LETTER

Generalization and Selection of Examples in Feedforward
Neural Networks

Leonardo Franco

Sergio A. Cannas

Facultad de Matemdtica, Astronomia y Fisica, Universidad Nacional de Cérdoba,
Ciudad Universitaria, (5000), Cérdoba, Argentina

In this work, we study how the selection of examples affects the learn-
ing procedure in a boolean neural network and its relationship with the
complexity of the function under study and its architecture. We analyze
the generalization capacity for different target functions with particular
architectures through an analytical calculation of the minimum number
of examples needed to obtain full generalization (i.e., zero generalization
error). The analysis of the training sets associated with such parameter
leads us to propose a general architecture-independent criterion for se-
lection of training examples. The criterion was checked through numer-
ical simulations for various particular target functions with particular
architectures, as well as for random target functions in a nonoverlapping
receptive field perceptron. In all cases, the selection sampling criterion
lead to an improvement in the generalization capacity compared with a
pure random sampling. We also show that for the parity problem, one of
the most used problems for testing learning algorithms, only the use of
the whole set of examples ensures global learning in a depth two archi-
tecture. We show that this difficulty can be overcome by considering a
tree-structured network of depth 2log,(N) — 1.

1 Introduction

Feedforward neural networks have been used extensively to solve many
kinds of problems, being applied in a wide range of areas covering subjects
such as prediction of temporal series, structure prediction of proteins, and
speech recognition. (See, e.g., Haykin, 1994, and Hertz, Krogh, & Palmer,
1991.) One of the fundamental properties making these networks useful
is its capacity to learn from examples. Through synaptic modifications al-
gorithms, the network is capable of obtaining a new structure of internal
connections that is appropriate for solving a determined task.

The general underlying theory of the whole learning process is poorly
understood. There are few general results, especially concerning general-
ization. One particular point of interest is the selection of a concise subset
of examples from the whole training set as a way of improving generaliza-

2406 Leonardo Franco and Sergio A. Cannas

tion ability. This problem has also been referred to as “active learning” or
“query-based learning” by many authors. In a broad sense, these terms refer
to any form of learning in which the learning algorithm has some control
over the inputs used for the training.

Several approaches have been developed to derive criteria for selecting
examples in different sort of networks, ranging from simple nets as percep-
trons (Kinzel & Rujdn, 1990) and linear classifiers (Jung & Opper, 1996) to
multilayer feedforward networks with continuous outputs. Among them
(see Plutowski & White, 1993, for more references) we refer to the work
of Cohn (Cohn, Atlas, & Ladner, 1994; Cohn, 1996), which uses partially
trained networks to determine regions of uncertainty in the environment
from which the examples are selected. Plutowski and White (1993) assume
that a large amount of data have been collected and work on principles for
selecting a subset of those data for efficient training. Another kind of ap-
proach is that of Baum (1991), who proposed a query-based algorithm for
iteratively looking for classification boundaries in the input space.

An important question related to the selection of example problems is,
What s the absolute minimum number of examples that ensures full generalization
in the learning procedure? By full generalization, we mean zero generaliza-
tion error in the case of boolean networks or an error less than some small,
positive value for the case of continuous outputs. A minimum number is
the size of some particular subset of examples that contains all the infor-
mation about the task or target function to be learned, and it gives a lower
bound for the number of examples needed for full generalization in any
selective sampling procedure (given a target function and a fixed architec-
ture). The counterpart is the minimum average number of examples needed
for generalization in a pure random sampling of the training set (Baum &
Haussler, 1989). In this case the Vapnik-Chervonenkis (VC) dimension (see
Haykin, 1994) appears to be a fundamental parameter for determining the
generalization capacity of a fixed architecture.

Although the minimum number of examples needed for full generaliza-
tion (MNEFG) is related to the intrinsic complexity of the target function,
it also depends on the architecture of the student network (incorrectly de-
signed nets might not be able to use all the information contained in the
set and therefore need more examples to achieve full generalization). In this
sense the MNEFG results in a more specific concept than the VC dimension,
since the former is related to the combined complexity of the architecture
and the specific target function, while the latter refers to arbitrary target
functions. In fact, the MNEFG is an upper bound for the VC dimension.

In sections 2, 3 and 4, we analyze the learning of three different boolean
problems by particular architectures using linear threshold units and obtain
analytically a lower bound for the MNEFG. The idea of the method is the
following. Suppose a boolean network has N inputs, a single output, and
a given target function. Then the perfect learning of every one of the 2V
possible examples implies a set of constraints on the synaptic weights. In a

Examples in Feedforward Networks 2407

general case, only a subset of the 2V constraints will be independent. Since
every constraint is associated with one particular example, the size of the
subset gives us the minimum number of examples to ensure the perfect
learning of the 2V examples. The analysis was carried out first for a small
number of inputs and then extended to arbitrary sizes N.

Most of the analysis in this article was carried out with specific problems
and architectures. Models for which a set of exact solutions and properties
are known serve as standards for testing the hypothesis. The work presented
here illustrates how insights about general properties of learning can be
obtained from studying of such standards.

The three problems we first considered were addition of two numbers,
bit shifting, and parity. For every problem, we chose an architecture for
which the computability was already known. Moreover, for each of these
structures, a set of exact solutions was available (see Cannas, 1995, for the
first case; Franco & Cannas, 1998, for the second one; and Rumelhart &
McClelland, 1986, for the last one). The three structures have N inputs, a
single output (in order to make the results comparable in the three cases, we
considered only the most significant bit of the output in the first two cases),
and one hidden layer. Since all the problems are nonlinearly separable, the
structures are optimal (i.e., minimal) in depth in all the cases. We found
that the MNEFG scales polynomially with N in the first two cases and
exponentially in the last one. That is, for the parity function, the MNEFG
scales with the total number of examples for a depth 2 network.

The main difference between the architectures is that while in the par-
ity case it is fully connected with N hidden units, in the other two cases we
chose architectures with fewer hidden units and local receptive fields. These
ad hoc modifications simplify the analytical treatment without a great loss
of generality since they are based on prior knowledge of the global sym-
metries of the corresponding problems (Cannas, 1995; Franco & Cannas,
1998). Although they reduce the computability of the network (in the sense
of the number of different target functions that the architecture is capable
of implement) compared with the fully connected counterpart, these ar-
chitectures are expected to be general enough to compute a large class of
functions, at least those sharing the same types of global symmetries. In
particular, for the addition case, the reduction becomes negligible for large
values of the number of inputs N, because the number of hidden units is
kept constant. Moreover, the presence of local receptive fields and a small
number of hidden units can always be thought of as a particular solution of a
fully connected network with N hidden units and a set of synaptic weights
equal to zero. Hence, the MNEFG we obtained constitute lower bounds
for the three problems considered here when implemented in a standard
architecture—a fully connected depth 2 network with the same number of
inputs and hidden units. Since the three problems are expected to have dif-
ferent complexity, the MNEFG appears to be an interesting parameter to
classify the complexity of a target function. Moreover, an analysis of the

2408 Leonardo Franco and Sergio A. Cannas

subsets of examples (or “exemplars,” in Plutowski and White’s terminol-
ogy) that determine the MNEFG gave us a first insight into how to construct
a criterion for selecting examples.

The analysis is detailed in section 5, where the criterion is tested in the
nonoverlapping receptive field perceptron (Hancock, Golea, & Marchand,
1994). An analysis of the MNEFG for a particular target function in this
general architecture allowed us to refine our ideas and propose a general
architecture-independent criterion for selecting examples in boolean net-
works. This criterion was checked for random functions using numerical
simulations in a small network, showing a considerable improvement in the
generalization capacity compared with a pure random sampling, especially
concerning the probability of full generalization.

We also present some numerical simulations for the addition and bit
shifting problems in small networks.

The criterion works well in all these case but fails in the parity one. To
show that the difficulty here comes from the architecture, which is not com-
plex enough to accomplish the desired task (the depth 2 network can learn,
butitcannot generalize), we study anetwork of depth 2log, N—1withatree
structure, which is also capable of computing the parity function (Rumelhart
& McClelland, 1986). We show that full generalization is possible with this
architecture, for which the MNEFG scales polynomially with N. Moreover,
we show through numerical simulations that the generalization capacity is
also improved in this case with our selection criterion.

2 The Sum Problem

We study the generalization properties of a network constructed to com-
pute the addition between two binary operands each of N bits, which gives
a result of the same length N. The architecture (Cannas, 1995) is optimal in
depth; it has only one hidden layer. It is composed of 2N binary neurons
in the input layer, corresponding to the two numbers of N-bits to add, N
hidden neurons and N binary neurons in the output. To simplify the analy-
sis and allow comparisons with every function that has at least one output
neuron, we study only one output bit—the one having the most significant
value. The generalization to the case of N output bits is straightforward,
since the learning of the most significant output bit automatically fixes the
synapses shared with the least significant output bits to its correct values.
The rest of the synapses can be fixed by a set of independent exemplars
selected by the same procedure used for the most significant bit. The result-
ing network has two hidden neurons: one is fully connected to the input
layer, and the other is connected to every input neuron but those corre-
sponding to the most significant bits. Full connection also exists between
the hidden layer and the output neuron. Finally, the two most significant
input bits are also directly connected to the output. An example of the net-
work for N = 3 is shown in Figure 1a, where only the connections related

Examples in Feedforward Networks 2409

Input

Output

o

Output

Figure 1: Network structure to compute the most significant output bit of
the sum function of two three-bit numbers. (a) General structure for arbitrary
synapses without constraints. (b) The synapses corresponding to input bits with
the same significant value have been symmetrized in such a way that the six
input bits can be replaced by three input bits (denoted by A, B, and C) taking
the values {0, 1, 2}.

to the most significant bit are shown. We see that the architecture is almost
fully connected, where only a set of backward connections (from left to
right) has been set to zero. This simplification is based on prior knowledge

2410 Leonardo Franco and Sergio A. Cannas

of the global left-right asymmetry of the addition, produced by the carry
operation from the least (right) to the most (left) significant bits (Cannas,
1995). Hence, this architecture is expected to be general enough to com-
pute a large class of functions, at least those sharing the left-right asymme-
try.

Further simplification of the problem can be obtained by considering
shared synapses. That means we impose the constraint that synapses con-
necting one hidden neuron with two input bits with the same significant
value are always equal. With this constraint, every pair of input neurons cor-
responding to the same significant bit can be replaced by a single ternary
neuron, which takes the values {0, 1, 2}. Hence, our final architecture con-
tains an input layer of N ternary neurons. We start by adding two numbers
of 3-bit length and then generalize the results to the addition of two N-
bits numbers. A description of the final network architecture for N = 3 is
depicted in Figure 1b.

The output bit S receives direct inputs from the two hidden neurons
D, E =0, 1 through synapses d1, e; and from the input neuron A, through
synapse ag, computing the following function:

S = 0{apA + d10[m1A + b1B + c1C — Tyl + e10[b2B+ coC — T, — T}, (2.1)

where A, B,C = 0,1,2; 6(x) is the Heaviside step function and T, (¢ =
d, e, s) are the threshold parameters.

The values of the synapse a9 and those of the thresholds T; and T, are
restricted to be greater than zero to reduce the possible internal representa-
tions to only one.

Requiring that the network compute the full set of 27 addition examples
leads to the following necessary and sufficient conditions:

Ty

Ti>m =3 (2.2)

a +2by > Ty > 2b1 + 2¢1 (2.3)
a4+ +201>Tg>a1+b1+a1 (2.4)
2y > T, > 27 (2.5)

by 420> T, > by +co (2.6)
e1>Ts >0 (2.7)

ag > Ts > 2ag +dp (2.8)

2a0 +d1+e1 > Ts > a9 +dy +eq. (2.9)

We will show that if the network computes a particular set of 12 examples,
then the above conditions are satisfied. Therefore, the correct learning of
such examples ensures full generalization with fewer than half of the total
number of examples.

Examples in Feedforward Networks 2411

We will denote the examples by writing between square brackets the
three input values and the correct output separated by a colon. Then:

e From the example [000:0], we obtain the right part of equation 2.7.
e From the examples [100:1] and [200:0] we obtain:

d1 < —ay (2.10)

and the fulfillment of equations 2.2 and 2.8.

e From the example [020:1] we obtain:
d10[2by — T4] + e10[2b, — T,] > T,

which together with T; > 0 and equation 2.10 implies the left part of
equation 2.7 and the left part of equation 2.5.

e From the example [120:0], we obtain the left part of equation 2.3, to-
gether with the right part of equation 2.9.

e From the examples [111:1] and [112:0], we obtain equation 2.4 and also
thatc; > 0.

e From the examples [011:0], [012:1], and [002:0], we obtain equation 2.6
together with the right part of equation 2.5.

e From the example [222:1], we obtain the left part of equation 2.9.

e From the example [022:1], we obtain the right part of equation 2.3
and consequently the fulfillment of the complete set of equations 2.2
through 2.9.

For the most general case of an input of N bits, we can see that for each bit
we increase the input in size, it is enough to add four examples to obtain full
generalization. For example, for the case of N = 4 we take the 12 examples
corresponding to the 3-bit case but converted to the new problem by adding
a zero in the new right-most input place. For example, the input pattern
[112:0] in the 3-bit problem now would be the input pattern [1120:0]. It is
also necessary to add four new examples, two pairs of them having different
outputs when we modify the new right-most input bit. For the case of N =
4 these two pairs are the examples {[0111:0][0112:1]; [1111:1][1112:0]}. The
same procedure is repeated as we increase the number of input bits. Thus,
the size of the minimal set of examples needed for generalization is equal
to 4N. Finally, for N output neurons, such a number becomes 2N(N + 1).

3 Bit Shifting

The bit-shifting function is a basic operation in computer circuits and also
was used in modeling vision devices (see Franco & Cannas, 1998). The net-
work structure has only one hidden layer, and since the problem is linearly

2412 Leonardo Franco and Sergio A. Cannas

Output

Figure 2: Network structure to compute the left-most output bit of a bit-shifting
operation, where I, I, I; are the input bits and S, Sy are the bits indicating the
number of bits to shift.

inseparable, the structure is optimal in depth. The input layer has N input
bits to shift plus log, (N + 1), indicating bits given the places to shift. There
are N binary neurons in the hidden layer, each one connected to one input
neuron and to all the indicating neurons. The problem has an output of N
bits, but to simplify the study, we analyze just one output bit. We start the
analysis with the particular case of having three input bits with its corre-
sponding two indicating bits, and later generalize the results to the case of
N input bits.

For the case of three input bits, the structure of the network is shown in
Figure 2, where the output neuron S computes the following function:

S = 0[Jab(a1ly + 2251 + a3So — Ta) + Jp0 (b1]2 + b2S1 + b3So — Tp)
+ Je0(c1l3 + 251 + ¢3S0 — Te) — T (3.1)

L, L, I3 = 0,1 being the input bits; Sp, S1 = 0,1 are the two indicating
bits, /4, Ji, J. are the synapses between the three hidden neurons A, B, C and
the output S, and a;, b;, c; are the synapses between the respectively hidden
neurons (A,B,C) and the input and indicating bits.

We impose the constraint that the thresholds of the hidden neurons
Ty, Ty, Tc are always positive to reduce to only one the number of possi-
ble internal representations. In order to simplify the generalization to the
N input bits case, we also impose that the synapses J,, Jp, and] have to be
greater than the threshold of the output neuron T. These constraints produce
no substantial changes to the results.

Examples in Feedforward Networks 2413

Requiring that this network compute exactly the full set of 32 examples
leads to the following necessary and sufficient conditions:

T>0 (3.2)

m>T, >m +a3 (3.3)
m+a<T, (3.4)

b < Ty (3.5)

by +bs> Ty > b3 (3.6)
bi+by+b3< Ty (3.7)
< Te (3.8)
c1+ce>T. >0 (3.9)
c1+c+c3 < Te. (3.10)

We denote the examples by writing between square brackets the three
input values plus the two indicating bits and the correct output separated
by a colon.

As in the previous section, it is easy to verify that the correct learning of
the 10 examples—{[000-00:0], [100-00:1], [100-01:0], [100-10:0], [010-01:1],
[010-11:0], [010-00:0], [001-00:1, [001-10:1], [001-11:0]} ensures the correct
computation of the full set of examples. For instance, from example [000-
00:0] we derive T > 0 (see equation 2.10); from example [100-00:1] we obtain
the left side of equation 3.2; and so on.

Extending this result to the case of having N bits involves all the exam-
ples that have only one input bit ON and all its possible combinations of
indicating bits, plus the patterns with all the input bits OFF and its combi-
nations with the indicating bits. This procedure gives that for N input bits,
(N + 1)2 examples are enough to obtain full generalization.

4 The Parity Problem

The parity function is one of the most used problems for testing learning
algorithms because its simple definition and great complexity given by the
fact that the most similar patterns (those differing by a single bit) have dif-
ferent outputs (Rumelhart & McClelland, 1986; Tessauro & Janssens, 1988).
The parity function has only one output neuron that indicates when it is
ON that an odd number of the N input bits are ON, while it is OFF if this
number is even. The simplest architecture known to compute this function
using linear threshold units (l.t.u.) and having no direct input-output con-
nections consists of a network with one hidden layer with N units, fully
connected to the N input neurons.

Aswe did in the previous sections, we first analyze a particular case with
six input neurons (see Figure 3) and then generalize the result to N input
bits.

2414 Leonardo Franco and Sergio A. Cannas

I I I3 Iy Is Is

Output

Figure 3: Network structure with one hidden layer of six fully connected neu-
rons used to compute the 6-bit parity function.

The standard functioning of this network (see Minsky & Papert, 1969;
Rumelhart & McClelland, 1986; and Hertz et al., 1991) is based on the be-
havior of the six hidden neurons: the number of hidden neurons that have
to be ON is equal to the number of bits ON in the input. These hidden
neurons are connected to the output neuron P through synapses set alter-
natively to positive and negative values, so the neuron P is ON when an
odd number of hidden neurons are ON and is inactive when this number
is even.

The functioning of the hidden neurons is achieved by the following con-
ditions:

1. The hidden neuron A has to be ON when one or more input bits are
ON; otherwise, A has to be OFF.

2. The hidden neuron B has to be ON when two or more input bits are
ON; otherwise, B has to be OFFE.

3. The hidden neuron C has to be ON when three or more input bits are
ON; otherwise, C has to be OFF.

4. The hidden neuron D has to be ON when four or more input bits are
ON; otherwise, D has to be OFF.

5. The hidden neuron E has to be ON when five or more input bits are
ON; otherwise, E has to be OFF.

6. The hidden neuron F has to be ON when the six input bits are ON;
otherwise, F has to be OFF.

Examples in Feedforward Networks 2415

Denoting by P = 0,1 the output value, we have that P computes the
following function:

6
P=6 {a@ [Z(aili—Tg)i| +b9|:

i=1
6 6 6
+d6 [Z(dili—Td):| +eb |:Z(e,-li—Tg):| +fo {Z(fili—Tf):| —T}, (4.1)
i=1 i=1 i=1

where; =0,1 (i =1, ..., 6) denote the state of the input neurons.
From the conditions 1-6 we obtain the following set of inequalities for
the synapses values:

6 6
(bili— Th)i| +cf |:Z(Cili - Tc)j|

i=1

i=1

e From condition 1 we obtain that:

a; > T, Vi 4.2)
e From condition 2 we obtain that:

bi+b <Ty, Vij (4.3)
e From condition 3 we obtain that:

ci+ct+eo=Te Vij, k. (4.4)

From condition 4 we obtain that:

di+di+dp+d <Tyq Vi j k1 (4.5)
e From condition 5 we obtain that:

ei+et+ext+e+ey=Te Vij kI m. (4.6)
e From condition 6 we obtain that:

fitfitfit+fitfutfo<Tr Vijklmn 4.7)

(a,b,c,d,e, f).

Fixing the values of the thresholds T,, Ty, T¢, Ty, T, Tf, equations 4.2
through 4.7 lead to a set of 2° — 1 independent inequalities for the synapses’
parameters {a;}, {b;}, . .., {fi}. On the other hand, the total number of exam-
ples is 2%, and as the learning of any example ensures only the fulfillment
of one of the 2° — 1 inequalities, only imposing the correct learning of the
full set of examples except the simplest one [000000:0], which determines

2416 Leonardo Franco and Sergio A. Cannas

Table 1: Some Features of the Networks used to Compute the Addition of Two
Numbers, Bit-Shifting, and the N-Bit Parity Functions.

Addition Bit Shifting Parity

Number of synapses 2N +4 N2 +log,(N + 1)) N2+ N

Total number
of examples 3N NN +1) 2N

MNEFG 4N (N + 1)2 oEeN)

the sign of the output threshold, ensures the fulfillment of inequalities (see
equations 4.2-4.7). Hence, we cannot guarantee generalization with any
particular subset of examples.

Finally, the generalization of this result to a fully connected network with
N inputs and N hidden neurons is straightforward, because in this case
we have 2V examples and 2V — 1 inequalities of the type of equations 4.2
through 4.7).

The previous analysis was based on one particular internal representa-
tion. These network admits other internal representations like that used in
Franco and Cannas (1998) for the construction of a network for the addi-
tion problem. Along the same lines as before, it can be shown that in this
case, the minimum number of examples, although less than 2N _ 1, is still
of order O(2N). These results suggest that in this simple architecture for the
parity problem (only one hidden layer, fully connected), the MNEFG could
be always exponential in the number of inputs.

5 Examples

In the previous section we analyzed three problems that are expected to
have different degrees of complexity, being the parity the “hardest” one. The
results are summarized in Table 1. The MNEFG we obtained in the previous
section can be considered the lower bounds for the corresponding problems
in a fixed standard architecture—a fully connected depth 2 network with
the same number of inputs and hidden units. In this sense, the results are
comparable for the three problems, suggesting the MNEFG as a possible
parameter for classifying complexity.

A careful analysis of the exemplars we found for the sum and bit-shifting
problems shows that almost all of them can be grouped into pairs whose
inputs differ in a single bit and whose output is different. In other words,
such pairs are the closest ones (considering the Hamming distance between
the input patterns) located at both sides of a classification boundary. This
appears as a general and simple criterion for the selection of examples.

Examples in Feedforward Networks 2417

0.6 -
0.5
0.4
0.3 -

0.2 -
0.1
0.0

Generalization Error

0.0 02 04 06 0.8 1.0
Fraction of Examples

Generalization Error

T T T T T T
00 02 04 06 08 1.0

Fraction of Examples

Figure 4: Comparison between the generalization error from selective sampling
of examples (lower curves) and a pure random one (upper curves) for (a) a bit-
shifting network with three input bits and (b) a network constructed to compute
the addition of two numbers of four bits length. The pure random selection was
done without repeating the examples.

In Figure 4 we show numerical simulations of the generalization error
as a function of the fraction of examples in the training set using random
epochs of examples selected with the above-described criterion. The results
are compared with the corresponding ones for a random selection over the
full set of examples obtained through numerical simulations. In Figure 4a
the comparison is done for a bit-shifting network with three input bits (see
the architecture of Figure 2) and in Figure 4b, the results for a network com-
puting the addition of two numbers of four bits length (see the architecture
of Figure 1) is shown. All the simulations in this work were done using
simulated annealing as the learning algorithm, and the results were aver-
aged over different random epochs and random initial distributions of the
synaptic weights. Typical sample sizes run from 25 to 100.

2418 Leonardo Franco and Sergio A. Cannas

INPUT

ouTrPUT

Figure 5: Nonoverlapping receptive field perceptron (NORFP) with N = 6 and
two hidden neurons.

In order to check how the above criterion works in a general architecture,
we consider another well-studied depth 2 one: the nonoverlapping recep-
tive field perceptron (NORFP), whose structure consists essentially of many
simple perceptrons connected to a single-output neuron. One can think of
these architectures as networks of “decoupled” perceptrons, which in terms
of architectural complexity lie between the single perceptrons and the fully
connected feedforward nets. In this sense, this type of architecture has been
anatural candidate for studying the learning and generalization properties
started in perceptrons with no hidden units (Copelli & Caticha, 1995). An
example with two hidden units and N = 6 inputs is depicted in Figure 5.
Some properties and computational capabilities of this kind of structure can
be found in Hancock et al. (1994) and Priel, Blatt, Grossman, Domany, and
Kanter (1994).

First, from the many functions that these architectures can compute (Priel
et al., 1994), we selected a target that is simple to analyze and whose com-
putability is ensured. Consider the case of even N and divide the input into
two groups of N/2 bits; then the output of the network should be ON only
if there are two or more input neurons activated in each group at the same
time, and OFF otherwise. We will call this function F». It is easy to see that
this function is solvable by a NORFP with two hidden units, like the one
shown in Figure 5. The problem of determining whether two or more input
bits are ON in a set of N/2 inputs is clearly linearly separable; hence, the
problem can be solved by two simple perceptrons coupled to a third one
that performs a boolean AND function.

From the definition of the target function, it is simple to see the num-
ber of examples that can be grouped into pairs with only one input bit
different and different output scales as O(N?2N/2y for large N. Hence, it is
not expected that a random sampling of examples based on this criterion

Examples in Feedforward Networks 2419

—— random
0.3 | @ selected
3=]
o
e
11}
S 02
2
@©
N
©
e
o 0.1+
c
Q
O]
0.0

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Fraction of Examples

Figure 6: Comparison between the generalization error from selective sampling
of examples and a pure random one in the learning of the F, function (see the
text for a definition) by a NORFP with N = 6 (see Figure 5).

can improve the generalization capacity of the net, compared with a pure
random sampling for this function. We verified this assumption throughnu-
merical simulations. However, not all these examples are needed to ensure
full generalization. Following the same method of the previous sections,
it can be seen that the set that determines MNEFG consists of all the fol-
lowing pairs of examples: one example with two input bits ON in a group
and only one in the other group and the example having the same input
bits ON in the first group plus another bit ON in the group that had only
one. For example, in the case of Figure 5, one possible pair of examples is
[110-100:0] and [110-110:1]. A simple counting shows that the MNEFG in
this case scales as O(N?) for large N. In Figure 6 we plot the generalization
error obtained through numerical simulations as a function of the fraction
of examples in the training set constructed with the last criterion for the
network of Figure 5, and also the same curve is shown for pure random
sampling of examples.

This last result led us to propose the following general criterion for se-
lecting examples in boolean networks: select randomly only pairs of exam-
ples differing in one input bit with different outputs, but select with higher
probability those having fewer active input bits. Related criteria have been
implemented in other methods of active learning (Baum & Haussler, 1989;
Kinzel & Rujan, 1990).

2420 Leonardo Franco and Sergio A. Cannas

We checked this last criterion in the NORFP of Figure 5 for random target
functions. In order to ensure that only computable functions were consid-
ered, we constructed a priori a set of testing functions by a random genera-
tion of synaptic weights. The results were averaged over the different func-
tions and different random initial conditions. Sample sizes ran from 100 to

1000. The examples were selected with a probability proportional to o< 1/ nt,
where 1, is the number of active bits of the inputand g > 0is some arbitrary
exponent. The results are shown in Figure 7 compared with the correspond-
ing ones for a pure random sampling of examples. It is worth stressing that
in boolean networks, full generalization can always be achieved with a
large enough set of examples. Although we see improvement in the mean
generalization error with our criterion (see Figure 7a), the behavior of the
probability of full generalization (see Figure 7b) is much more impressive,
showing a finite probability (about 10%) even with just 10% of the examples
and reaching a value higher than 80% for half of the examples.

A similar test of the criterion was carried out for the addition and bit-
shifting problems with the architectures of Figures 1 and 2, respectively. The
results are qualitatively similar to those of the NORFP, especially concern-
ing the probability of full generalization. We have seen that our criterion is
closely related to the behavior of the MNEFG. In the case of the parity func-
tion with the standard architecture, we have shown that the MNEFG scales
with the total number of possible examples, and therefore the selection crite-
rion does not work. This example illustrates how the generalization capacity
of a network is a result of the interplay between the complexity of the target
function and the architecture. The previous structure is the simplest depth
2 one that can solve the parity function, and it has a very poor generaliza-
tion capacity. More complex nontrivial architectures can be constructed by
increasing its depth. A good example is that proposed by Rumelhart and
McClelland (1986), based on the following simple principle. Suppose that
N = 2" with m > 0 integer (generalization to other cases are straightfor-
ward). Then group the input units into 2”~! pairs, and compute the parity
of every pair by a standard depth 2 network (with two hidden units). This
procedure can be repeated recursively, giving a tree-structured network of
depth 2log,(N) — 1, which solves the parity of the N inputs. An example
for N = 4 is shown in Figure 8. As in the example of sum and bit shifting,
this network incorporates a previous knowledge of a global symmetry of
the target function—let us say, the “self-similarity” property of the parity.

We checked our criterion numerically in the small network of Figure 8.
The results for the generalization error compared with those corresponding
to a pure random sampling are shown in Figure 9. Following the same
procedure of the previous sections, it can be shown that the MNEFG in
this case scales as O(N?). This is consistent with the observed result that
even for a pure random sampling, this architecture always achieves full
generalization with a large enough training set.

Examples in Feedforward Networks 2421

ao- 035+ & . —eo— Selected

S 030 - \ | —e— Random

m i@\\

£ 0.25 - \

S 0204 \-\

@©

N o015 - N

© e

© \

& 0.10 -

[@\‘\

@ 005 - N .

w @ ‘\'\\,
0.00 - e

1 T T T T
0.1 0.2 0.3 0.4 0.5

Fraction of Examples

| = Selected b
[Random

0.8

0.6

0.4 -

0.2 4

0.0 +

I] f I T
0.1 0.2 0.3 0.4 0.5

Full Generalization Probability

Fraction of Examples

Figure 7: Selective versus pure random sampling of examples in the learning
of random target functions by a NORFP with N = 6 (see Figure 5). (a) Aver-
age generalization error versus fraction of the total number of examples in the
training set. (b) Probability of full generalization (zero generalization error).

Finally, we estimated the different average CPU times used by the learn-
ing procedure in a Pentium II (300 MHz) personal computer by three par-
ticular target functions: (1) bit-shifting (N = 5) with the architecture of
Figure 2; (2) F> function (N = 6) in a NORFP (see Figure 5), and (3) parity
with the architecture of Figure 8. The results are summarized in Table 2.

2422 Leonardo Franco and Sergio A. Cannas

Input

Output S

Figure 8: Tree-structured network that solves the parity function for N = 4.

| —@® Selected |
0.5 - —e— Random ’
£ N
5 .
e
w 0.4+
c
2
= 0.3
N
S 02-
[
c
[}
G 0.1
0.0 -
I T I I T
0.0 0.2 0.4 0.6 0.8

Fraction of Examples

Figure9: Comparison between the generalization error from selective sampling
of examples and a pure random one in the learning of the parity by a tree-
structured network with N = 4 (see Figure 8).

Examples in Feedforward Networks 2423

Table 2: Average CPU Time Used by the Different Sampling Procedures.

Bit Shifting F Parity

Selected Random Selected Random Selected Random

Fraction of examples ~ 0.28 0.28 0.81 04 04 1 043 043 0.68
Generalization error 0.0 0.26 0.02 0.0 0.15 0.02 00 04 0.0
CPU time (sec) 7.0 02 1.1 7.7 9.0 933 160 8.8 332

In all the cases, we calculated first the average CPU time needed to obtain
zero generalization error with the selection sampling procedure, for a frac-
tion of training examples corresponding to the threshold value at which the
learning curve reaches zero the first time (see Figures 4a, 6, and 9). In order
to compare with the performance obtained by a purely random sampling,
we calculated in this case two different CPU times. First, we calculated for
each target function the average time needed to converge when using the
same fraction of training examples as in the selection case (which gives a
larger generalization error in the random sampling than in the selective
one). Second, we calculated the average time needed to obtain the mini-
mum generalization error for each function with random sampling (which
involves a larger training set, as in the previous situation).

We see that in the worst case (bit shifting), the average time needed
to reach the minimum error with the selection procedure was about seven
times the corresponding one for the random procedure. However, itis worth
noting that in the first case, full generalization is always achieved (i.e., with
probability one) only with a fraction of examples, while in the second case,
even with all the examples, the probability of learning is less than one.
Hence, a greater generalization capacity is obtained with the selection sam-
pling in this case at the cost of computational time. In the other two cases, the
time performance of the selection sampling compares well with the random
one.

6 Conclusions and Discussion

We analyzed the generalization capacity of several boolean neural networks
for different target functions. Our analysis was based on the analytic estima-
tion of the MNEFG and its scaling properties with the number of inputs N.
A close examination of the subsets of examples that determine the MNEFG
in the different cases led us to propose a simple selection criterion: first
choose pairs of examples with closest inputs in terms of Hamming distance
and with different outputs; examples are then chosen randomly within the
data set formed in such a way, but with higher probability for those exam-
ples with fewer active input bits. This criterion is architecture independent.

2424 Leonardo Franco and Sergio A. Cannas

However, a set of examples constructed with such a criterion is not always
enough to ensure full generalization, as we have shown, for instance, for
the parity. Here is where the architecture comes into play. Our results sug-
gest that the criterion works when the MNEFG scales polynomially with
N, and this seems to happen only with local receptive fields, that is, when
the network is not fully connected. This effect is possibly related to the ex-
istence, in a fully connected network, of multiple internal representations
for a given target function (Boers, Kuiper, Happel, & Sprinkhuizen-Kuyper,
1993). In this case, the number of constraints to be imposed on the opti-
mization procedure underlying the learning would be very large in order
to ensure a proper solution. Therefore, the number of examples needed to
ensure global learning is expected to grow exponentially. It is known that
networks with too many degrees of freedom (i.e., too many weights) fail
to generalize, presenting several undesirable effects, such as overtraining
and interference (see Boers et al., 1993). The introduction of local receptive
fields reduces drastically the number of possible internal representations,
allowing a relatively small number of examples to set the synapses to the
proper values associated with a single internal representation.

This interpretation is consistent with our results in the NORFP, where
the probability of full generalization for random target functions is much
higher with the selection sampling than with a purely random sampling,
even with a very small fraction of examples.

The usage of local receptive fields presents the problem of computability,
thatis, given a target function, we are not sure a priori if a not fully connected
network like the NORFP can solve it. This is a general problem that involves
notonly connectivity but also the minimum number of hidden layers and the
minimum number of neurons in each layer. However, specially designed
networks can be constructed for particular target functions with just the
prior knowledge of some global symmetries of the functions, as in the cases
of addition, bit shifting, and parity described here (see also Haykin, 1994).
The alternative could be a combination of the selection procedure described
here with some pruning techniques, which allows reducing dynamically the
connectivity of an initial fully connected network. We are working along
these lines.

Finally, we showed how the scaling properties of the MNEFG for large
N can be obtained by generalizing the analysis of the small network equa-
tions. The MNEFG appears as an interesting complexity parameter, con-
sistent with the intuitive notion that the more complex the problem is, the
harder it is to learn. Our results illustrate how the interplay between func-
tion and architecture complexities can be studied through this parameter. In
the case of depth 2 networks, we have shown that for relatively simple func-
tions like addition and bit shifting (though with local receptive fields), the
MNEFG scales polynomially while for the more complex (parity), it scales
exponentially. It is worth noting that this is the simplest depth 2 architec-
ture that solves the parity, and hence the MNEFG, reflecting the intrinsic

Examples in Feedforward Networks 2425

complexity of this function. This is an interesting result since the parity with
this architecture is one of the most used structures for testing learning algo-
rithms. We also showed how this difficulty can be overcome by increasing
the depth of the network. Once again, by using local receptive fields, the
MNEEFG scales polynomially with N. This is consistent with the numerical
results, which show that not only with selective sampling, but even with
pure random sampling, full generalization is obtained with a fraction of the
examples.

Acknowledgments

This work was partially supported by the following agencies: CONICET
(Argentina), CONICOR (Cérdoba, Argentina), and Secretaria de Ciencia y
Técnica de la Universidad Nacional de Cérdoba (Argentina).

References

Baum, E. B. (1991). Neural net algorithms that learn in polynomial time from
examples and queries. IEEE Transactions on Neural Networks, 2(1), 5.

Baum, E. B., & Haussler, D. (1989). What net size gives valid generalization?
Neural Computation, 1(1), 151.

Boers, E. J. W., Kuiper, H., Happel, B. L. M., & Sprinkhuizen-Kuyper, I. G. (1993).
Designing modular artificial neural networks. In H. A. Wijshoff (Ed.), Pro-
ceedings of Computing Science in the Netherlands (CSN'93) (p. 87). Amsterdam:
SION, Stichting Matematisch Centrum.

Cannas, S. A. (1995). Arithmetic perceptrons. Neural Computation, 7(1), 173.

Cohn, D. (1996). Neural network exploration using optimal experiment design.
Neural Networks, 9(6), 1071.

Cohn, D., Atlas, L., & Ladner, R. (1994). Improving generalization with active
learning. Machine Learning, 15(2), 201.

Copelli, M., & Caticha, N. (1995). On-line learning in the committee machine. J.
Phys. A: Math. Gen., 28, 1615.

Franco, L., & Cannas, S. A. (1998). Solving arithmetic problems using feed-
forward neural networks. Neurocomputing, 18, 61-79.

Hancock, T.R., Golea, M., & Marchand, M. (1994). Learning nonoverlapping per-
ceptron networks from examples and membership queries. Machine Learning,
16, 161.

Haykin, S. (1994). Neural networks: A comprehensive foundation. New York: McMil-
lan.

Hertz, J., Krogh, A., & Palmer, R. (1991). Introduction to the theory of neural com-
putation. Reading, MA: Addison-Wesley and Santa Fe Institute.

Jung, G., & Opper, M. (1996). Selection of examples for a linear classifier. J. Phys.
A: Math. Gen., 29(7), 1367.

Kinzel, W., & Rujén, P. (1990). Improving a network generalization ability by
selecting examples. Europhysics Letters, 13(5), 473.

Minsky, M. L., & Papert, S. A. (1969). Perceptrons. Cambridge, MA: MIT Press.

2426 Leonardo Franco and Sergio A. Cannas

Plutowski, M., & White, H. (1993). Selecting concise training sets from clean
data. IEEE Transactions on Neural Networks, 4(2), 305.

Priel, A., Blatt, M., Grossman, T., Domany, E., & Kanter, I. (1994). Computational
capabilities of restricted two layered perceptrons. Physical Review E, 50, 577.

Rumelhart, D. E., & McClelland, . L. (1986). Parallel distributed processing (Vol. 1).
Cambridge, MA: MIT Press.

Tessauro, G., & Janssens, R. (1988). Scaling relationships in back-propagation
learning: Dependence on predicate order (Tech. Rep. No. CCSR-88-1). Urbana-
Champaign, IL: Center for Complex System Research.

