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In this work we study a two dimensional Ising model for ultra-thin magnetic films which
presents competition between short range ferromagnetic interactions and long-range an-
tiferromagnetic dipolar interactions. We present evidence that the dynamical and ther-
modynamical properties of the model allow for an alternative interpretation, in terms
of glass forming liquids. In particular, the existence of a first order phase transition
between a low temperature crystal–like ordered phase a high temperature liquid–like
disordered phase, which can be supercooled below the melting point, together with a
drastic slowing down after a quench to low temperatures suggest that these materials
could present a phenomenology similar to that observed in glass forming liquids.

1. Introduction

The physics of glass forming liquids and structural glasses in general, appears today

as a great challenge in statistical mechanics and chemical physics. Despite the

huge effort devoted to the field and the enormous improvements obtained in the

comprehension of these complex systems, due both to theoretical and experimental

studies, there are still many open questions concerning their phenomenology.

Most of the theoretical knowledge in the field resides today in two different

approaches. On one side, there are different phenomenological and first princi-

ples microscopic theories (for a recent review see Ref.1). Among the last ones,
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perhaps the most successful one is the mode coupling theory 1, in the sense of

having more experimentally verified predictions. However, up to now no one of

the existing theories can account for a complete description of the observed phe-

nomenology. On the other hand, the constant improvement in the computational

capacity allowed the implementation of very accurate molecular dynamics simula-

tions. Most of these simulations are based on small binary systems of particles

interacting through Lennard–Jones like potentials. While the existing microscopic

theoretical approaches seem to be very limited due to the complexity of the analyt-

ical treatment, the numerical approach is limited by the small number of particles

that can be considered and the extremely small time span that a simulation can

cover, specially for modelling systems that have an astonishing slow relaxation dy-

namics 2.

In a completely different scheme, the statistical physics community has been

looking, since many decades ago, for a simple lattice model able to catch (indepen-

dently of the degree of accuracy of its microscopic description) those few relevant

ingredients which are responsible of the rich dynamical and thermodynamical phe-

nomenology of these materials.

There is a general consensus in the community in the sense that a relevant

element in the description of structural glasses is the appearance of frustration at

the level of microscopic interactions between molecules. And, unlike what happens

in many other complex systems, as for instance spin glasses, this frustration is not

due to the existence of randomness, but to the emergence of competition between

attractive and repulsive interactions acting on each particle.

Among the many different approaches presented in the literature in order to

introduce a lattice model for structural glasses, we want to mention in first place

that presented by Shore, Holzer and Sethna 3, since, as will become clear in short,

it is intimately related to the scope of our paper. They consider the magnetic

Ising system on a square and on a cubic regular lattices, with ferromagnetic in-

teractions between nearest–neighbors plus antiferromagnetic interactions between

next–nearest neighbors spins, and without taking into account any kind of random-

ness in the Hamiltonian of the model. For the two dimensional case, they actually

found a relatively simple dynamical and thermodynamical behavior, which is far

from being glassy. But the situation was completely different for the three dimen-

sional case, where at very low temperatures they found a drastic slowing down of

the relaxation, ruled by a logarithmic domain growth law, proper of glassy systems.

This simple model, without imposed disorder and with competition, showed to be

able to reproduce at least partially and qualitatively the complex phenomenology of

a glassy processes. Nevertheless, its main limitation was the existence of a second

order phase transition between the high temperature disordered phase (analog to

a liquid state) and the ferromagnetic ordered phase (analog to a crystalline state).

This continuous transition without coexistence of phases can not give account of

the process of supercooling a liquid, which is intimately related to the process of
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forming a structural glass.

Since then, many other attempts have been done in order to improve that first

intent. In a series of papers, Lipowski and co–workers 4 considered the same model

introduced by Shore et al. plus a four spin plaquette ferromagnetic term in the

Hamiltonian. This model captures most of the complex dynamics of the original

model, and presents a first order phase transition, as desired. Nevertheless, its

ground state is infinitely degenerate, a fact that can be hardly associated to the

crystalline ordering of a solid. Later on, Cavagna, Giardina and Grigera 5 consid-

ered a two dimensional model with a two terms Hamiltonian: the previously de-

scribed four spin ferromagnetic plaquette plus a five term ferromagnetic plaquette.

This is actually an excellent model which describes most of the expected features

of a two–dimensional structural glass. Another interesting approach 6 considered

a system with nearest–neighbors coupling and antiferromagnetic coulomb interac-

tions, which also proved to be an adequate model for describing three dimensional

glass forming liquids. Nevertheless, all these systems, besides their great value as

statistical mechanics prototypes for modelling a structural glass without imposing

disorder in the Hamiltonian, are not really inspired by any physical realization. In

this work instead, we will present a model which has been vastly analyzed during

the last ten years and is considered to be the proper tool for describing the physics

of real ultra thin magnetic films, but instead of paying attention to the magnetic

behavior, we will show that the model, and consequently perhaps ultra thin films,

present evidence of displaying a structural glass–like state.

2. A metal on metal ultra thin film model

The physics of ultra–thin magnetic films has deserved a great interest during the

last years, not only because of their multiple technological applications, such as data

storage and catalysis, but also because their study has opened novel and nontrivial

questions related to the role of microscopic competitive interactions in the overall

behavior of a system. In particular, under suitable thermal and magnetic conditions,

ultra thin magnetic films form unusual complex patterns of magnetization 7,8. And

precisely, most of the potential technological applications of these materials reside

in the ability of controlling these patterns, both in time and space, with a high

degree of accuracy. For instance, in the case of data storage the stabilization of

very small metastable magnetic domains could eventually increase the compression

obtained nowadays in recording devices.

The model we will analyze in this paper has been used mainly in the study of

metal films on metal substrates, as for example Fe on Cu 9 or Co on Au 10. In these

cases, an adequate theoretical description of the system must take into account, at

least, a three terms Heisenberg Hamiltonian, including: i) the usual ferromagnetic

exchange interactions between nearest–neighbors spins, ii) the dipole–dipole inter-

actions which, despite their considerable small strength (when compared with the

exchange interactions) become relevant due to their long range, and finally iii) a sur-
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face anisotropy term that takes into account the magnetic influence of the substrate

on the spins of the film. The anisotropy induced by the dipolar interaction tends

to align the spins parallel to the film, but, as the thickness of the film is reduced

(usually around approximately five monolayers) the surface anisotropy overcomes

the anisotropy of the dipolar interaction and the system suffers a reorientation tran-

sition at which the spins suddenly align perpendicular to the plane defined by the

proper film. Under these particular conditions, the physics of the material can be

appropriately described by replacing the Heisenberg spin variables by the much

simpler Ising magnetic moments located at the nodes of a square lattice, and the

Hamiltonian takes the form:

H = −δ
∑

〈i,j〉

SiSj +
∑

(i,j)

SiSj

r3
ij

(1)

where Si = ±1 and δ is the ratio between the exchange J0 and dipolar Jd interactions

strengths (δ = J0/Jd). Here the first term represents the ferromagnetic exchange

interaction and the sum runs only over nearest–neighbors spins, while the second one

represents the dipole–dipole interaction once the spins have aligned perpendicular

to the plane. In this last case, the sum runs over all pairs of spins of the lattice and

rij is the distance, measured in crystal units, between the sites i and j. Then, the

system is ruled only by two variables: the usual temperature T and the parameter δ,

which depends on the composition and preparation of the sample. We will restrict

ourselves to consider the case Jd > 0, in such a way that δ > 0 corresponds to

ferromagnetic exchange interactions and δ < 0 to antiferromagnetic ones. Note

that the model introduced by Shore et al. 3 can be considered as truncated version

of the model defined by Hamiltonian (1).

In 1995 MacIsaac and coauthors 11 presented the first study of the thermody-

namics of the model (for a complete review of the subject see 12). Concerning the

order of the ground state, it is antiferromagnetic when δ < δa ≈ 0.425, but when

δ > δa the system orders forming stripes whose width h depends on the value of δ.

In particular, h increases as δ increases and, surprisingly, the ferromagnetic state

is always metastable respect to a striped one. In other words, irrespectively of the

strength of the dipole–dipole interactions, the frustration induced by the antifer-

romagnetic term avoids the usual ferromagnetic ordering. In the same paper 11

they also presented a phase diagram of the model, obtained through Monte Carlo

simulations on a relatively small system of N = 16× 16 spins. They observed that,

for fixed values of δ, the system suffers an order–disorder phase transition between

a low temperature striped phase and a high temperature tetragonal phase. The last

one consists of extended magnetic domains characterized by predominantly square

corners, which induces a four fold rotational symmetry (as can be clearly observed

in numerical simulations of the structure factor). The existence of this tetrago-

nal phase has been recently verified experimentally in a fcc Fe on Cu(100) films
7,8 and had already been predicted by Abanov et al. by means of a continuous

approximation 13.
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In Fig. 1 we present a detail of the phase diagram obtained in 14 corresponding

to the intermediate values of δ. Here h1 and h2 indicates the regions where the

ground states have widths h = 1 and h = 2, respectively, and AF indicates the an-

tiferromagnetic phase. The gray region indicates the presence of metastable states.

The lines (diamonds) separating the low temperature phases are all first order ones,

and TP indicates the existence of a triple point (as will be become clear in the next

section).

3. Super cooled tetragonal liquid state

In this section we will present some recent and preliminary evidence that strongly

suggests that metal on metal ultra thin magnetic films could have a glassy transition.

Supercooled glass forming liquids have the property of getting trapped into a

liquid metastable state (with respect to the crystalline state), when cooled below the

melting temperature under suitable conditions. But, if the cooling is done suddenly

enough at sufficiently low temperatures, the characteristic relaxation time attains

macroscopic scales, the supercooled state is structurally arrested and the material

behaves as a solid without any pattern of long range order. Under these conditions

the systems becomes a glass. Then, a basic ingredient for a glass transition model is

the existence of a first order phase transition between a high temperature liquid–like

disordered phase and a low temperature crystal–like ordered phase.

We will now show that the order-disorder phase transition observed in the model

described by Hamiltonian (1), is actually a weak first order one, at least for inter-

mediate values of δ (though some analytical approximate results 16 suggest that

this could be valid for any finite value of δ).

In Fig. 2 we plot the specific heat CL as a function of the temperature T for

δ = 3, and three different system sizes. We can clearly identify two peaks. The low

temperature one increases with the size L and coincides with the temperature at

which the tetragonal phase appears. Then it is associated with the stripe-tetragonal

transition. The second broader peak does not manifest any dependence on the

system size and indicates the continuous decay of the tetragonal phase into the

paramagnetic phase. We also present some snapshots of typical configurations of

the system for different temperatures.

What about the order of the transition? One way of determining it is through

the analysis of the finite size scaling behavior of different moments of the energy,

like the specific heat

C =
1

NT 2

(

〈H2〉 − 〈H〉2
)

(2)

and the Binder fourth order cumulant

VL ≡ 1 −
〈H4〉

3〈H2〉2
, (3)

which permit to distinguish between continuous and discontinuous transitions. In

a first order phase transition the specific heat presents a maximum at a pseudo
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critical temperature T 1
c (L) and the Binder cumulant a minimum at another different

pseudo critical temperature T 2
c (L). Those temperatures present the following finite

size scaling behavior T 1
c (L) ∼ Tc + AL−2 and T 2

c (L) ∼ Tc + BL−2, with B > A, Tc

being the transition temperature of the infinite system 15. In Fig. 3 we plot T 1
c and

T 2
c vs. 1/L2 for δ = 2, identifying clearly the finite size scaling behavior expected

in a first order phase transition 16. Moreover, numerical simulations of the energy

histogram around the transition point for δ = 2 show a two peak structure, proper

of this kind of transitions 16.

Next we will show that it is possible to get a supercooled metastable state below

the melting temperature, another significant feature of glass forming liquids. In Fig.

4 we plot (full circles) the average internal energy per particle u(T ) as a function

of the temperature in a quasi-static cooling from a high temperature. Each point

corresponds to an average over many different initial conditions and sequences of

random numbers. In the same plot (empty triangles), we also display the result of

a quasi–static heating from the ground state. We clearly observe the emergence of

hysteresis, proper of a first order phase transition. From these energy curves we

obtained the free energy per spin on cooling and heating, finding that both curves

intersect at Tm = 0.805 ± 0.005, a temperature that we identify with the melting

point.

Finally, let us describe the behavior of the system when it is suddenly quenched

into a very low temperature. In Fig. 5 we plot the time evolution of the internal

energy per spin along a single Monte Carlo run for δ = 2, L = 32 and T = 0.2.

We observe that the system is stuck into a disorder configuration, with a very slow

relaxation rate (almost logarithmic, as can be observed in the inset). The dashed

line indicates the energy per spin of the ground state, and we see that the system is

magnetically arrested in this out of equilibrium disordered state. We also present,

at different times, snapshots of the corresponding pattern of magnetization, where

one can recognize and almost tetragonal phase. This behavior, characterized by a

slow relaxation of a disordered liquid–like phase well below the melting temperature,

which can neither be associated with nucleation nor with coarsening, can be clearly

interpreted in terms of the appearance of a glassy phase.

4. Conclusions

In this paper we have revisited the two dimensional Ising model with compet-

ing nearest–neighbors ferromagnetic interactions and long range antiferromagnetic

dipole–dipole interactions from a new point of view. Instead of concentrating on the

magnetic properties of the model, we have investigated a possible characterization

of the tetragonal phase as a lattice version of a liquid that can give place to a glass

state a very low temperatures.

It has been well established in our simulations that the order–disorder temper-

ature driven phase transition between the tetragonal and striped phases is a weak

discontinuous one, as revealed by the scaling law of the pseudo critical temperatures
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obtained from the specific heat and the fourth order Binder cumulant. Analitical

results on a continuous version of the model give further support to this conclu-

sions 16. We have also shown, by simulating a quasi–static cooling from infinite

temperature, that the tetragonal phase can be supercooled well below the melting

temperature. Furthermore, when the system is suddenly cooled down into a low

enough final temperature, it gets stuck in a glass like state, characterized by an

extremely slow relaxation process.

It is important here to mention that previous papers had already reported the

existence of some glassy like phenomena, as for instance, aging 17,18 and logarith-

mic domain growth law 19, but all of them were connected to the existence of

metastable stripe states, which it is well known, modify the landscape of the free

energy function. Instead, the results presented in this paper refer to a different and

novel observation, namely, the existence of a first order phase transition between

the tetragonal (liquid) and the striped phases (crystal) and the supercooling of the

former in a long standing metastable state well below the melting temperature,

indicating the emergence of a two dimensional glass.

Finally, let us stress that the present model, unlike all the other lattice models

cited in this papers, did not arise as a statistical mechanics toy model able to

catch the main features of a glass forming liquid. On the contrary, the model is

widely accepted to be the proper one for describing the physics of real metal on

metal ultra thin magnetic films. In other words, our results strongly suggest that

these materials present a glass transition, a fact that would have many relevant

technological consequences. As much as we know, this is the first example of a

physical realization of a two dimensional magnetic system without imposed disorder

that can be considered as a glass forming liquid.

Nevertheless, this point requires further investigation. In that sense, a care-

ful study of the behavior of the relaxation time as the temperature decreases, as

well as an adequate characterization of the nucleation process, will not only be a

clear confirmation of the existence of a glass state but will also bring light into its

nature. Works along these lines are in progress and will be published elsewhere.

Experimental checks of our predictions will be also very helpful.
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Figure 1. The phase diagram for intermediate values of δ obtained in L = 24 lattices. Triangles:
critical temperature obtained from the maximum in the specific heat; circles: stability line of the
h1 stripe phase; open squares: stability line of the h2 stripe phase; diamonds: first order transition
lines between low temperature ordered phases. TP indicates a triple point.
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Figure 2. Specific heat vs. T for δ = 3 (corresponding to an h = 4 ground state) and three
different system sizes. Some typical equilibrium configuration at the indicated temperatures for
L = 48 are shown below. Note the sequence of transitions h4 → tetragonal → paramagnetic.
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Figure 4. Internal energy per spin u(T ) obtained by quasi–static cooling from infinite temperature
and quasi–static heating from the ground state.
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Figure 5. Time evolution of the energy per spin in a single MC run. Snapshots of the spin con-
figurations are shown below the figure. The inset presents the same results for the time evolution
of the energy per spin in a log-normal plot.


