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We study the critical properties of a two-dimensional Ising model with competing ferromagnetic exchange
and dipolar interactions, which models an ultrathin magnetic film with high out-of-plane anisotropy in the
monolayer limit. We present numerical evidence showing that two different scenarios appear in the model for
different values of the exchange to dipolar intensities ratio, namely, a single first-order stripe-tetragonal phase
transition or two phase transitions at different temperatures with an intermediate Ising nematic phase between
the stripe and the tetragonal ones. Our results are very similar to those predicted by Abanov et al. �Phys. Rev.
B 51, 1023 �1995��, but suggest a much more complex critical behavior than predicted by those authors for
both the stripe-nematic and the nematic-tetragonal phase transitions. We also show that the presence of diverg-
ing free energy barriers at the stripe-nematic transition makes possible to obtain by slow cooling a metastable
supercooled nematic state down to temperatures well below the transition one.
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I. INTRODUCTION

The study of thin magnetic films have deserved an in-
creasing interest during the last decade, both on their experi-
mental and theoretical aspects. Besides the great amount of
technological applications related to their magnetic behavior,
as for instance, data storage, these studies have also faced
statistical physicists with the challenge of trying to answer
many foundational questions regarding the role of micro-
scopic competing interactions on the macroscopic static and
dynamical behavior of two-dimensional systems. Moreover,
the constant development of methods for constructing ultra-
thin films, together with a significant improvement in the
quality of techniques for measuring nanoscopic magnetic
structures, have opened many fascinating questions, many of
them still open.

Many ultrathin magnetic films like, e.g., Co-Cu, Co-Au,
Fe-Cu, undergo a reorientation transition at a temperature TR
in which the spins align preferentially in a direction perpen-
dicular to the film.1–3 This reorientation transition is due to
the competition between the in-plane part of the dipolar in-
teraction and the surface anisotropy.4 Furthermore, in the
range of temperatures where the magnetization points out of
the plane, the competition between exchange and dipolar in-
teraction causes the global magnetization to be effectively
zero but instead striped magnetic domain patterns emerge.3,5

In the limit when the stripe width is much larger than the
domain walls, the walls can be approximated by Ising walls
and the system can be considered as an Ising system of in-
teracting domain walls.4 In spite of intense theoretical3–14

and experimental1,2,15–17 work on the behavior of ultrathin
magnetic films, the precise nature of the phases and the re-
laxational dynamics aspects of these systems is still poorly
understood. In Monte Carlo simulations of an Ising model on
a square lattice, Booth et al.5 found evidence of a stripe
phase at low temperatures, with orientational and positional
order reminiscent of the smectic order in liquid crystals.
These authors found a transition from a stripe phase to a high

temperature phase with broken orientational order, called te-
tragonal liquid phase. In this phase domains of stripes with
mutually perpendicular orientations emerge and form kind of
labyrinthine patterns. At still higher temperatures these do-
mains collapse and the system crosses over continuously to a
completely disordered behavior. From numerical data for the
specific heat these authors found evidence of a continuous
stripe/tetragonal-liquid transition. However, it has been ar-
gued that the transition observed by Booth et al. should cor-
respond to a nematic-tetragonal phase transition.4 Moreover,
recent numerical results using time series methods on the
same model with the same parameters values suggest that
such a transition is not continuous but it is a first-order one.14

In an important contribution Abanov et al.6 analyzed the dif-
ferent phases which could emerge from a continuous ap-
proximation to the domain wall crystal. They predicted two
possible scenarios in zero magnetic field. In the first scenario
a smectic-like low temperature phase with spatial correla-
tions decaying algebraically with distance appears at low
temperatures. In this phase there is quasi long range order
�QLRO� and the orientational order parameter is nonzero.
The proliferation of bound dislocations pairs at a higher tem-
perature causes QLRO to be destroyed through a Kosterlitz-
Thouless phase transition to a nematic-like phase. In this
phase only orientational order is observed. At still higher
temperatures even orientational order is destroyed through
the appearance of domains of perpendicular stripes. This is
the tetragonal-liquid phase. Since Z2 orientational symmetry
is restored at this transition the authors speculated that this
transition should be in the Ising universality class. In the
second scenario the system is not able to sustain a purely
nematic phase and goes from the smectic directly to the te-
tragonal liquid through a first-order transition. Recently Can-
nas et al.13 found numerical evidence of this second scenario,
also supported by a continuous approximation with a
Landau-Ginzburg Hamiltonian, from which a fluctuation-
induced first-order transition is predicted. Up to now no evi-
dence was found of the first scenario predicted by Abanov
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et al. In this paper we show that for large enough system
sizes, Monte Carlo simulations of the same model studied in
Refs. 5 and 10 support the appearance of a sequence of two
phase transitions of the kind predicted by Abanov et al. when
the width of the equilibrium stripes is large enough, while for
thin stripes the second scenario with a unique transition is
found.

We consider a system of magnetic dipoles on a square
lattice in which the magnetic moments are oriented perpen-
dicular to the plane of the lattice, with both nearest-neighbor
ferromagnetic exchange interactions and long-range dipole-
dipole interactions between moments. The thermodynamics
of this system is ruled by the dimensionless Hamiltonian:18

H = − ��
�i,j�

�i� j + �
�i,j�

�i� j

rij
3 �1�

where � stands for the ratio between the exchange J0�0 and
the dipolar Jd�0 interactions parameters, i.e., �=J0 /Jd. The
first sum runs over all pairs of nearest neighbor spins and the
second one over all distinct pairs of spins of the lattice; rij is
the distance, measured in crystal units, between sites i and j.
The energy is measured in units of Jd. The overall �known�
features of the equilibrium phase diagram of this system can
be found in Refs. 3, 5, 11, 13, 14, and 19, while several
dynamical properties at low temperatures can be found in
Refs. 7, 9, 10, and 12. The threshold for the appearance of
the stripe phase in this model is �c=0.425.18,19 As � increases
the system presents a sequence of striped ground states, char-
acterized by a constant width h, whose value increases expo-
nentially with �.19

We show that energy and orientational order parameter
histograms present a sequence of three peaks for �=2, cor-
responding to three different thermodynamic phases, while
for �=1 only two peaks are observed, consistent with the
presence of only one phase transition. In the first case we
show that the intermediate phase presents long range orien-
tational order but no long range positional order, consistently
with a nematic phase. Our results show that the low energy
phase is a striped one. We did not find evidence of smectic
order, although the possible existence of algebraic decaying
correlations �near and below the transition temperature�,
strongly hidden by finite size effects, cannot be excluded.
Finite size scaling analysis of specific heat and the fourth-
order cumulant of the energy give evidence of a first-order
transition between the nematic and tetragonal phases. How-
ever, the analysis of the orientational order parameter histo-
grams suggests the existence of more than one nematic
phases for much larger system sizes than the ones considered
here. On the other hand, the stripe-nematic phase transition
shows unusual features, some of them characteristic of a first
order transition, but some other properties strongly resem-
bling those observed in a Kosterlitz-Thouless �KT� phase
transition.

For �=1 a unique weakly first order phase transition is
supported by direct thermodynamic analysis through a com-
putation of the free energy of the different phases. In the last
section we show that the previous thermodynamic behavior
is also supported by out of equilibrium measurements during

quasi-static cooling-heating cycles, where strong metastabil-
ity is observed at the stripe-nematic phase transition. This
behavior is consistent with the observation of asymptotically
divergent free energy barriers at this transition.

II. THE ISING NEMATIC PHASE

We first analyzed the equilibrium histograms P�E /N� for
the energy per spin at different temperatures T and different
system sizes L. For every system size and every temperature
the corresponding energy histogram was calculated by re-
cording the energy values during a single MC run. Before
starting to record the energy we left the system run a tran-
sient period of M1 MC steps �MCS� in order to equilibrate.
After that period we recorded the energy values over M2
MCS. A MCS is defined as a complete cycle of N spin update
trials, according to a heat bath dynamics algorithm. For
every pair of values of T and L we checked different values
of M1 and M2 in order to ensure a stationary distribu-
tion P�E /N�. Typical values of M1 were between 106 and
2�107 MCS, while typical values of M2 were between
2�107 and 2�108 MCS. A similar calculation was carried
out to obtain the equilibrium histograms of the orientational
order parameter5

� �
nv − nh

nv + nh
�2�

where nv �nh� is the number of vertical �horizontal� bonds
between nearest neighbor anti-aligned spins. This parameter
takes the value +1 �−1� in a completely ordered horizontal
�vertical� striped state, while it equals zero in any phase with
90° rotational symmetry, thus describing the 90° rotational
symmetry breaking.

We concentrated first in analyzing the �=2 case �h=2
striped ground state�. In Fig. 1 we show the behavior of
P�E /N� for L=56, �=2 and different temperatures, while in
Fig. 2 we show the corresponding histograms for the distri-
bution of the absolute value of the orientational order param-
eter P�	�	�.

The presence of pairs of peaks in both the energy per spin
and the orientational order parameter distributions, located at
three distinct ranges of values, is a clear signature of the
existence of three different phases, with two phase transi-
tions between them. The low energy peak is associated with
a peak in the order parameter centered around 	�	
1, thus
corresponding to a phase with long range orientational order.
Moreover, an analysis of a stripe order parameter introduced
below �and also a direct inspection of the typical spin con-
figurations at those energies� shows that this is an ordered
striped phase with h=2. The highest energy peak is associ-
ated with a peak in the order parameter centered at �=0. A
direct inspection of the associated typical spin configurations
at those energies shows indeed that they correspond to a
tetragonal liquid phase. On the other hand, the intermediate
energy phase is associated with a peak of the order parameter
centered around 	�	
0.81, thus corresponding to a state with
broken 90° rotational symmetry. In Fig. 3�a� we illustrate
a typical spin configuration in this intermediate phase for
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L=64 and T=0.78. We see that this phase is characterized by
a high density of topological defects, mainly dislocations in
the directions of the underlying striped structure. The same
type of defects have been observed in Fe on Cu ultrathin
films near the phase transition �see Fig. 2 in Ref. 2�. Such
defects reduce the average value of the orientational order
parameter and their presence is in agreement with the quali-
tative description of the Ising nematic phase introduced by
Abanov and coauthors.6 To confirm this assumption we cal-
culated the spatial correlations along the coordinate direc-
tions given by

Cx�r� �
1

N
�

y
�

x

��x,y�x+r,y� �3�

Cy�r� �
1

N
�

y
�

x

��x,y�x,y+r� �4�

An example of the behavior of Cx�r� and Cy�r� in the inter-
mediate phase is shown in Fig. 4 for L=92 and T=0.78. This
figure shows clearly that the correlations decay algebraically
in one of the coordinate directions and exponentially in the
other. We see that the intermediate phase is characterized by

long range orientational order but does not present positional
order. Although the description level of the elastic approxi-
mation of Abanov and coauthors does not allow a simple
derivation of the spin-spin spatial correlations, the above fea-
tures are in qualitative agreement with their characterization
of the nematic phase.

To further characterize the different phases we defined a
stripe order parameter through the static structure factor

FIG. 1. Energy per spin probability distributions �normalized
histograms� for �=2 and L=56.

FIG. 2. Orientational order parameter probability distributions
�normalized histograms� for �=2 and L=56.

FIG. 3. Typical spin configurations in the nematic phases for
�=2 and L=64. �a� T=0.78, the orientational order parameter for
this configuration is 	�	
0.8; �b� T=0.807 and 	�	
0.59.
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S�k� � �	�̂k	2� =
1

N2�
r

�
r�

C�r,r��eik.�r−r�� �5�

where �̂k= 1
N�re

ikr�r is the discrete Fourier transform of �r.
It can be shown that in a pure striped state of width
h the only nonzero components correspond to �kx ,ky�
= �0, ±�p /h� �horizontal stripes� or �kx ,ky�= �±�p /h ,0�
�vertical stripes�, where p takes all the odd integer values
between one and h. For instance, in a pure h=2 vertical
striped state it can be shown that

S�k� =
1

2
�ky,0��kx,�/2 + �kx,−�/2� �6�

Now, since all the phases we are dealing with in this case
present a discrete rotational symmetry, either of 90° or 180°
respect to the coordinate axes, the maxima of S�k� will be
located at �kx ,ky�= �±k0 ,0� and/or �kx ,ky�= �0, ±k0�, with k0

some value close to � /2. Then we can define the stripe order
parameter as

�s = 2�S�k0,0� + S�0,k0�� �7�

�this definition can be easily generalized to consider under-
lying ground states of arbitrary width h�. This order param-
eter will take values close to one for states with long range
h=2 stripe order and zero �in the thermodynamic limit� for
any state without long range positional order. For instance,
let us consider a system in which correlations decay expo-
nentially in the x direction and remain almost constant in the
y direction, namely, C�r ,r��=exp�−�	x−x�	�cos�k0	x−x�	�;
this is a rough approximation of the behavior we observe in
Fig. 4, where the algebraic decay in one of the coordinate
directions is extremely slow. Substituting into the definition

of S�k� and replacing the sums by integrals, in the large L
limit we get

S�k� �
�ky,0

L
�

0

�

e−�x cos�k0x�cos kxxdx

�
�ky,0

2L
 �

�kx − k0�2 + �2 +
�

�kx + k0�2 + �2� �8�

If the correlation length 	s=�−1 is independent of the system
size we have that the stripe order parameter goes to zero as
�s�L−1 when L→�. In a tetragonal liquid state we can
assume for the correlation the following form

C�r,r�� = e−��	x−x�	+	y−y�	� cos�k0	x − x�	�cos�k0	y − y�	�
�9�

which possesses the tetragonal symmetry. We have then

S�k� �
1

4L2 �

�kx − k0�2 + �2 +
�

�kx + k0�2 + �2

+
�

�ky − k0�2 + �2 +
�

�ky + k0�2 + �2� �10�

which reproduces the observed crown shape of the structure
factor observed in a tetragonal liquid state, both in numerical
simulations3 and in Fe-Cu films images.15 In this case we
have that the stripe order parameter goes to zero as �s
�L−2 when L→�.

We performed numerical calculations of the structure fac-
tor in the three different phases for different system sizes up
to L=72. First we calculated it in the low energy phase by
letting the system to equilibrate from a vertical h=2 ground
state configuration at T=0.77, just below the estimated tran-
sition temperature between the low and the intermediate en-
ergy phases T1
0.772 �see next section�. We found that
S�k�=c�ky,0��kx,�/2+�kx,−�/2�, where c quickly converges to a
value c
0.48 consistently with Eq. �6�, thus confirming the
long range stripe character of the low energy phase. Next we
let the system to equilibrate in the intermediate phase at T
=0.78. In Fig. 5�a� we plot S�k ,0� and S�0,k� for different
system sizes. We observe that, while one of the two functions
remains almost zero for all k, the other presents two symmet-
ric peaks at k= ±k0 �only one is shown in the figure� which
are very well fitted by a Lorentz function, in agreement with
Eq. �8�. We see that k0 saturates into a value k0
1.48 while
the maxima �or equivalently the order parameter �s� goes to
zero as L−1. Moreover, the data collapse of the curves for
different values of L when 2L�S�k ,0�+S�0,k�� is plotted ver-
sus k /k0 �see Fig. 5�b�� shows that the whole curves scale as
L−1 in agreement with Eq. �8�; this confirms that correlation
length does not depend on L in the thermodynamic limit and
that the intermediate phase does not present LRO, thus con-
firming its nematic character. Finally, in Fig. 6 we show
S�k ,0� and S�0,k� for different system sizes after equilibra-
tion in the tetragonal liquid at T=0.95. We see that both
functions present two symmetric peaks at k= ±k0 �only those
at k�0 are shown in the figure� which are very well fitted by
Lorentz functions and that the maxima scale as L−2, in ex-

FIG. 4. Spatial correlation functions along the coordinate di-
rections in a nematic phase for �=2, T=0.78, and L=92. The
continuous line corresponds to a fitting using a function f�r�
=A exp�−r /	�sin�k0r+
�, with fitting parameters k0=1.47, 	=17.4,
and 
=1.63. Notice that k0
� /2, the wave vector of the striped
structure with h=2 �ground state for �=2�. The log-log plot of Cx in
the inset shows that it decays at large distances with a power law
r−�, with an exponent �
0.12.
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cellent agreement with Eq. �10�. Hence, we see that the stripe
order parameter allows, not only to distinguish long range
orientational order, but also discriminate between the tetrag-
onal and the nematic phases through its finite size scaling.

It is worth mentioning that the two-peak structure in P�E�
and P��� associated with the nematic-tetragonal phase tran-
sition can only be appreciated in both type of histograms
only for system sizes L�40. For system sizes L40 the two
peaks are so close to each other that the phase transition can
no longer be resolved. In that situation the tetragonal and the
nematic structures are almost indistinguishable, the latter ap-
pearing as a slightly elongated tetragonal one.13 While this
strong finite size effect disappears for system sizes L�40,
there still remain similar finite size effects associated with
the nematic-tetragonal phase transition up to system sizes
L=64. This can be seen in Fig. 7, where we show the histo-
grams for the energy and the order parameter for L=64 and
different temperatures around that transition. If we look at
the energy per spin histogram �Fig. 7�a�� we just see that the
high energy peak becomes skewed towards the right and

FIG. 6. �Color online� Static structure factors S�k ,0� and S�0,k�
at T=0.95 for different system sizes. The continuous lines corre-
spond to Lorentzian fittings f�k�=� / ��k−k0�2+�2�. The upper inset
shows the fitted parameter k0 vs L−1. The lower inset shows that the
maximum of S�k� scales as L−2. It can be also shown that the whole
curve S�k� scales as L−2, as predicted by Eq. �10�.

FIG. 5. �Color online� �a� Static structure factors S�k ,0� and
S�0,k� at T=0.78 for different system sizes. The dashed lines cor-
respond to Lorentzian fittings f�k�=� / ��k−k0�2+�2�. The upper in-
set shows the fitted parameter k0 vs L−1. The lower inset shows that
the maximum of S�k� scales as L−1. �b� 2L�S�k ,0�+S�0,k�� vs k /k0

for the same numerical data in �a�; the continuous line is a Lorent-
zian fitting. The data collapse of the different curves shows that the
whole curve S�k� scales as L−1, as predicted by Eq. �8�.

FIG. 7. Histograms for �=2 and L=64, for temperatures around
the nematic-tetragonal transition. �a� Energy per spin; temperatures
from left to right: T=0.804, 0.805, 0.807, 0.810, and 0.815. �b�
Orientational order parameter; same temperatures as in �a�, but from
right to left.
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broadens around T=0.81 �compare with Fig. 1�. However,
when looking at the orientational order parameter histogram
�Fig. 7�b�� we see that the single peak observed for smaller
system sizes �see Fig. 2� at that temperature range splits for
L=64 into two distinct peaks, one centered at 	�	
0.8 and
the other at 	�	
0.6. In Fig. 3�b� we can see an example of
a typical spin configuration in the second case. We see that
the system still exhibits nematic order, the main difference
with the configuration of Fig. 3�a� being a higher density of
domain walls perpendicular to the underlying striped struc-
ture �disclinations�, which reduce the value of 	�	. These re-
sults suggest the existence of different nematic phases sepa-
rated by first-order phase transitions between them.
However, to verify this assumption much larger system sizes
would be required.

Next, we considered the case �=1, for which the ground
state corresponds to a striped state with h=1 and the transi-
tion temperature is located around11 T=0.4. In Fig. 8 we
show the typical structure of the histograms for the energy
and the order parameter observed for system sizes up to L
=48. While we do not see in this case a double peak structure
in the energy per spin histogram �Fig. 8�a�� as in the �=2
case, the broadening of the energy histogram around T=0.4
and its skewed form at both sides of the transition, together

with a slight double peak structure of the orientational pa-
rameter �although difficult to see, the numerical data in Fig.
8�b� show the presence of a minimum for T=0.401 between
�=0 and 	�	
0.6� suggest a single first-order phase transi-
tion. Moreover, a direct inspection of the typical spin con-
figuration associated with the different distributions indicate
a direct phase transition from the striped to the tetragonal
phase, without any trace of an intermediate nematic state
�notice that the location of the maximum of P�	�	� moves
continuously towards one below the transition point�. This
scenario will be confirmed by a direct thermodynamical
analysis in the next section. However, based in the previ-
ously observed finite size effects for �=2, the possible exis-
tence of a nematic phase in a narrow range of temperatures
for much larger system sizes cannot be excluded.

III. PHASE TRANSITIONS

We now turn our attention to the stripe-nematic and
nematic-tetragonal phase transitions in the �=2 case. To
characterize them we analyzed the finite size scaling behav-
ior of the moments of the energy, namely, the specific heat
and the fourth-order cumulant

C�L,T� =
1

NT2 ��H2� − �H�2� �11�

V�L,T� = 1 −
�H4�

3�H2�2 �12�

To check the simulations results we also calculated the aver-
age energy per spin u�T��−�H� /N and compared its deriva-
tive with respect to temperature with Eq. �11�; both results
coincide within the numerical error. We also analyzed the
average of the absolute value of the orientational order pa-
rameter �	�	� and the associated susceptibility

���L,T� =
N

T
���2� − �	�	�2� �13�

All these quantities were obtained from the corresponding
histograms for system sizes up to L=64. In Fig. 9 we show
the behavior of the energy moments and in Fig. 10 of the
average order parameter and its associated susceptibility �the
results for L=64 are not shown for clarity�.

We see that the specific heat shows two distinctive
maxima at size-dependent pseudo-critical temperatures
T1

c�L�T2
c�L�, while the fourth-order cumulant shows two

distinctive minima at pseudo-critical temperatures T1
v�L�

T2
v�L�, associated with the stripe-nematic and the nematic-

tetragonal transitions, respectively �notice that both the
maximum at T2

c and the minimum at T2
v are almost unpercep-

tive for L=32�. On the other hand, the orientational order
parameter shows jumps in behavior at each transition, but the
associated susceptibility only shows a clear size dependent
maximum at a size-dependent pseudo-critical temperature
T2

��L�, corresponding to the nematic-tetragonal transition.
This is consistent with the fact the 90° rotational symmetry is
broken at this phase transition. Although a second peak

FIG. 8. Histograms for �=1 and L=48. �a� Energy per spin;
temperatures from left to right: T=0.380, 0.390, 0.395, 0.399,
0.401, 0.405, and 0.410. �b� Orientational order parameter; same
temperatures as in �a�, but from right to left.
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seems to emerge at lower temperatures for the largest size
considered, it is very small and much more larger system
sizes would be required to asses the presence of a size de-
pendent peak associated with the stripe-nematic transition.
From Fig. 11 we see that the pseudo-critical temperatures of
the specific heat and the fourth-order cumulant scale as
T1

v�L��T1+A1 /L2, T1
c�L��T1+B1 /L2, T2

v�L��T2+A2 /L2,
T2

c�L��T2+B2 /L2, with A1�B1 and A2�B2. This is
the expected scaling behavior at first-order phase
transitions.20,21 The extrapolation to L→� gives the values
T1=0.772±0.002 and T2=0.797±0.005 showing that, al-
though narrow, there is a well resolved range of temperatures
in which the nematic phase exists in the thermodynamic
limit. Moreover, from Fig. 12 we also see that T2

��L��T2

+C /L2, where the extrapolation to L→� gives the same
value for T2 as the previous calculation. This behavior is also
consistent with a first order phase transition.21

However, when looking at Fig. 9 a clear difference in
finite size scaling of the maxima of the specific heat and the
minima of the fourth order cumulant between both transi-
tions appears: While the minimum of V at T2

v rapidly satu-
rates at a constant value when L→�, the minimum of V at
T1

v shows scaling behavior, approaching systematically to
2/3. From Fig. 13 we see that the maximum of the specific
heat at T2

c increases as L2 for system sizes up to L=56, as
expected in a first-order transition, but it shows a little de-
parture from this behavior for L=64. However, such depar-
ture is probably due to systematic errors introduced by the

presence of two phase transitions �see Sec. II� that cannot be
resolved for small system sizes. The scaling of ���T2

�� is
similar to that of C�T2

c�. On the other hand, the maximum of
C at T1

c saturates clearly in a finite value when the system
size increases. It can also be shown that 2 /3−V�T1

v��L−2.

FIG. 9. Moments of the energy for �=2 and different system
sizes. �a� Specific heat Eq. �11�; �b� fourth-order cumulant Eq. �12�. FIG. 10. Moments of the orientational order parameter Eq. �2�

for �=2 and different system sizes. �a� Average of the absolute
value; �b� associated susceptibility Eq. �13�.

FIG. 11. Finite size scaling of the pseudo-critical temperatures
for the maxima of the specific heat �T1

c and T2
c� and the minima of

the fourth-order cumulant �T1
v and T2

v� for �=2 and system sizes up
to L=64. The inset shows a zoom of the same curves around T2.
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This behavior can be understood if we look at the energy per
spin histogram at the temperature where both maxima have
the same height. If we call estr�L� and enem�L� the energies
per spin at which those maxima occur, in a first-order phase
transition it is expected that they will scale as21 estr�L�−ustr

�L−1 and enem�L�−unem�L−1, ustr and unem being the spe-
cific internal energies of both phases �the striped and the
nematic ones, in this case� in the thermodynamic limit. Then,
the maximum of the specific heat is expected to scale in a
two-dimensional system as21 C�T1

c��L2�enem�L�−estr�L��2,
while 2 /3−V�T1

v���enem�L�−estr�L��2+O�L−2�. In Fig. 14
we see that estr�L� and enem�L� show the expected scaling, but
they converge to the same value, so that enem�L�−estr�L�
�L−1 and this explains the observed behaviors of the maxi-
mum of C and the minimum of V. This shows that the inter-
nal energy at the stripe-nematic transition becomes continu-
ous in the thermodynamic limit. However, a
thermodynamical singularity still develops in that limit. This

can be seen by looking at the scaling of the free energy
barrier between both phases, which can be calculated as21

�F = lnPmax

Pmin
� �14�

where Pmax� P�enem�= P�estr� is the value of the common
maximum of energy per spin histogram and Pmin is the value
of the minimum between them. In Fig. 15 we see that �F
�L in both phase transitions, which is the expected scaling
in a first-order phase transition.21 In particular, in the case of
the stripe-nematic transition it means that, even when both
states acquire the same energy, there is a divergent free en-
ergy barrier between them. Finally, we analyzed the differ-
ence between the values of the parameter � at which the
maxima in the corresponding histogram occur in the stripe-
nematic phase transition ���L�=�str−�nem. A finite size
scaling analysis similar to the previous ones shows that
���L�������+D /L2, with �����=0.075±0.01. Hence, a
finite jump in this parameter, even small, persists in the ther-

FIG. 12. Finite size scaling of the pseudo-critical temperatures
for the maxima of the susceptibility for �=2 and system sizes up to
L=64.

FIG. 13. Finite size scaling of the maxima of the specific heat at
T1

c and T2
c for �=2 and system sizes up to L=64.

FIG. 14. Finite size scaling of the energies per spin at which
both maxima in the corresponding probability distribution occur, for
the stripe-nematic phase transition for �=2 and system sizes up to
L=64; for every value of L the temperature is chosen such that
P�enem�= P�estr�.

FIG. 15. Finite size scaling of the free energy barrier Eq. �14�
between phases in the stripe-nematic and the nematic-tetragonal
phase transitions for �=2.
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modynamic limit, consistently with the discontinuous jump
in the stripe order parameter already observed in the previous
section.

A specific heat peak saturation has been observed numeri-
cally in different systems exhibiting a KT type phase transi-
tion, such as the two-dimensional �2D� XY model22 and gen-
eralizations and the one-dimensional �1D� Ising model with
1/r2 ferromagnetic interactions.23,24 This last model is par-
ticularly interesting, since it presents long range order in the
low temperature phase �at variance with the XY models,
which present only short range order� and the order param-
eter �magnetization� is discontinuous at the transition,25 in an
analogous way to the model we are considering here. How-
ever, an important difference should be noted: In the above
mentioned examples of the KT transition the extrapolation of
the pseudo critical temperature at which the maximum of the
specific heat is located appears slightly above the critical
temperature.

Next we considered the tetragonal-stripe phase transition
in the case �=1. As we have seen in Sec. II, the equilibrium
histograms suggest a weak first order phase transition. Since
a finite size scaling approach would require system sizes
much larger than the allowed by the present computational
capabilities, to confirm the supposed first order nature of the
transition we considered another type of approach.

Since we know the value of the ground state energy ug
and also the asymptotic infinite temperature internal energy,
we can obtain the free energy for different temperatures in-
tegrating the measured internal energies. We checked that the
internal energy is independent of system size for 48�L
�64, and we chose a N=48�48 lattice in order to measure
internal energy. The equilibrium internal energy as a function
of temperature for the stripe and tetragonal phases are shown
in Fig. 16. Using this energy curve we fit the stripe energy by
a polynomial function ustr�T�=ug+a1Ta2 +a3Ta4 +a5Ta6 and
the tetragonal energy with a sum of hyperbolic functions
utetr�T�=b0 tanh� b1

T
�+b2 tanh� b3

T
�, whose parameters are

shown in the caption. By means of the thermodynamical re-
lation:

�f��� = �0f0��0� + �
�0

�

u���d� , �15�

where �=1/T and �0=1/T0, we obtained the free energy
per particle, f��� for the striped and tetragonal phases
�shown in Fig. 17�. The transition temperature is obtained by
imposing fstr�T�= f tetr�T�, which gives Tm=0.404. The en-
tropy is obtained directly by the thermodynamical relation
s=− df

dT and the result is shown in the Fig. 18. A weak first-
order transition is apparent, in agreement with the behavior
of the energy and order parameter histograms of Fig. 8.

These results for the thermodynamic functions point to a
unique phase transition for �=1, from a high temperature
tetragonal liquid phase to a low temperature striped phase.
There is no trace of a third Ising nematic phase as for �=2, at
least for 48�L�64 system sizes.

This conclusion is natural in this case where the equilib-
rium low temperature phase corresponds to stripes of width
h=1. Once defects begin to emerge due to thermal fluctua-

tions, disclinations appear naturally and the orientational or-
der will rapidly decay, at variance with the expected behavior
for wider stripes which will be more stable to the appearance
of topological defects.

IV. METASTABILITY

The presence of diverging free energy barriers between
the different phases found in the previous section for �=2

FIG. 16. Internal energy per spin u vs T for �=1 and N
=48�48. Also shown best fits to the low temperature stripe and
high temperature tetragonal regions, as described in the text. The
best fit parameters for ustr are a1=1952.54; a2=10.8491;
a3=10.8441; a4=5.730 16; a5=−58.0638, and a6=7.340 61, and
for utetr are b0=−1.479 26; b1=0.081 768 2; b2=0.055 953 8 and
b3=−3.054 17. The ground state energy is ug=−0.4677.

FIG. 17. Free energy per spin f vs T for �=1. The stripe and
tetragonal free energies cross each other around Tm=0.404. The

functions obtained from Eq. �15� are fstr=ug+
a1

1−a2
Ta2 +

a3

1−a4
Ta4

+
a5

1−a6
Ta6 and f tetr=

b0

b1
T ln�cosh

b1

T
�+

b2

b3
T ln�cosh

b3

T
�−T ln�2�, where

�0=0 for the tetragonal and �0=� for the striped phase.
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lead us to consider the possible existence of dynamical meta-
stable �i.e., quasi-stationary� states. To this end, we per-
formed cooling and heating numerical calculations according
to the following protocol. We first let the system equilibrate
at a temperature high enough to ensure that it is in the te-
tragonal liquid phase. We then cooled the system at a fixed
cooling rate r, that is, the temperature was decreased as
T�t�=T0−rt, where T0 is the initial temperature and the time
t is measured in MCS. The temperature was reduced in every
MC run down to a value well below the range associated
with the different phase transitions, while recording at differ-
ent points the energy and the orientational order parameter
	�	 of the system. Every curve was then averaged over dif-
ferent initial conditions and different sequences of the ran-
dom noise. For every system size we calculated those curves
for decreasing cooling rates until they became independent
of the cooling rate. In this way we simulated a process of
quasi-static cooling. Once we obtained the quasi-static cool-
ing curves we performed a quasi-static heating from zero
temperature up to high temperatures, starting from the
ground state and using the same protocol and the same rate r.

In Fig. 19 we see an example of the quasi-static cooling-
heating curves obtained for L=48 with a cooling rate r
=10−6; the results are compared with the equilibrium curves
obtained in the previous section. Similar results were ob-
tained for system sizes up to L=64. We do not observe su-
percooled tetragonal liquid states below T2, but this is prob-
ably due to the relatively small values of the associated free
energy barriers for the system sizes considered here. On the
other hand, we observe a strong metastability associated with
the stripe-nematic phase transition, which is consistent with
the observed large free energy barriers. In particular, we see
that the supercooled nematic state is observed down to tem-
peratures well below T1. To verify the quasi-equilibrium na-
ture of the metastable nematic states, we calculated the two-
times autocorrelation function

C�t1,t2� �
1

N
�

i

�Si�t1�Si�t2�� �16�

after a quasi-static cooling to different temperatures TT1,
down to T=0.5, for different pairs of values t1 t2. In all the
cases we found that C�t1 , t2� depends only on the difference
t2− t1 �as expected for a quasi-stationary process�, for time
scales up to t=106 MCS. For larger time scales the nematic
phase finally decay into the striped one, apparently through a
nucleation process. These results are not shown here, but a
complete description of those calculations will be published
shortly.26

V. DISCUSSION

The main contribution of this paper are the several evi-
dences of the existence of nematic phases in an ultrathin
magnetic film model, at least for some range of values of the
exchange to dipolar intensities ratio. These results are in
agreement with one of the two possible scenarios of the criti-
cal behavior of those systems predicted by the continuum
approximation of Abanov and co-workers.6 Let us discuss
first the stripe-nematic phase transition. Although the finite

FIG. 18. Entropy per spin s vs T for �=1. The slight disconti-
nuity at the transition temperature is consequence of a weak first-
order phase transition.

FIG. 19. Cooling-heating curves for �=2, L=48, and r=10−6.
The insets show the same curves for a wider range of temperatures.
�a� Average energy per spin; �b� average of the absolute value of the
orientational order parameter.
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size scaling behavior of different quantities around that tran-
sition agree with that expected in a first-order transition, both
the fact that the energy becomes continuous and the satura-
tion of the specific heat maximum in the thermodynamic
limit are unusual in a simple first-order transition, suggesting
a more complex phenomenology. In fact, those properties
strongly resemble those observed in the 1/r2 one dimen-
sional Ising model transition point, namely, continuous en-
ergy, discontinuous order parameter and saturation of the
specific heat maximum. These analogies suggest that some
KT type mechanism, probably associated with the unbinding
of dislocations, could be responsible of the observed phe-
nomenology, in agreement with Abanov and co-workers pre-
diction. The observed first-order-like finite size scaling be-
havior appears to be related with the discontinuous change of
the orientational order parameter at the transition point in the
thermodynamic limit, which suggests the existence of a finite
density of dislocation pairs. Indeed, we observed the pres-
ence of an increasing number of dislocations pairs �bridges�
in the striped phase at T=T1 but, up to L=72 system sizes we
did not find any evidence of QLRO �algebraic decaying cor-
relations�. One important consequence of such first-order-
like phenomenology is the existence of diverging free energy
barriers at that point, which has an important physical impli-
cation, namely, the possibility to obtain highly stable super-
cooled nematic states through cooling. This opens the possi-
bility of having complex slow dynamical behaviors after a
sudden quench, such as those observed in supercooled mo-
lecular liquids. We are investigating this problems and the
results will be presented in a forthcoming publication.26

Concerning the nematic-tetragonal phase transition, our
results suggest a much more complex behavior than the ex-
pected from Abanov et al. results, who conjectured a second-
order phase transition. Although our results are inconclusive
due to the presence of strong finite size effects, they suggest
a complex phase diagram with multiple nematic phases,
separated by first-order transition lines, similar to that en-
countered by Grousson et al27 in a related model, the three-
dimensional �3D� Coulomb frustrated Ising ferromagnet.
However, the departure from the expected first-order finite
size scaling observed for L=64 in the maximum of the spe-
cific heat �see Fig. 13� and the susceptibility, could be an

indication of a behavior similar to that observed in the stripe-
nematic transition. Hence, the possibility of a nematic-
tetragonal KT phase transition, associated with a disclination
unbinding mechanism, cannot be excluded. A similar sce-
nario appears in a related problem, namely, the two-
dimensional melting.28 On the other hand, the Hartree ap-
proximation of the Landau-Ginzburg version of the present
model predicts a fluctuation induced first-order phase
transition13 for any value of �.

The case of small exchange/dipolar ratio is simpler in the
sense that only one transition is observed from a stripe phase
directly to a tetragonal liquid phase. We obtained evidence
that this transition is a weak first-order one.

Although we have analyzed the critical behavior of this
system for relatively small values of the exchange/dipolar
ratio ��=1 and �=2�, the present results may help to under-
stand the critical behavior for larger values. Booth and
co-workers5 analyzed the behavior of the specific heat and
the orientational order parameter for �=3 and �=4.45 and
system sizes up to L=64. While their results suggest a con-
tinuous stripe-tetragonal phase transition, numerical results
based on time series analysis from Casartelli and
co-workers,14 for the same parameters and system sizes, in-
dicate that the transition is first-order. For those values of �
the stable low temperature phase is composed by stripes with
a larger width �h=4�, so much more larger system sizes
would be required to allow the appearance of a large density
of topological defects �dislocations and disclinations of the
stripes�. Therefore, for larger system sizes one could expect a
scenario similar to that observed for �=2, namely, the ap-
pearance of nematic order in a narrow range of temperatures.

The experimental verification of the different transitions
and phases suggested by theory and simulations is an impor-
tant challenge which can be reached in the near future due to
the emergence of new observation techniques.
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