Modelling biological invasions: species traits, species

interactions, and habitat heterogeneity

Sergio A. Cannas!?, Diana E. Marco®, Sergio A. Péez*

1— Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cérdoba, Ciudad
Universitaria, 5000 Cérdoba, Argentina.

2— Corresponding author. Fax: +54 351 4334054. e-mail: cannas@famaf.unc.edu.ar.

3— Facultad de Ciencias Agropecuarias, Universidad Catolica de Cérdoba, 5000 Cérdoba,
Argentina.

4— INTA, EEA Bariloche, Pasaje Villa Verde S/N, CC 277, 8400 San Carlos de Bariloche,

Argentina.



Abstract

In this paper we explore the integration of different factors to understand, predict
and control ecological invasions, through a general cellular automaton model especially
developed. The model includes life history traits of several species in a modular struc-
ture (Interacting Multiple Cellular Automata, IMCA). We performed simulations using
field values corresponding to the exotic Gleditsia triacanthos and native co-dominant
trees in a montane area. Presence of G. triacanthos juvenile bank was a determinant
condition for invasion success. Main parameters influencing invasion velocity were
mean seed dispersal distance and minimum reproductive age. Seed production had a
small influence on the invasion velocity. Velocities predicted by the model agreed well
with estimations from field data. Values of population density predicted matched field
values closely. The modular structure of the model, the explicit interaction between
the invader and the native species, and the simplicity of parameters and transition

rules are novel features of the model.

Keywords Biological invasions, cellular automata, invaders, habitat heterogeneity,

species interaction.



Introduction

Organisms spreading outside of their native ranges have been called ”invaders”. The
process by which an invader arrives and spreads into the new territory is called ”ecological
invasion”, and has been recognised as potentially damaging for ecosystems functioning since
Elton’s work [1]. Since this early treatise some interesting although fragmentary advances
to explain invasion success have been made by addressing the idea that the spread of an
invasive alien organism in a natural system depends on different factors, like life history and
demographic traits of the alien species, and environmental conditions of the invasion system,
including disturbance regime (citations in [2]-[3]). Interspecific interactions between the alien
and the native species, another important factor, have rarely been considered [4]-[5].

However, this increasing theoretical knowledge has not been translated yet into the de-
velopment of effective control programs, and prediction of the fate of invasions once the

”we are never

invader has arrived is still as far to reach as stated by Gilpin [6] in 1990:
going to have a scheme to predict the success of invading species”. Reasons for this failure
could be related to the largely anecdotical nature of the invasion data gathered in different
systems, the biased nature of many studies, and the lack of integration of invaders traits
and environmental (including native species) characteristics. We believe that integration of
the different factors involved in invasion processes by formalisation through mathematical
models [7], is the most fructiferous approach to understand, predict and control ecological
invasions. Moreover, there is a particular kind of mathematical models that is especially suit-

able for modelling the invasion process: the cellular automata, since they permit to easily

incorporate the different factors involved in the invasions in a spatially explicit context. This



feature has proven to confer cellular automata a better simulation properties compared to
the classic reaction-difussion model used in the invasion studies since Skellam [8] and Okubo
[9] applications [7] [10]. In this paper we describe a general cellular automaton model de-
veloped for studying invasions. Our model represents an improvement respect to the other
few cellular automata models for invasions reported in the literature [11]-[14], because it
considers the demography of the invader and the native species, how the interspecific inter-
action between them affects the invasion dynamics, and permits to simulate an ample range

of invasion processes.

The Model

We develop an individual based cellular automaton model for the population dynamics
and spatial spread of a single isolated species. The model takes into account the life history
traits of the species relevant to species dynamics. To include interaction between species, we
develop a similar model for each one including the corresponding set of life history traits. We
then define dynamical interacting rules that couple the variables associated to each cellular
automaton. We call this last model version an Interacting Multiple Cellular Automata
(IMCA). Models based on cellular automata are usually defined by associating to every cell
of a grid a single discrete variable, which values encode all the possible states of the cell.
For instance, in the case of modelling a single species the variable may encode the age of
the individual at the cell [11], or in the case of several species, each value can be associated
to the presence of an individual belonging to a different species. In the IMCA we associate
to every cell in the grid several discrete variables [15], each one encoding the age of an

individual belonging to a different species. This approach allows to model in a clear and



simple way systems of increasing complexity. Dynamical properties inherent to every species
are incorporated separately from the interaction factors, thus allowing to develop a “modular

” of modelling, where the building blocks are relatively simple one species cellular

strategy’
automata models.

We performed several simulations using field values corresponding to Gleditsia triacanthos
L.and Lithraea ternifolia (Gill) Barkley [10] and Fagara coco (Gill) Engl [16]. Using the
simulation results we calculated the temporal behavior of average population densities and
propagation fronts, from which we obtained an estimation of the invasion velocity of G.
triacanthos in a dense forest of L. ternifolia. We also analised the dynamics of a mixed

forest of the two native, non-invasive species L. ternifolia and F. coco. In this simulation we

expected the model predicting stable coexistence of the two species in the long term.
One species cellular automaton

We embed the model on a square grid containing L, x L, cells. The grid parameter (i.e.,
the distance between neighbouring cells) equals one. We choose the spatial length scale so
that each cell contains at most one adult individual. We consider a discrete time unit and
the dynamical variables are updated according to a parallel dynamics, that is, the value of
all variables at a given time ¢ depends on the value of the variables at time t — 1. We set
the time scale to coincide with the minimal reproductive interval in the life history of the
species. Throughout the paper, time unit is then one year. Life history traits considered
are: d, mean seed dispersal distance (in grid units), .., maximum longevity (in years), g,
annual adult survival probability (calculated from t,,4.), tm, age of reproductive maturity (in

years), n, mean seed production (seeds/plant), t5, interval between masting seed crops (in



years), f,, mean germination probability, P;, juvenile survival probability, and a,, average
age of saplings in the juvenile bank (in years). Juvenile bank is the collection of saplings that
germinate under closed canopy and can survive in the shade, ageing but not growing, until
a gap in the canopy appears and saplings can resume their growth and eventually reproduce
[17].

Each cell ¢ have associated a discrete variable a;(t) corresponding to the age of the
individual located at it at time t; a; = 0 corresponds to an empty cell. The index ¢ encodes
a pair of discrete coordinates (z,y), with x =1,2,...,L,, y=1,2,..., L,.

An occupied site a;(t) # 0 is updated according to the following rule:

a;(t) +1 with probability q

0 with probability 1 —q

where ¢ is the annual adult survival probability. We chose the value of the parameter ¢
as follows. Since at every year the survival of an individual is sorted independently, the

probability P,(t) that an individual dies at age ¢ is given by a geometrical distribution

Py(t) = (1 —q)¢" . (2)

Let tq, be the maximum longevity of the species. From Eq.(2) we can calculate the prob-

ability of an individual to survive over t,,q, as

tmax

P(t > tma) = 1= Y Put)

1 —_ tmaz+1
N e



Using Eq.(3) we choose ¢ so that P(t > t4) < 0.05.

Let t; be the average age of the juvenile bank of the species. If the individual dies at
time ¢, i.e., a;(t — 1) # 0 and a,(t) = 0, it is replaced by another individual of age t;. If the
species does not have juvenile bank then ¢; = 0 and the cell becomes empty.

Now consider an empty cell ¢ at time ¢t —1, that is, a;(t —1) = 0. The site will be colonised
at time ¢, that is, a;(t) = 1 with probability p;(t). The colonisation probability p;(t) depends
on the number of seeds s;(t) received by the cell ¢ at time ¢, and it is defined as the probability
that at least one seed germinates and that the corresponding individual survives to the adult
stage (more than two years). Let f, be the mean germination probability of the species
and P; the probability that a juvenile survives more than two years. Considering these two

events as independent lead us to

pi=1-(1-PFfy)" (4)

To calculate s; we count the seeds received by the cell ¢ coming from the rest of the
cells. Let us assume that the seeds dispersion of an individual is described by some density
function f(r), where r = /2% + 42 is the distance to the parental tree. That is, we assume
that seed dispersion is spatially isotropic. This assumption is not restrictive and it can be
easily generalised to consider anisotropic seed distributions. The function f(r) describes the
fraction of the total number of seeds produced by a single individual that are dispersed per
unit of area to a distance r; f(r) is assumed to be normalized in the whole plane. Now the

fraction of seeds received by a cell j coming from an individual located at a cell ¢ is given by



K(ry) = [ f(r)da 5)

j
where the integration variable r is the distance to the center of the cell 4, 2, is the area of the
cell j and r;; is the distance between the center of the cells i and j. The integrals (5) must
be in principle carried out over the all the area ;. However, for a wide range of different
choices of f(r) the above integral can be well approximated as K(r; ;) = f(r;;). Then s; is

obtained as s;(t) = n g;(t), where

9:(t) = ;K(ﬁj)@ (aj(t = 1) = tm) Ala;(t = 1) = tm, Ls) (6)

where the sum runs over all cells j # i, the step function ©(x) is defined as

1 if >0
O(x) (7)

0 if 2<0

and A(z,y) is a function that equals one if z is a multiple of y and zero otherwise. That is,
an individual located at the cell j will contribute with nK(r;;) seeds to the cell ¢ every ¢,
years starting from a; = t,,. In the case of annual seed crops t; = 1 (i.e., no masting seed

crops) we have that A(z,1) =1 Vz.

Interacting Multiple Cellular Automata (IMCA)

To work with several species we incorporate interactions between them by coupling the
cellular automata through dynamical interacting rules. For simplicity, we will refer to a
"success” of a species when it can colonise a new grid cell, and to a ”winner” when a species

outcompete another during the interacting process. Unless a particular resource is explicitly



considered, competition occurs in an ample sense as competition by space. The interacting

rules are the following:

1. A given cell cannot be occupied by individuals of different species at the same time.

2. In an empty cell we compute the probability of colonisation by different species from
Eq.(4) and compare them with independent random numbers sorted for each one.
If only one species succeeds the dynamics is that of a single species. If more than
one species succeed the winner is sorted with some probability that depends on the
particular set of species under consideration. If all the species make a similar use of
the environmental resources then the winner is sorted with equal probability among

the occurring species at the cell.

3. If different species make different use of the environmental resources then new param-
eters are incorporated into the model. Consider for instance the case of two species,
where one of them has a especial ability to establish in shallow soils and rock crevices
compared to the other. We introduce a soil state parameter c; for each cell ¢, which can
take the values 0 and 1, representing a rocky ground and a deep soil cell, respectively.
These parameters are sorted with some spatial distribution at the beginning of the
simulation and kept fixed through it. We introduce the following competition rule: if
¢; = 1 the winner is sorted with equal probability but, if ¢; = 0, then the species with

the especial ability soil occupation always succeeds in colonising the cell.

Simulation Methods



We performed computer simulations of the spread of different species. First we simulated
the behaviour of isolated species and then we analise the interacting situation for different
combinations of pairs of species. In most of the cases the results were averaged over many
samples of random initial conditions and also over different sets of the random numbers
used in the dynamics. We considered open boundary conditions, that is, cells do not receive
seeds from outside the grid area. Initially, we simulated the isolated spread of each L.
ternifolia, G. triacanthos and F. coco species in an empty rectangular area, starting from
a row of individuals along a line y = 0 at the bottom of the rectangle. We chose the age
of the individuals randomly between 1 and ¢,,. The cell length unit is 5 m, corresponding
to an average adult canopy (25m?) of the species considered. We chose the seed dispersal

distribution as a negative exponential function

f(r) = e/ 8)

Values of the life history traits are in Table 1. The propagation front y = h(x) for each species
was defined as the farthest occupied cell y from the starting point for every coordinate .

We defined the mean front position as

h=-—"2 N (9)

We averaged h over different initial conditions and different sets of random numbers, for

all species, for an area of width L, = 80. Several tests performed for different area width
showed that the results did not change significatively for widths over 80 cells.

To gain a deeper insight about the invasion front structure we also calculated the invader

10



population denstity profiles along the propagation direction y:

1 L=

Y1) = 72 [0(aay(t)) = O (auy(t) — tm)] (10)

r=1
1 L=

pa(y,t) = L_;c Z:l S} (ax,y(t) —tm) (11)

where a, , is the age of an invader located at a cell whose coordinates in the grid are (x,y) and
O(z) is given by Eq.(7); p1 and ps give us the average density profiles for non-reproductive
and reproductive individuals respectively.

We first used the IMCA to study the invasion system constituted by the alien species G.
triacanthos and the native dominant L. ternifolia. Using the life history traits values in Table
1, and the interacting rules previously defined, we simulated the spread of G. triacanthos
on a rectangular area, starting from an initial distribution of individuals with random ages
along a line y = 0 at the bottom of the rectangle. We filled the rectangle with a dense forest
of L. ternifolia individuals of random ages. We can characterise the time evolution of the
invasion patterns by defining the invasion front y = h(x) as the farthest cell occupied by G.
triacanthos for every coordinate x, as in the non interacting case. We performed another set
of simulations, starting from a single G. triacanthos tree located in the centre of a square
area covered by a dense forest of L. ternifolia. We also studied the spread of F. coco in
the presence of L. ternifolia forest, using the life history parameters given in Table 1. Since
both species make a similar use of the habitat, no soil variables were introduced in this
case. As in the previous simulations we started considering the spread in a rectangular area
from an initial linear distribution of individuals randomly aged of F. coco at the bottom
of the area. We filled the area with a dense forest of L. ternifolia. We performed another

11



set of simulations, by initially filling the grid with a randomly interspersed distribution of

individuals of F. coco and L. ternifolia, in different percentages.

Results

Single species spread

In all simulations performed, h shows, after a transient period, a linear behaviour h ~ V¢,
with a well defined asymptotic velocity V. This holds as long as the spread front does not
reach the upper border of the area y = L,, where the population densities stabilise at values
between 0.9 and 1 in all cases. For the sake of comparison we also simulated the spread
of starting from a single tree located in the centre of the area. The spread front in this
case develops an almost circular shape (not shown), which average asymptotic velocity is
the same of that obtained using the previous initial linear distribution of trees. Asymptotic
velocities predicted by the model were 9.6 m/y for G. triacanthos, 0.6 m/y for L. ternifolia,
and 3.3 m/y for F. coco. In all cases, the propagation front h(z) is relatively smooth (not
shown).

In figure 1 we show the density profiles for G. triacanthos propagation at three different
times; the profiles for other species behave in an analogous way. We see that the profiles dis-
play a “travelling wave” structure, that is, they satisfy the property p(y,t+n) = p(y—nV,t)
(n=1,2,...), as can be appreciated from figure 2. We can also see from figure 2 that the trav-
elling wave fronts present asymptotically an exponential tail for large times, consistent with
the prediction of integro-difference models for structured populations of Neubert and Caswell

[18]. It is worth noting in figure 1 the presence of a wide band of non-reproductive individu-
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als in the invasion front, characterized by a sharp peak in the corresponding density profile.
We see that about half of the area covered by the front is composed by non-reproductive
individuals. Moreover, the width of this area (about 20 grid units) is much more larger than
the mean dispersal distance (d = 3 grid units in this example), which means that the front

advances only when non-reproductive individuals in the front become reproductive.

Interacting species

In Fig.3 we show an example of snapshots of the spread of G. triacanthos into the dense L.
ternifolia forest, in homogeneously deep soil (¢; = 1 for each cell ). In this interacting case,
the smooth front characteristic of the single species spread, is replaced by a wide spread band
area of rough borders, as the result of the intermingled patches of G. triacanthos invading
L. ternifolia forest. Inside the invasion band, that move along the y axis direction, there
are many patches of L. ternifolia of different sizes. These L. ternifolia patches are replaced
by G. triacanthos as the simulation runs, leaving a dense forest of the invader behind the
band. After some time the whole area is invaded by G. triacanthos. This can be seen in
Fig.4, where we plotted the average population densities (number of individuals/total area)
vs time for both species. In the case of G. triacanthos beginning to spread into L. ternifolia
forest from a single tree located in the centre of the squared area, the invasion band growing
radially shows the same characteristics as in the linear initial start.

To estimate the velocity of the invasion process we use the asymptotic speed V of the
averaged front position k. In Fig.5 we show the temporal behaviour of k for two different soil
states, homogeneously deep soil (¢; = 1 for each cell ¢), and homogeneously rocky ground

(c; = 0 for each cell 4). Again we see that h displays a well defined asymptotic linear
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behaviour in both cases. Although on rocky ground the process is much more slower, G.
triacanthos always succeeds in the invasion into the L. ternifolia forest. We checked for the
validity of simulations, comparing rates of spread predicted by the model with data obtained
from aerial photographs 1:5000, taken in the study area in 1970, 1987 and 1996. The last
velocity was estimated from the increment in the square root of the whole invaded area.
Velocity estimated from photographs is 2.4 m/y, while velocity predicted by the model ranges
from 1.9 m/y in rocky ground to 4.4 m/y in deep soil (Fig.5). We also performed simulations
with a random distribution of rocky ground and deep soil cells in different proportions. The
results (not shown) are qualitatively the same as in Fig. 5, with velocities that vary between
the two values shown in the figure. We then calculated the invasion profiles p; and ps (see
Eqgs.(10) and (11)) for the invasion of G. triacanthos in a dense forest of L. ternifolia. The
results are shown in Fig.6. We see that the profiles show a travelling wave structure as in the
non-interactive case. Moreover, it can be seen that the travelling wave fronts also present
an exponential tail at large times. A similar behaviour is encountered in the solutions of
integro-difference models for invasion systems that include short-range seed dispersal and
competition between aliens and natives, as far as competition favours the invader [19] (in
the present case the existence of juvenile bank gives a formidable advantage to the invader).
Comparing figures 1 and 6 we see that the presence of native competitor completely supress
the peak in the non-reproductive travelling wave front that appears in the non-interactive
case.

When considering the interacting case between the two natives L. ternifolia and F. coco,
the spread of F. coco into the L. ternifolia forest does not lead to exclusion of L. ternifolia.

As long as F. coco spreads into the area, cells behind the spreading front can be re-occupied

14



by L. ternifolia. This leads, after some time, to a stationary situation of a mixed forest with
a distribution of patches of both species (Fig.7). Starting from an initial random mixing of
both species, after some time the system attains a stationary state with fixed values for the
average population density values of both native species (not shown). Such values do not
depend on the initial values, as shown in Fig. 8. Moreover, the predicted proportion between
the stationary densities: number of individuals of L. ternifolia/number of individuals of F.
coco = 0.67/0.29 ~ 2.3 compares well with the field data value 2 + 1 [16].

In order to elucidate the influence of the juvenile bank in the invasion process we per-
formed another simulation of the L. ternifolia-G. triacanthos system, but withdrawing the
juvenile bank of G. triacanthos. In this case the dynamics of the model led to a final situation
very similar to that observed in the L. ternifolia-F. coco system, with a different stationary
densities ratio (the number of individuals of G. triacanthos is about the same of that of L.
ternifolia). In other words, in this case there is no invasion but coexistence, at least for
the particular set of values of the parameters here considered. This shows that the juvenile
bank is a determinant factor in the succes of G. triacanthos invasion in this system. It is
worth mention that a sensitivity analysis showed that the invasion velocity was not influ-
enced by variations of the age of juvenile saplings t;. Further simulations, using the set of
parameters of G. triacanthos without juvenile bank for the invader and the set of parameters
of L. ternifolia for the native, showed that, for values of the native longevity comparables
to that of the invader, the native may become extinct at large times, even in the absence
of the juvenile bank. Finally, in order to determine the sensitivity of the invasion velocity
with the life history parameters, we performed a certain number of simulations changing the

values of different life history parameters while keeping the rest of them fixed, for different
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combinations of species.

First of all, we observed that for an invader with juvenile bank, the invasion velocity in
a dense forest of natives (the situation we simulated in this work) is almost independent on
all the life history parameters of the native but the longevity. In this case the behavior of
the native can be very well aproximated by a simplified version of the one species CA model
(see Fig.9), which is obtained as the n — oo and/or P f, — 1 limit ; in such limit we see
from Eq.(4) that the colonization probability p; = 1 independently of the cell 4, leading to a
Non-Interacting (NI) model. Hence, the dynamics of the native depends in this case only on
the survival probability ¢,, which is related to the longevity through Eq.(3). This property
holds only if the invader has a juvenile bank.

We then calculated the variation of the invasion velocity V' with the mean dispersal
distance d, for an invader with juvenile bank and for different values of the age of reproductive
maturity ¢,, while keeping all the rest of the parameters fixed with values corresponding to
G. triacanthos . From Fig.10 we see that V' depends linearly on d. From the same calculation
it can be seen that V' decays logarithmically with ¢,, for small values of it (¢,, < Ty) ; for
higher values of t,, we found that V' ~ 1/t,, (not shown).

We next calculated the variation of V' with the mean seed production n while keeping
d and t,, fixed. In Fig.1la we present a calculation of V' as a function of n for different
values of the product P;f,; we see from the normal-log plot that V' grows logarithmically
with n, at least for large values of n. Moreover, since the velocity invasion is determined by
the colonisation probabilities p;, which can be written as p; = 1 — A% (see Eq.(4)), we see
that the velocity depends on n through the factor A = (1 — Psf,;)". The data collapse of

the curves from Fig.11a shown in Fig.11b, when we plot V' vs —nLn(1 — Psf;) = —Ln(A),
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shows that actually V' ~ Ln(—Ln(A)).

Discussion

The most important factor determining invasion success detected by the IMCA model
is the presence of a juvenile bank. Once a cell is occupied by G. triacanthos or L. lucidum,
the native L. ternifolia cannot enter on it anymore, because even when the adult invader
individual deads, it leaves on the site a collection of saplings ready to resume growth and
reproduce. The juvenile bank thus represents an effective strategy for ensuring site occu-
pancy. This strategy is comparable with the “phalanx growth strategy” that occurs when
a species shows either a clonal growth in a compact manner [20], or the species makes the
neighbourhood uninvadable by species with shade-tolerant seedlings as in the case of G.
triacanthos and L lucidum, conferring them an invasive ability as space-holder invaders [21].
However, in contrast with the conditions settled for these authors for the phalanx growth
strategy to apply (resident native species with global dispersal and invader with local disper-
sal), we found the phalanx strategy in the case of both native and invader species showing
local disperse. The role of the juvenile bank in the invasion success can be paralleled to the
role of the seed bank, especially for short-lived invaders. Many invasive weeds depend on
seed banks for persistence in seminatural habitats [22].

Respect to the relevant parameters influencing invasion velocity, we found that the main
ones are the mean dispersal distance d and the age of first reproduction t,,, while it changes
slowly (logarithmically) with the number of seeds n. We showed that the model predicts
a wave form structure for the invasion front, both for the non-interactive and interactive

cases. However, the detailed structure of the front is very different in both cases. In the non-
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interactive cases the front presents a sharp peak in the non-reproductive population density,
followed by the wave of reproductive individuals, behaviour that is not present in the integro-
difference models solutions [18]. The situation is quite different in the interactive case, where
the travelling wave front is mostly composed by reproductive individuals. Moreover, we
found that in the case of invader species with juvenile bank, the invasion velocity is almost
independent of the life history parameters of the native except adult survival probability q,.
This can be easily understood since the basic mechanism underlying the front motion in this
case is colonization of random neighboring gaps, whose production rate is proportional to
1—q,.

Mean dispersal distance was important in determining invasion velocity. It is worth
noting that all the simulation were performed using a negative exponential function as the
seed dispersal curve, allowing for short distance dispersal only. The choice of the dispersal
function was based on the lack of evidence for long distance dispersal events for the species
here considered in the habitat analyzed. Invasion velocity increased linearly with increasing
d, as expected for a dispersal distribution function which has a moment-generating function
[23], like the exponential here used. With a well defined invasion travelling wave and local
dispersal the invasion processes described by the IMCA model are qualitatively analogous to
those obtained from applications of the reaction-diffusion model [11, 10], integro-difference
equation models [19, 24, 25] or the model coupling integro-difference equations with popu-
lation matrices developed by Neubert and Caswell [18]. On the other hand, when fat-tailed
desipersal curves fucntions are considered, accelerated invasions are produced [23, 24, 26].
If necessary, suitable fat-tailed dispersal functions like the Cauchy distribution [23] can be

easily incorporated into the IMCA model.
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Minimum reproductive age was one of the main predictors of invasive pines and woody
angiosperms around the world [27]. Looking at the population age structure of the trav-
elling invasion wave when considering short range dispersal it is evident that the invasion
advances only when the non-reproductive individuals located in the invasion front reach the
reproductive maturity (see Fig. 1). Under these conditions, the basic mechanism underlying
the motion of invasion front is diffusion, where the relevant time scale involved is the age
of reproductive maturity ¢,,. This is consistent with the analytic results of Kot et al [23],
showing that the minimum speed of a moving invasion wave when using integro-difference
equation models depends on the net reproductive rate Ry. Short reproductive periods mean
shorter generation times 7', and hence, greater Ry . The other component of of Ry, fecundity
(as seed production, for example) is perhaps less important in determining invasion velocity.
Seed production has not influenced primarily the invasion velocity in the IMCA, at least
for reasonable values of seed prodeuction n. Fecundity as seed production is difficult to be
limiting for population growth in plants, being of the order of hundreds or thousands [28]. It
is interesting to note that, even in the case when long-distance dispersal was considered by
using fat-tailed distributions, the mean rate of population spread was given by the density at
extreme distances reached by teh farthest individuals scaled by the generation time 7' [29].
Moreover, juvenile survivorship was decisive for determining spread velocity in the model
from Clark et al [29], rather than seed production. This is consistent with other findings for
woody species, where survival transitions are more important than fecundity in determining
population growth rates [17]. Such generalisation is supported by an independent applica-
tion of matrices models on the same system tested in the IMCA [10], where seed production

made the lowest contribution to population growth of G. triacanthos. This could explain in
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part why Fucalyptus species have not been as successful invaders as could be expected from
their large seed production [30]. However, seed production could be more important than
survival transitions when invaders are short-lived species, as found by [31] for the short-lived
perennial Senecio jacobaea. As long as in most of studies fecundity measurements involve
both seed production and seedling survival or even ignore seed production [27]; [11], the
importance of the two factors in promoting invasion success is difficult to assess. An inter-
esting way of assessing this importance is the finding of Neubert and Caswell [18] that the
sensitivity patterns of both population growth and invasion wave speed are similar.

The IMCA model permits to integrate explicitely the effects of the invader and the native
species interactions on their demography, and hence, on the invasion success. In the case
analysed, interaction between invader and native species was related to the use of resources
through competition leading to a decrease of the invasion velocity, but any kind of ecological
interactions and relationships with the environment, including disturbances, can be modeled
very easily using IMCA. This confers the model a great flexibility and generalisation power,
in contrast to the formerly used reaction-diffusion model. The predicted rates of invasion for
G. triacanthos using the reaction-diffusion model in the same invasion system described in
this paper [10], have been overestimated in an order of magnitude compared to the results
of the IMCA. In the IMCA model, parameters and transition rules chosen are very simple,
and they can be obtained with a minimum of field sampling because most of information
needed can be searched from previous studies. In spite of its simplicity, the model allowed
us to draw some novel theoretical and applied hints on the invasion processes. Results of
the IMCA application will help to design the optimal management for the conservation of

native species populations while preventing and controlling invasions. Main applications are

20



related to a better knowledge of traits conferring invasiveness, which will allow to design
more effective screening programs for introduction policies, and a better understanding of
species and habitat interactions for preventing invasions and controlling already established

invaders.
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Table 1: Values of life history parameters for the species considered in the model. See text

for parameter meanings.

parameter G. triacanthos | L. ternifolia | F. coco
d [lattice units] 3 1 1
tmaz [V] 75 140 40

q 0.96 0.98 0.93
tm [v] 7 20 5

n [seeds/plant] 14000 6000 6000
ts [y] 1 2 1

fq 0.2 0.01 0.2
P 0.4 0.3 0.5
ty [yl 5 0 0
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Captions for figures

Figure 1: Average population density profiles for G. triacanthos spread in a rectangular
simulation area of width L, = 100 at three different times.

Figure 2: Average population density profiles for G. triacanthos spread in a rectangular area
of width L, = 100 vs. £ = y — V't at four different times, where V' = 1.924 grid units/year.
Curves collapsing indicate the travelling wave structure of the profiles, while the linear
dependency in the semi-log plot at large times correspond to an asymptotic exponential tail.
Figure 3: G. triacanthos invasion (black cells) into a dense forest of L. ternifolia (grey cells),
starting from a line of trees (¢ = 0) located at the bottom of a squared simulation area of

160 x 160 cells, of homogeneously deep soil. White cells correspond to empty cells.

Figure 4: Average population densities for the invasion process of G. triacanthos into the L.

ternifolia forest as a function of time, in a squared simulation area of 80 x 80 cells of deep soil.

Figure 5: Average invasion front position /& of G. triacanthos in the dense forest of L. terni-
folia as a function of time, for a rectangular area of width L, = 80. Velocity of the invasion
front (V, measured as the asymptotic speed of the averaged front position A) is shown, for
two different soil states, homogeneously deep soil (continuos line), and homogeneously rocky

ground (dotted line).

Figure 6: Average population density profiles for G. triacanthos invasion into a dense forest

of L. ternifolia, starting from a line of trees (¢ = 0) located at the bottom of a rectangular
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simulation area of width L, = 120, of homogeneously deep soil, at three different times.

Figure 7: F. coco spread (black cells) into a dense forest of L. ternifolia (grey cells), starting
from a line of trees (¢ = 0) located at the bottom of a squared simulation area of 160 x 160
cells, of homogeneoulsy deep soil. White cells correspond to empty cells. Different snapshots

show consecutive stages of the spreading process, from ¢ = 20 years to ¢t = 2000 years.

Figure 8: Average population densities for the spread of F. coco (dashed line) and L. terni-
folia (continuous line) forest as a function of time, in a squared simulation area of 80 x 80 cells
of deep soil, starting from different random spatial distribution of both species. The lower
and upper curves (black line) correspond to an initial forest composition of 90% and 10% of
L. ternifolia and F. coco, respectively, while the middle curves (grey lines), correspond to 40%

and 60% respectively. Other initial proportions lead always to the same final stationary state.

Figure 9: Average invasion front position in a rectangular area of width L, = 80, starting
from a line of invaders located at the bottom of the simulation area and a dense forest of
natives. Open circles correspond to the IMCA simulation of the G. triacanthos-L. ternifolia
system, while filled triangles correspond to the simulation results for the invasion of G.
triacanthos in a Non Interacting Model for natives with survival probability ¢, = 0.98 (same
value as for L. ternifolia).

Figure 10: Invasion velocity (cell length units per year) as a function of the mean dispersal
distance d for different values of the age of reproductive maturity ¢,, in a rectangular area
of width L, = 100. All the rest of the parameters were taken from the G. triacanthos-L.

ternifolia system (see Table 1).

28



Figure 11: Invasion velocity (cell length units per year) as a function of the mean number
of seeds n in normal-log plots, for different values of the product F;f,, calculated in a
rectangular area of width L, = 100. All the rest of the parameters were taken from the G.
triacanthos-L. ternifolia system (see Table 1). (a) V vs m. (b) Plot of the same numerical

data as V vs —nLn(1 — P, f,).
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