never attain equilibrium within experime
tal time scales. Under these circumstances, a theoretica
scription of the actual physics of real spin glasses require
dynamical approach.

Statistical physics models, despite their simplificatio
have shown to be very useful in the understanding of
behavior of these materials. Among them, perhaps the m
relevant one in the development of this subject, is the w
known Edwards-Anderson~EA! model. Since a complete
analytical description of this model has not been achieved
to now ~due to the enormous mathematical difficulties
volved!, numerical simulations emerged as the main tool
research in this area. However, in order to implement th
it is necessary to provide the system with an adequate
namics, usually accomplished by means of a stocha
~Monte Carlo! process. Although thesead hoc dynamics
were originally introduced to compute equilibrium quan
ties, quite surprisingly they have also proved to be very u
ful in simulating the actual dynamical processes observe
real materials@2#. This agreement opened up a whole ne
range of possibilities in statistical physics research by allo
ing physicists to simulate, with simple models and Mon
Carlo dynamics, the complex out-of-equilibrium behavior
spin glasses and other magnetic materials.

Concerning equilibrium properties, the long-range vers
of the EA model due to Sherington and Kirkpatrick@3# ~SK
model!, has raised particular interest owing to the fact that
exact solution is known for its thermostatics@4# and insight-
ful approximations have been found even for its dynam
@5#. The picture that emerges for this model is that of a ph
space with a very intricate hierarchical structure of bas
whose number and depth diverge with the size of
system-as depicted by the solution due to Parisi@4#.
PRE 625721
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Moreover, within each of those basins, which divide t
system into independent ergodic components, there is as
a complex structure of subvalleys within subvalleys se
rated by barriers with a continuous distribution of heigh
Within the framework of this complicated phase-space
ometry, the ensuing dynamics turns out to be of an extrem
slow character and a wide range of new time-dependent p
nomena are observed, which collectively are referred to
aging phenomena. Starting from random initial conditions
such a system may never achieve true equilibrium; theref
its inherent physics must be interpreted as dynamical in
ture. Whether this picture is shared by low-dimensional s
tems or not, is still under enduring discussions.

The Hopfield model of neural networks has been th
oughly studied in connection with its static and dynamic
properties of retrieval, which together determine its usef
ness as an associative memory model. Aside from its va
as a neural model, it is possible to look upon the Hopfi
model in the broader context of complex magnetic syste
In this sense, we can consider it as another kind of lo
range spin-glass model with a different choice of coupli
distribution, and with the added advantage of having
phase-space structure whose complexity can be contro
Both static and dynamical studies of the Hopfield mod
have concentrated mainly on the retrieval phase and clos
the basin of attraction of a stored memory pattern; con
quently, in such circumstances, the very rich spin-gl
structure underlying the free-energy landscape has rece
little attention so far.

The thermostatics of the Hopfield model has been co
pletely solved assuming that replica symmetry holds. Wh
this seems to be the correct solution within the retrieval zo
~except for very low temperatures@6#!, it has not been obvi-
ous until now, as far as we know, which symmetry-break
scheme yields the correct solution within the spin-gla
phase of the model.

In particular, some corrections, due to symmetry-break
effects, have been found at very low temperatures@7#; none-
theless, it has always been sustained that the influence o
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retrieval capabilities of the network, induced by a break
in replica symmetry, do not have any noticeable effect on
retrieval performance of the system@6#.

The main objective of this paper is twofold. First, it aim
to get insight into the underlying structure of the spin-gla
phase of the Hopfield model. This will eventually help
find the correct Ansatz to solve its thermodynamics. On
other hand, since it is possible to control the richness of
phase-space structure, ranging from a simple ferromag
when only one pattern is stored, to the SK at the other
treme for a properly taken limit of an infinite number
patterns@8#, it will allow us to extract important conclusion
concerning the influence of such structure on the o
equilibrium dynamics of magnetic systems.

The outline of this paper is as follows: first we descri
the model we used and the methods of our simulations. T
we present the results and their interpretation within
framework of long-range spin glasses, and finally we disc
our conclusions and suggest further paths of research on
subject.

I. MODEL

The Hopfield model of neural networks is described
the following Hamiltonian@10#:

H@J#52
1

2 (
i j

Ji j SiSj , ~1!

where the sum goes over all the possible pairsi , j . The vari-
ableSi represents the state of thei th Ising spin~neuron! at
the discrete timet, andJi j is the coupling constant betwee
the i th and thej th neurons. The coupling matrixJ is built
according to Hebb’s rule in order to store a definite set op
randomly chosen configurations~patterns!:

Ji j 5H 1

N (
m51

p

j i
mj j

m if iÞ j

0 if i 5 j ,

~2!

where we denote each of thep patterns asjWm5$j i
m% (m

51, . . . ,p, i 51, . . . ,N, where N is the total number of
spins!.

The time evolution of the model is governed by a stand
heat-bath Monte Carlo process with sequential update,
we say that it performs as an associative memory syste
each of thep stored patterns is close enough to an attracto
the dynamics. In fact, when this happens, the structure of
phase space is fairly complex, as a huge number of o
attractors also appear alongside@11#. The simplest of them
are the reverse states, i.e., the actual patterns with all
spins inverted. Other states that are stable points of the
namics are the spurious attractors~mixture states! and the
spin-glass states. A complete solution of the model can
found in @6# and we reproduce in Fig. 1 the phase diagr
obtained therein.

The labeled curves delineate the borders of qualitativ
differentiated regimes of the Hopfield model in theT-a
plane, wherea5p/N. All over the roughly triangular secto
enclosed by theTM line, the stored patterns are close
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dynamical attractors, therefore the system performs wel
an associative memory device. Still, we need to discrimin
between two distinct zones associated with the retrie
states that differ in their phase-space structure. Inside
region below theTc line, the retrieval attractors represe
absolute minima of the free energy. A different structure
found in the region between theTc and theTM lines where
the global minima correspond to spin-glass states totally
correlated with the patterns. However, the retrieval attrac
still stand as local minima of the free energy, thus allowi
the system to work as an associative memory as long as
dynamics is initiated close enough to a retrieval basin. Th
as the TM line is crossed, the retrieval states disapp
abruptly and the spin-glass states become the only o
present. This spin-glass phase covers all the region bey
the TM line and belowTg—the latter having a simple math
ematical expression, namely:Tg511Aa. Finally, aboveTg
all the free-energy structure is lost as the system ente
paramagnetic phase. The line labeledTR shows the limit of
validity of the replica-symmetry ansatz.

We performed simulations on systems with a number
spins ranging between 128 and 4000, with particular emp
sis in N5500 andN51000. Throughout this work, the tim
is measured in units of whole Monte Carlo sweeps over
network ofN spins.

II. RESULTS

In this section, we present and describe the results of
simulations for a range of values of the parametera, cover-
ing the spin-glass phase of the Hopfield model.

A. Aging

In attempting to characterize the dynamics of the mod
we first carried out some numerical experiments focused
revealing the presence of slow dynamics in conjunction w
history-dependent phenomena, i.e.,aging. These features are
most easily found numerically in simulations concerning t
two-time autocorrelation functionC(t,t8), which turns out to
show a strong explicit dependence on both times over a w
range of time scales. For a system that has achieved equ

FIG. 1. Phase diagram for the Hopfield model. See the main
for a brief explanation. After Amitet al. @6#.
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rium, it is expected thatC(t,t8) is homogeneous in time
depending ont and t8 only through their difference. How
ever, in spin-glass systems in their glassy phase exhibi
aging phenomena, a much more complicated behavior a
that reveals the basis for the scenario that has been c
weak ergodicity breaking~WEB! @13#. In the realm of long-
range spin glasses, the onset of slow dynamics and hist
dependent phenomena below a definite transition temp
ture is normally associated with a highly complex fre
energy surface with a plethora of metastable states. I
system evolving through an energy landscape so comple
that found in long-range spin glasses, the many basins wi
basins may play the role of dynamicaltraps that, having a
continuous distribution of heights without bounds, c
thereby confine the system in such a way that the ave
escape time goes to infinity.

We can write down the basic features of the WEB s
nario more explicitly, regarding the behavior observed in
two-time autocorrelation function, as follows:

]C~ tw ,t1tw!

]t
<0

]C~ tw ,t1tw!

]tw
>0,

~3!

lim
t→`

C~ tw ,t1tw!50 ; fixed tw ,

wheretw indicates the time that the system has been lef
evolve after a sudden quench from infinite temperature
low temperature state, andt is the time measured since th
waiting time tw .

In all our simulations we chose a set ofp random patterns
where each of thej i

m’s is taken from the following distribu-
tion:

P~j i
m!5

1

2
@d~j i

m21!1d~j i
m11!#. ~4!

In order to take measurements of the two-time autocorr
tion function, we computed numerically the following e
pression:

C~ tw ,t1tw!5F 1

N (
i 51

N

Si~ tw!Si~ t1tw!G
av

, ~5!

where we have denoted by@•••#av an average taken ove
several realizations of the random patterns and thermal ba
The abrupt quench from infinite temperature to the gla
phase was emulated by always starting our simulations f
random initial configurations.

In many occasions in this paper we shall refer to the
model for comparison, and consequently we have include
Fig. 2 the results of a simulation carried out on that mode
which although performed by us for this work, it is a res
that had already been reported in the literature@14#. This
figure corresponds to a system withN51000 spins and with
couplings taken from a Gaussian distribution normalized
that Tg51. In this case the temperature of the thermal b
was chosen asT50.4Tg . The graph showsC(tw ,t1tw) vs t
for different waiting times ranging fromtw52 to tw58192.

The first result for the Hopfield model is shown in Fig.
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and it pertains to a system withN51000, a51, and T
50.4Tg ; inside the spin–glass phase and far enough fr
the TM line to avoid strong size effects. The behavior of t
autocorrelation function confirms clearly the presence of
ing in the Hopfield model in this region, in agreement wi
the WEB picture described by Eq.~5!. The curves show an
explicit dependence on both times indicating that equilibriu
has not been attained within the time of the simulation. F
thermore, its decay becomes slower for longer waiting tim
as it is expected within the context of aging phenomena. I
worth noticing that the qualitative features of the graph
roughly similar to those found in the SK model, in particul
for the longest waiting times.

From the standpoint of this result, it is expected that sim
lar features of aging are found for larger values ofa, since
we know that fora→` the Hopfield model converges to th
SK model. A more delicate point to be concerned with ref
to the behavior of the Hopfield model in regions of its sp

FIG. 2. Two-time autocorrelation functionsC(tw ,t1tw) vs t for
the SK model, withN51000, atT50.4Tg and with couplings taken
from a Gaussian distribution. The waiting times are 2, 8, 32, 1
512, 2048, 8192. The exhibited data are an average over 400
izations of the couplings, initial conditions and thermal baths.

FIG. 3. Two-time autocorrelation functionsC(tw ,t1tw) vs t for
the Hopfield model, withN51000, atT50.4Tg and a51. The
waiting times are 2, 8, 32, 128, 512, 2048, 8192. The exhibited d
are an average over 200 realizations of the set of memory patte
initial conditions and thermal baths.
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5724 PRE 62MONTEMURRO, TAMARIT, STARIOLO, AND CANNAS
glass phase closer to the retrieval zone. To address that i
we studied the dynamics of the model for a value ofa
50.2, which is close to the retrieval zone and at the sa
time lies at a safe distance from the criticalTM transition
line, whose exact location shifts toward larger values oa
due to finiteness of the system. Besides, we had to deal
other manifestation of finite-size effects, in this case rela
to the less degreee of frustration in the couplings as the v
of a is lowered. It is worth stressing that this strong depe
dence onN was not observed for larger values ofa ~see
below!. This can be easily understood in the following term
higher values ofa imply more frustration in the couplings
and so higher energy barriers between metastable states
small values ofa the system can then quickly thermaliz
and the time it requires for thermalizing depends strongly
N. On the other hand, for large values ofa the sizes of the
energy barriers make the thermalizing time increase far
yond our simulation times and therefore we observe n
equilibrium phenomena that do not depend on the size of
system.

FIG. 4. Two-time autocorrelation functionsC(tw ,t1tw) vs t for
the Hopfield model, withtw5128, atT50.4Tg , a50.2 and differ-
ent sizes (N5500, 1000, 2000, and 4000 from top downward!. The
lowest curve~full circles! corresponds to the extrapolated values

FIG. 5. Extrapolated two-time autocorrelation functio
C(tw ,t1tw) vs t for the Hopfield model, atT50.4Tg anda50.2.
The rest of the parameters are the same as those of Fig. 2.
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To analyze the finite-size effects, we carried out simu
tions with system sizes ranging fromN5500 toN54000. In
Fig. 4 we showC(tw ,t1tw) vs t for tw5128 andN5500,
1000, 2000, 4000~open symbols from top downward!, where
we see that even for the largest size we considered the
pendence onN is still strong. Since larger systems are b
yond our computational capacity we decided to extrapo
the data toN→`, assuming that theCN(tw ,t1tw) varies
smoothly with 1/N, and keeping terms up to second ord
The lowest curve~full symbols! in Fig. 4 corresponds to the
extrapolated values obtained fortw5128. In Fig. 5 we plot
all the extrapolated curvesC(tw ,t1tw) vs t.

In Figs. 6 and 7 we show the results fora510 anda
5100 ~with N51000 andN5500, respectively, since asa
increases the results have less dependence onN). Let us
observe that the behavior shown by the Hopfield mode
this range ofa values is much like that of the SK model.

Another quite relevant issue is finding an appropriate sc
ing law for the aging curves. As has already been pointed
in the literature@5,12#, systems that exhibit a continuous di
tribution of relaxation times, like the SK, may not obey
simple scaling relation. Instead, for systems with a uniq

FIG. 6. Two-time autocorrelation functionsC(tw ,t1tw) vs t for
the Hopfield model, withN51000, atT50.4Tg and a510. The
rest of the parameters are the same as those of Fig. 2.

FIG. 7. Two-time autocorrelation functionsC(tw ,t1tw) vs t for
the Hopfield model, withN5500, atT50.4Tg and a5100. The
rest of the parameters are the same as those of Fig. 2.



t
ar

ca
try

m
d

ale
an
e
e
S

ye
at
la
es
g
O
h
la
e

ined

m a

any

vi-
space
n-

able
, the
ys
e

ns

as

ose

PRE 62 5725OUT-OF-EQUILIBRIUM DYNAMICS OF THE HOPFIELD . . .
relevant time scale~for instance, thep-spin model! it is pos-
sible to find simple laws that cause all the aging curves
collapse into a single one. As an example, let us put forw
the simplest of those scalings, usually callednaive scaling,
which takes the following form@9#:

C~ tw ,t1tw!5 f S t

tw
D . ~6!

A likewise dependence is observed in other models that
be well described by theories in which full replica symme
holds@9#. The graph in Fig. 8 showsC(tw ,t1tw) vs t/tw for
the data displayed in Fig. 3 (a51), and brings the Hopfield
model even closer to the SK, as it depicts exactly the sa
patterns found in that model@12#. That is, on the one han
the roughly common crossing point att/tw ~with a corre-
sponding value of approximately 12T/Tg on the autocorre-
lation axis!; on the other, the dependence shown byC(tw ,t
1tw) for increasing values oftw whent[t/tw is kept fixed:
it increases whent.1, whereas it decreases fort,1.

The observed lack of agreement between the sc
curves serves as an indication of the complexity of the m
time scales involved—as was already mentioned in conn
tion with the SK model. Next we tried the following mor
complex expression, which had already been used on the
model yielding a better scaling@12#:

C~ tw ,t1tw!5 f S ln~ t1tw!

ln~ tw! D . ~7!

In Figs. 9–11, we have plottedC(tw ,t1tw) vs ln(t
1tw)/ln(tw) for a50.2, 1 and 10, respectively~the curves for
a50.2 were obtained from the extrapolated values displa
in Fig. 5!. By analyzing the graphs, we notice that the d
fall into two different groups, depending on the particu
age~waiting time! of the system. In the first place, the curv
for tw52 and tw58, which are associated to a very youn
system, do not show a good scaling in any of the figures.
the other hand, the data corresponding to all the ot
~longer! waiting times are appreciably better scaled by re
tion ~7!. As regards Fig. 11, it is worth noticing that th

FIG. 8. Two-time autocorrelation functionsC(tw ,t1tw) vs t/tw

for the Hopfield model, withN51000, atT50.4Tg anda51. The
rest of the parameters are the same as those of Fig. 2.
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graph bears a remarkable resemblance to the one obta
for the SK model in reference@12# using the same scaling
expression 7. This also applies to the little departures fro
correct superposition observed whent@1. Thus, we can
conclude that in the spin-glass phase we do not find
critical value ofa ~at least larger than 0.2! below which the
replica-symmetry ansatz holds. On the contrary, our e
dence suggests that the spin-glass phase has a phase–
structure very similar to that observed in the Sherringto
Kirkpatrick model.

B. Decay of the magnetization

In systems that possess a huge number of metast
states in the presence of quenched disorder, like the SK
decay to equilibrium of physical quantities usually obe
power laws. We ran a series of simulations in which w
started the Hopfield model from atotally magnetizedstate,

FIG. 9. Extrapolated two-time autocorrelation functio
C(tw ,t1tw) vs ln(t1tw)/ln(tw) for the Hopfield model, atT
50.4Tg and a50.2. The rest of the parameters are the same
those of Fig. 2.

FIG. 10. Two-time autocorrelation functionsC(tw ,t1tw) vs
ln(t1tw)/ln(tw) for the Hopfield model, withN51000, atT50.4Tg

and a51. The rest of the parameters are the same as th
of Fig. 2.
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5726 PRE 62MONTEMURRO, TAMARIT, STARIOLO, AND CANNAS
i.e., Si(0)51 ; i, and let it relax in contact with a therma
bath and no external fields applied. In this case we monito
the quantity

m~ t !5F 1

N (
i

Si~ t !G
av

. ~8!

Then we fitted the obtained data with the same expres
used in@12#:

m~ t !5m`1m̃t2d(T). ~9!

The results of the simulations are presented in Fig.
where we have plottedd(T) vs T for a system withN
5500 anda51. The exponent turns out to be a linear fun
tion of temperature in a striking agreement with the behav
shown by the SK model@12#.

FIG. 11. Two-time autocorrelation functionsC(tw ,t1tw) vs
ln(t1tw)/ln(tw) for the Hopfield model, withN51000, atT50.4Tg

and a510. The rest of the parameters are the same as th
of Fig. 2.

FIG. 12. Magnetization-decay exponentd(T) vsT/Tg . The data
corresponds to a system withN5500 anda51.
d

n

,

-
r

C. Distribution of overlaps

The overlap distribution contains much information r
garding the geometric structure of phase space, and
asymptotic form may unveil a complex arrangement of ma
metastable states. We performed a numeric computatio
the time-dependent overlap distributionP(q,t). To that pur-
pose we started randomly a set of 15 replicas of the sys
and let them evolve with independent thermal baths and
couplings between them; at prescribed times we took m
surements of all the possible overlaps between the repli
and repeated this procedure for several realizations of the
of random patterns. Finally, we made a histogram with
the gathered data.

As it evolves, each system shall probe different regions
the complex free-energy landscape, searching stochasti
for basins of increasing depth. Hence, their mutu
overlaps—at large times—are expected to render some
sight into the deeper structure of phase space. The co
sponding overlaps between each pair of replicas were ev
ated according to the following expression:

qa,b~ t !5
1

N (
i 51

N

Si
a~ t !Si

b~ t !, ~10!

where the superscripts denote different replicas. The res
of this simulation can be seen in Fig. 13 and correspond
system size ofN5128 spins andT50.4Tg. As we started
the replicas from random initial conditions, for short tim
the distributions must be approximately Gaussian. Sub
quently, the nearly Gaussian shape distorts by broadenin
the base, reaching an almost uniform distribution fort516
~stars in the graph!. From that time on the curve two clearl
defined peaks begin to develop, which grow in height a
sharpen while converging asymptotically to the final sha
for long times. It is also interesting to notice that the da
converge rapidly to a limiting value forq50 that is different
from zero. From the above mentioned facts we conclude
the distribution fort→` consists of two Diracd functions

se

FIG. 13. Overlap distributionP(q,t) vs q, for a system with
N5128 anda51. The different curves correspond to the followin
times: 2,4,8,16,64,512,4096,32 768. A total of 15 replicas w
used in each of 744 runs with different realizations of the rand
patterns and thermal noise.
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~corresponding to6qEA) plus a continuous distribution be
tween them. This is the same result that has been obta
both numerically@14# and analytically for the SK model.

The Edwards-Anderson order parameter stands as a
metric indicator that roughly establishes thesizeof the deep-
est basins visited by the system in its evolution. The us
way of estimating its value numerically is by measuring t
position of the two peaks in the distributionP(q,t) for t
→`. Hence, from the data of our simulations we obta
approximatelyqEA

(Hop)'0.73. Furthermore, we have teste
this result against the value predicted by the repli
symmetric solution of the Hopfield model by solving n
merically the saddle–point equations of@6#; the calculations
yielded q̄EA

(Hop)50.6167, which differs considerably from th
measured one and in fact falls quite close to the value
tained for the SK model within the replica-symmetric a
proximation @3#. These results may be compared with t
value of the order parameter predicted by Parisi’s solution
the SK model, which is given with good approximation b
the following expression@15#:

qEA
(SK)512

3

2 S T

Tg
D 2

. ~11!

For T/Tg50.4, Eq. ~11! yields qEA
(SK)50.76, in good

agreement with our data for the Hopfield model. The slig
discrepancy might be due to ana dependence in the
Hopfield model jointly with size effects.

These facts altogether support strongly what has alre
been suggested by our aging simulations on the Hopfi
model—that the dynamics for long times is essentially t
of the SK model.

III. CONCLUSIONS

In our simulations we have analyzed the glassy dynam
of the Hopfield model in the intermediate region between
retrieval phase and the SK limit fora→`. So far, no ana-
lytical solution has been found for the model’s dynamics t
incorporates a full breaking of replica symmetry; therefo
our results may shed some light in the asymptotic beha
that ought to be required in analytical treatments of the pr
lem.

The first and foremost conclusion is that the Hopfie
model in its spin-glass phase—for intermediate values
a—shows a complex dynamics that fits neatly into the s
nario of weak ergodicity breaking. Comparing the two-time
autocorrelation curves found for the Hopfield and SK mo
els, we conclude that for long times, both systems beh
similarly in the whole range ofa ’s we studied. The numeri
cal evidence we collected supports the conclusion that
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phase-space structure of the Hopfield model is much m
complex than that expected for a long-range magnetic s
tem in which replica symmetry holds. Likewise, the failin
in trying to collapse all the aging curves into a single one
means of a simple scaling law may as well indicate the pr
ence of a continuous range of temporal scales in the dyn
ics.

In the intermediate region on thea scale the decay of the
magnetization was found to obey a power law, indicating
existence of a great number of metastable states. In addi
the decay exponent showed a linear dependence on tem
ture, notably like that observed in the SK model. This la
fact let us go a step further and suggest a very similar or
nization of the vast collection of metastable states in the
models.

The characteristics of the overlap distribution at lo
times contribute some important facts regarding the struc
of the most profound basins in the free-energy hypersurfa
On one side we noticed the evidence of a continuous por
in the distribution, and on the other, the Edwards-Anders
order parameter that we obtained for the Hopfield mode
for a51 andT50.4Tg—is very much close to the theore
ical value found analytically from Parisi’s theory for the S
model. Once more, these facts point at an inherent res
blance of the two models under comparison.

Summing up the numerical results altogether, we ha
arrived at the following picture for the Hopfield model in th
studied range of parameters:in the spin-glass phase the free
energy landscape of the Hopfield model differs from that
the SK model mainly in the regions farthest away from
deepest basins, which are precisely the ones that a rando
started configuration is very much likely to visit first. Neve
theless, as the system evolves and diffuses into the ru
high-dimensional free-energy surface it encounters a g
metric structure that is essentially the same as for the
model.

Among the extensions of the present paper, we men
that there are ongoing studies aimed at determining the
ture of thea dependence of the phase-space structure in
retrieval phase below theTM transition line, where the simul
taneous presence of different types of attractors may lea
the emergence of complex aging behavior.
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