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Abstract

In this paper we explore the consequences of long distance dispersal in biological invasion processes
through simulations using a recently developed cellular automaton model. We show that long distance dis-
persal generate characteristic spatial patterns with several stationary scale-invariant properties. In particu-
lar, the patterns display a main patch around the focus of spread, with a fractal border structure whose
fractal dimension contains information about the main statistical properties of the dispersal mechanism.
Our results are in agreement with field data of spread of invaders with long distance dispersal mechanisms.
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1. Introduction

Events of long-distance dispersal (LDD) are increasingly recognized as the main factor involved
in global and fast paleocolonization of terrestrial habitats [1,2], pathogen dispersal by air and
water [3,4], and biological invasions more related to human influence [5–7]. The shape of the dis-
persal function underlying these common events is of paramount importance to understand the
temporal and spatial patterns of organisms spread. Attempts to fit observed dispersal distribu-
tions have been mostly driven by the usage of the negative exponential functions, although in re-
cent years it has been recognized that functions like the power law are more suitable to account
for occurrence of unusual, extreme dispersal events [8,9]. It is well known that power law dispersal
distributions of crop pathogens generate a particular spatial pattern of spread, characterized by
the absence of well-defined epidemic fronts [8], and the generation of clusters of different sizes
[10]. However, in our knowledge no attempt has been done to characterize the spatial pattern
of spread of these pathogens with more detail. The same kind of spatial patterns can be expected
to be generated during the dispersal of invaders into new habitats if LDD events are involved.
This paper examines these spatial patterns using a cellular automaton model previously developed
for the study of biological invasions [11,12]. In this paper we found that these patterns are char-
acterized by different scale-invariant properties. That means, not only self-similar or fractal geo-
metrical characterizations [13], but also power law behavior of different statistical distributions.
Power law behavior is now recognized ubiquitous in nature and reflects the invariance of some
property over some range of temporal and spatial scales. The scale invariant properties we found
are consistent with field data of spread of invaders with long-distance dispersal mechanisms.
These properties are also common to other physical systems with long range interactions [15–17].

2. The model

To analyze the influence of LDD strategies on an invasion process we used a spatially explicit
individual-based model. This model is a particular case of a recently developed cellular automa-
ton, called an Interacting Multiple Cellular Automata (IMCA) [11,12], which allows to consider
several interacting species, taking into account the life history traits of the involved species rele-
vant to species’ dynamics [12]. In order to separate the effects derived from the proper long range
dispersal strategies of invaders from those related to interactions with the natives, we consider in
this work the particular case of the spread of only one isolated species (the invader) in a clean
open field, keeping just the interacting rules between individuals of a single species of the IMCA.
In other words, we consider the case where interactions with other species can be neglected. We
briefly summarize now the characteristics of the model.

The model is embedded on a square grid containing Lx · Ly cells, representing the field. For a
single species the model associates to every cell i in the grid a discrete variable ai(t) which encodes
the age of an individual located at it at time t; ai = 0 corresponds to an empty cell [12]. The index i
encodes a pair of discrete coordinates (x,y), with x = 1,2, . . . ,Lx, y = 1,2, . . . ,Ly. The grid param-
eter (i.e., the distance between neighboring cells) equals one. The spatial length scale is chosen so
that each cell contains at most one adult individual. The dynamical variables are updated accord-
ing to a parallel dynamics, that is, the value of all variables at a given (discrete) time t depends on
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the value of the variables at time t � 1. The time scale is chosen to coincide with the minimal
reproductive interval in the life history of the species, settled as one year for plant species. Life
history traits included are: d, mean seed dispersal distance (in grid units), q, annual adult survival
probability, tm, age of reproductive maturity (in years), n, mean seed production (seeds/plant), ts,
interval between masting seed crops (in years), fg, mean germination probability and Ps, juvenile
survival probability [12].

An occupied site ai(t) 5 0 is updated according to the following rule [12]:

aiðt þ 1Þ ¼
aiðtÞ þ 1 with probability q

0 with probability 1� q

�
ð1Þ

where q is the annual adult survival probability. Now consider an empty cell i at time t � 1, that is,
ai(t � 1) = 0. The site will be colonized at time t, that is, ai(t) = 1 with a probability pi(t) given by
[12]

piðtÞ ¼ 1� ð1� P sfgÞsiðtÞ ð2Þ
where si(t) is the number of seeds received by the cell i at time t; pi(t) is the probability that at least
one seed germinates and that the corresponding individual survives to the adult stage (more than
two years). si is obtained by counting the seeds received by the cell i coming from the rest of the
cells. Seed dispersion of an individual is assumed isotropic and it is described by some density
function f(r), where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the distance to the parental tree. The function f(r) describes

the fraction of the total number of seeds produced by a single individual that are dispersed per
unit of area to a distance r; f(r) is assumed to be normalized in the whole plane. The number
of seeds received by a cell j coming from an individual located at a cell i is then given by n
f(rij) where rij is the distance between the center of the cells i and j. Then si is obtained by summing
n f(rij) over all the cells j containing a mature tree [12].

Let us now analyze the dispersal distribution function f(r). The difference between short and
long range dispersal is related to whether or not the distribution f(r) has an exponentially bounded
tail [9]. In a very general sense this means that the distribution is short ranged if the momentsR

rnf ðrÞda are finite for every value of n P 0, where the integral extends over the infinite plane;
otherwise, it is long ranged [9]. An example of short range dispersal is given by the negative expo-
nential function

f ðrÞ ¼ 2

pd2
e�2r=d ð3Þ

where d ¼
R

rf ðrÞda is the mean dispersal distance. This function has been shown to appropriate-
ly describe the dynamics of different invasion systems where all the species involved have short
ranged dispersal strategies [11]. LDD mechanisms can be simulated by a power law function:

f ðrÞ ¼
A
ra if r P 1=2

0 if 0 < r < 1=2

�
ð4Þ

where A is a normalization constant and a > 2 (otherwise the density function f cannot be normal-
ized). If we consider statistical averages of different dynamical quantities in the model, we expect
three different type of behaviors, according to the values of a. When 3 < a 6 4 the first moment
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remains finite but the second moment becomes infinite. The mean dispersal distance is given by
d � < r > = (a�2)/2(a�3). When 2 < a 6 3 both first and second moments are infinite and the
mean dispersal distance is not defined. Finally, for a > 4 both the first and the second moments
of the distribution are finite. Hence, even when the distribution is strictly long ranged, it can be
well approximated by a normal distribution on finite spatial scales. So, no qualitative differences
are expected in the global spatial pattern of spread between this case and the short range one.
Several results for other physical systems with long ranged interactions support this assumption
[16–18].

3. Methods

We performed numerical simulations using the model described in the previous section in order
to determine the main features of the spatial pattern developed by a species with LDD during its
spread. In almost all the simulations we considered the spread of an isolated species from a single
focus, i.e., we started all our simulations with a single mature individual located a the center of a
square area (Lx = Ly = L). The fact of considering the spread from a single focus is not restrictive
and can be thought as representative of a starting situation with a localized distribution of indi-
viduals. Indeed, several simulation checks starting with a localized initial distribution like, for in-
stance, a line of mature individuals at the border of a empty rectangular area, showed the same
overall behavior.

The simplest implementation of the algorithm consists in checking for every grid site all the
other sites that can send seeds to it at every time step (one year). While in the case of short range
dispersal this procedure involves counting a limited number of sites (independent of L), it requires
OðL4Þ operations at every time step in order to update the whole population in the long range case
(while it requires OðL2Þ in the short range case). That is because each update of the L2 sites would
require checking the L2�1 other sites to account for incoming seeds. Moreover, the need for con-
tinuous checking on the particular age range of the site being updated also poses further compu-
tational burden. In our computer code, instead of working with a two–dimensional array data
structure we have implemented three dynamic lists of pointers to empty, young and mature sites,
respectively. However, even this implementation considerable reduces the simulation time by elim-
inating unnecessary checks in the computations (the increase in speed for a typical simulation of a
1024 · 1024 system is close to a factor of 100 respect to the array-based implementation), it does
not change the computational complexity of the algorithm. This is because every simulation run
covers a time period (in system years) that runs up to the time needed by the system to completely
fill the simulation area. At short times (compared with total simulation time) the size of the ma-
ture sites list is independent of the system size and the simulation speed is very high. But after a
small quantity of reproductive periods (tm) the exponential increase in the population of the ma-
ture sites becomes of the order of the total number of sites. Therefore, the main contribution to
the number of computational operations needed in a single run is given by the latest stages in the
simulation and it results again OðL4Þ (although with a reduced prefactor respect to the array-based
implementation). Most of the results presented in this work were calculated for a 1024 · 1024 sys-
tem size. We performed also some checks for a 1500 · 1500 system size, but the results remained
essentially unchanged.
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Our analysis of the simulation results is based on the statistics of patches of occupied sites and
their borders. The algorithmic structure used for patch extraction and border calculation is the
following. At a fixed time occupied sites are assigned to patches by giving them a label, represent-
ing their corresponding patch number. The algorithm for patch extraction proceeds systematically
by examining every site in the grid. When an unlabelled occupied site is found, the algorithm cre-
ates a new patch by assigning a new label to the current site and to all the connected set of occu-
pied sites associated to it. More specifically, for each site currently in the patch all the occupied
sites in the immediate neighborhood (the immediate neighborhood of a site is defined here as
the set of 8 closest sites surrounding the current one) are assigned to the same patch. The algo-
rithm continues recursively until no more sites are added to the current patch. Then, the next
unlabelled site is considered, and the procedure is repeated until no unlabelled occupied sites
are left. Finally, all the relevant information for patch statistics can be extracted from the table
of labels. Once all the trees in the grid are assigned to patches, the border extraction is straight-
forward. A given occupied site is defined as lying at a patch border only if at least one of the sites
in its immediate neighborhood is not occupied by a tree. Therefore, the border set of a given patch
is simply defined as the list of all the occupied sites lying at its border.

Sensitivity analysis has shown that the dynamical behavior of averaged quantities (such as the
population density and others) in the IMCA depends mainly on only two parameters [12]: the
reproductive maturity tm and the mean dispersal distance d (or the exponent a in the case of a
dispersal distribution function of the form (4)). Hence, we chose a set of typical values [11] for
the rest of the parameters and kept them fixed in all the simulations, namely, q = 0.96;
n = 14000; ts = 1; Ps = 0.4; fg = 0.2.

We compared the simulation predictions with spatial patterns obtained from field data for two
different species for which events of LDD appear to be dominant: Cryptostegia grandiflora and
Pinus ponderosa (see Section 5).

We use an operational definition of invasive species, as a species that spreads in space, either
occupying new habitats, or increasing its cover in areas previously occupied. This approach allows
for a more general treatment of the invasion problem, since cases in which native species become
invaders after some habitat or climatic change (for example, shrub encroachment [19]) can also be
considered. Thus, although most of invasions are thought to be caused by non-native species, a
key for distinction is between invasive or non-invasive species, rather than native or non-native
species [20].

4. Numerical results

In order to illustrate the main qualitative differences between the behaviors obtained with the
different dispersal strategies, we present in Fig. 1(a) comparison between the typical spatial pat-
terns predicted by the IMCA for species with short and long range dispersal for a system size
L = 200 and tm = 7. In Fig. 1(a) we show a sequence of snapshots taken at different times during
the same simulation run using the dispersal function Eq. (3) with d = 5; in Fig. 1(b) we show a
sequence of snapshots taken at different times during a simulation run using the dispersal function
Eq. (4) with exactly the same set of parameters as in Fig. 1(a) (d = 5 in this case corresponds to a
value a = 3.11). In the short range case the spatial spread produces a compact patch with a rough
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border of almost circular shape, surrounded by a few isolated individuals and very small patches.
A numerical calculation of the average radius of the main patch (and hence the invasion front)
shows that it increases at constant velocity, as expected for a system with short range dispersal
[9] (the main patch is defined as the patch containing the largest number of sites; see section Meth-
ods for details of patch extraction algorithms details). On the other hand, the introduction of long
range dispersal produces a dramatic change in the spatial distribution, where we can appreciate
the development of a very structured and complex pattern. Such behavior can be easily under-
stood as a combined effect of long range dispersal and reproductive maturity period as follows.

At very earlier times (less than tm) the spatial spread develops a single patch, surrounded by
several isolated individuals, with a broad distribution of distances to the parental, some of them
very large. When those individuals reach the maturity they form secondary foci that begin to grow
in almost isolated areas, reproducing the growing structure of the main patch. In the mean time,
the main patch continues growing. Now, the invasion front for species with long range dispersal is
expected to grow exponentially with time instead of having a constant velocity [9]. That means,
the older the patch the faster its growth and therefore the main patch absorbs the secondary
patches that are located near it, at early times after their generation. Hence, the global pattern
that results from this process is composed by a rather compact main patch with a complicated
border structure, surrounded by patches with a broad distribution of sizes. Similar patterns have
been observed in a correlated percolation model with long range correlations for urban growth
[14]. We will concentrate now in the structure of the main patch border (see section Methods
for details of patch and border extraction algorithms details).

Since the patches that are absorbed by the main patch have its same structure on the average,
the border develops a self-similar structure, as can be seen in Fig. 2. To characterize such structure

Fig. 1. Snapshots of the spread from a single focus at the centre of a square area with L = 200, d = 5 and tm = 7, at
different times. The dark points correspond to mature individuals while the light grey ones to non-mature individuals.
The simulation starts with a mature individual at the focus. (a) Species with short range dispersal; (b) species with long
range dispersal (a = 3.11. . .).

160 S.A. Cannas et al. / Mathematical Biosciences 203 (2006) 155–170
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we calculated the mean fractal dimension D of the border as a function of time, where the aver-
ages are taken at fixed times over several simulation runs. To calculate D we used a box counting
algorithm [13]. That is, we calculate the number of boxes N(l) of linear size l as a function of l; the
fractal dimension is then defined through the relation N(l) / lD. In Fig. 3 we plot D vs. time for
tm = 7 and different values of a in a L = 1024 grid. Every curve D vs. t is averaged over 20 inde-
pendent simulation runs. We observe that statistical fluctuations become very large as a decreases.
Some estimation checks performed by averaging over 100 simulation runs indicate that at this
number should be increased by least one order of magnitude to reduce significatively the fluctu-
ations, which is out of the present computational capabilities. In a finite system the main patch
covers all the area after some finite period and D falls down to one; such characteristic period
decreases quickly with a and therefore for the smallest values we can only simulate a very limited
time horizon. However, for the largest value of a (a = 4) we see that, at long times, D attains an
almost stationary regime, where it oscillates around some constant average Dav with a time period
roughly proportional to tm. Since we observe the same generation mechanism of the border for
every value of a, we can assume the same qualitative behavior for D in all the cases. Moreover,

Fig. 2. Snapshots of the main patch border in a square area with L = 1024, d = 5 (a = 3.11) and tm = 7, at different
times between two reproductive periods. Notice the sudden growth at t = 28, which results from the absorption of the
patches associated with secondary foci (not shown; the distribution of those patches can be seen in Fig. 1(b)).
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the crossover observed between curves corresponding to different values of a suggest that the long
term regime has indeed been attained in the time period here considered. We see that the average
value Dav increases as a decreases. Such value can be estimated by averaging the values of D over
the last six points of every curve (which corresponds approximately to the period of oscillation
observed for a = 4). In Fig. 4 we show Dav as a function of a. We can clearly distinguish two dif-
ferent regimes: when 2 < a 6 3 the average fractal dimension appears to be independent of a, with
a value that can be roughly estimated as Dav = 1.73 ± 0.03, while it decreases monotonously with
a when 3 < a 6 4. This type of behavior (stationary properties independent of a when all the mo-
ments of the distribution are not defined) is typical of systems with long range interactions and
have been observed in several other cellular automata models [15–17]. We also performed some
simulations for tm = 10 and two values of a, to check the influence of tm the different structures.
The mean fractal dimension of the border is compared with the corresponding curves for tm = 7 in
Fig. 5. The results for a < 3 suggest that the long term behavior of D is almost insensitive to tm,
while for a > 3 there appears to be small dependency on tm.

α
1 3 4 5

Dav

1.3

1.4

1.5

1.6

1.7

1.8

1.9

 1.73

2

Fig. 4. Average fractal dimension at long times as a function of a for L = 1024 and tm = 7.

Fig. 3. Mean fractal dimension as a function of time for L = 1024, tm = 7 at different values of a.
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We next analyze the distribution of secondary patches size, that is, we calculate the relative fre-
quency histogram P(s) of patches with area s (all patches are considered except the main patch) in
an area of size L = 1024 at intermediate times, that is, for time scales smaller than the character-
istic time needed to fill the whole area. Such time scale is determined by tracking the density of
occupied sites as a function of the simulation time and is defined as the time below which less than
50% of the sites are occupied; we observed that after this time most of the simulation are is cov-
ered by the main patch while the few secondary patches that remain isolated are located near the
border and therefore the results are strongly distorted by finite size effects.

We have seen that the fractal dimension of the main patch border exhibit two different types of
behavior, according to whether 2 < a 6 3 or 3 < a 6 4, so we calculate P(s) for different values of a
in both ranges. The results for P(s) are averaged for every value of s and every time step in a sample
of M independent runs, M being between 100 and 200. In Fig. 6 we plot ln(P(s)) vs. ln(s) at different

Fig. 6. Log–log plot of the patch sizes distribution P(s) for L = 1024 at intermediate times. (a) a = 3.11. . .; (b) a = 2.7.

Fig. 5. Mean fractal dimension as a function of time for L = 1024, different values of a and tm.
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times for tm = 7 and two representative values of a. We see that in both cases P(s) attains at inter-
mediate times a stationary distribution, that is, the difference between the values of P(s) at two suc-
cessive time steps reduces systematically, becoming at the latest stages smaller than statistical
fluctuations (estimated a twice the standard deviation from the average) for almost all values of s.

In Fig. 7 we compare the stationary distribution for different values of a. At variance with the
fractal dimension of the main patch border, we see that the main qualitative features of P(s) appear
to be insensitive to the value of a. In all cases P(s) exhibit two different power laws P(s) � s�b (evi-
denced by straight lines in the log–log plot) at small and large spatial scales. The slopes in Fig. 7 are
estimated by separating, for every value of a, the points in two sets corresponding to the small and
large scales regimes, by eliminating the points in the crossover region (large pronounced kink for
a > 3 and an almost flat region for a < 3); both sets are fitted with a linear regression, giving expo-
nents b ranging between �3.7 and �3.9 in the small scale region and b between �1.9 and �2.1 in
the large scale region (R2 > 0.98 in all the cases). Such variation with a is smaller than the error bars
in the estimation of the slopes in all the cases. Hence, we see that the exponents of the power laws
appear to be almost insensitive to the dispersal range exponent a, the only appreciable effect being a
change in the position and the width of the crossover range between the two power laws.

Now this type of distribution of patch sizes is a combined effect of random colonization with a
probability distribution Eq. (4) from the different seed source points and the generation of large
patches from secondary foci of dispersal resulting from those individuals that reach the maturity.
In the last case each patch is composed by descents of the same founder parent located at the
corresponding focus.

To discriminate between the effects associated with both causes we repeated the simulations
without descent reproduction, i.e., taking tm =1 for all individuals except the original parent.
This represents the spread from a single mature individual when the reproductive period is much
longer than the observation time. In this case all patches but the main one (that is, the patch sur-
rounding the unique focus) are created by random aggregation.

We find that P(s) also develops a stationary state at short and intermediate size scales, charac-
terized by a single power law that extend to larger scales as the observation time increases. Such
power law is characterized by an exponent very close to b = �3, almost independent of the

Fig. 7. Comparison of the stationary patch sizes distribution P(s) for L = 1024 for different values of a. The straight
lines are just for comparison with the average slopes obtained for the small and large scale parts of the distributions.
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exponent a. An example of the obtained results is shown in Fig. 8, compared with the results for
tm = 7 and tm = 10 for the same value of a. We see that the large scale power law and the asso-
ciated crossover observed for finite tm is a direct effect of reproduction. Moreover, we calculated
the average area s* of the minimum patch produced by a single focus, that is, the average area of
the patch generated by a single individual in its first seed crop. We found that s* is slightly depen-
dent on a and coincides with the beginning of large scale power law (see Fig. 8). This shows that
the large scale power law characterizes the size distribution of patches generated by secondary foci
and it appears only for time scales longer than tm. On the other hand, the small scale power law
characterizes the patches generated by random aggregation; the only effect of reproduction in this
case is to increase the exponent of the distribution respect to the tm =1 case, due to the contri-
bution of secondary foci to the formation of small size patches.

Concerning the effect of tm on P(s) we observe that the exponent of the small scale power law
appears to decrease continuously towards �3 as tm increases; the large scale behavior for tm = 10
again results consistent with a power law with an exponent which appears to present a slight
dependency on tm (b = �2.3 ± 0.5 for tm = 10).

5. Comparison with field data

In this section we compare the simulation predictions with spatial patterns obtained from field
data for two different species for which events of LDD appear to be dominant: C. grandiflora and
P. ponderosa. C. grandiflora is a non-native shrub, introduced to Australia as an ornamental
plant. It was originally planted around the beginning of the 20th century in northern and eastern
Queensland, and spread from the original foci was by wind dispersal [21]. The age of reproductive
maturity (tm) is one year [21,23]. P. ponderosa is a native pine from the US Rocky Mountains, that
have invaded grassland prairies since the mid-1880s [22]. Its seeds are wind dispersed [24] and the
age of reproductive maturity (tm) is seven years.

Fig. 8. Stationary patch sizes distribution P(s) for tm = 7 and tm =1, fora = 3.33. . . The tail in the distribution for tm =1
converge to the observed power law with exponent b � �3 for small sizes as the observation time increases. s* = 65 ± 5
(ln(s* � 4.2))indicates the average minimum size of the patches generated by a single focus for a = 3.33. . . and finite tm.
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As can be seen in the vegetation cover map of C. grandiflora in Fig. 9, the overall spatial pattern
predicted by the simulation (see Fig. 1(b)) appears in a very large spatial scale (hundreds of km,
Fig. 9), i.e., a main patch with an irregular border, centered around the focus of the introduction
(Charter Towers [21]), surrounded by a distribution of secondary patches. A similar pattern, but
in a much smaller spatial scale can be observed in a vegetation cover map for P. ponderosa (several
km, Fig. 2 in Ref. [22]). This is consistent with the time scale associated with the spread of each
species (more than 100 years for C. grandiflora [21] and around 30 years for P. ponderosa [22]).

In order to obtain a quantitative comparison we first calculate the fractal dimension of the main
patch border in both cases. To this end, we digitized both images and isolated the border of all
patches. Then we applied the box counting algorithm to the borders, i.e., we calculated the num-
ber of boxes needed to cover only the patch border. The fact that all patches present a similar

Fig. 9. Abundance (% of cover, derived by Inverse Distance Weighted Interpolation) of C. grandiflora in Dalrymple
Shire, northern Queensland, Australia (reproduced from Grice et al. [21]). The star indicates the site of first
introduction.
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border structure allowed us to use all of them in the calculation in order to enhance the statistical
sampling. In Fig. 10 we show a log–log plot of the number of boxes of N(l) needed to cover the
borders as a function of the linear dimension l. We see that, at large spatial scales, both patterns
present a clearly defined fractal dimension N(l) � l�D, with D = 1.70 ± 0.04 and D = 1.74 ± 0.04,
for C. grandiflora and P. ponderosa respectively; both values are consistent with the prediction of
the model for a dispersal distribution function with infinite mean dispersal distance, i.e., with an
exponent 2 < a 6 3, or at least for values of a near three, that means a very large mean dispersal
distance. The departure from the power law behavior of N(l) at small scales (small l) is expected
because such scales correspond to details near the images resolution where diverse scanning effects
can distort the spatial pattern.

Next we calculated the distribution of secondary patch sizes P(s) for the case of P. ponderosa.
The results are shown in Fig. 11. Again, the results are in qualitative (compare with Fig. 7) and
quantitative agreement with the prediction of the model, showing a power law behavior at large
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Fig. 10. Log–log plot of number of boxes N(l) of linear dimension l needed to cover patch borders of C. grandiflora and
P. ponderosa as a function of l. R2 is the correlation coefficient of the linear fittings and l is measured in units of the
minimum resolution of the digitized image.
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Fig. 11. Log–log plot of the patch sizes distribution P(s) for P. ponderosa. The area s is measured in units of the
minimum resolution of the digitized image.
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spatial scales with an exponent b = 1.8 ± 0.1. In the case of C. grandiflora the lack of details at
relatively small scales in the corresponding image did not allow us to perform a reliable statistical
calculation of P(s).

6. Discussion

We showed that the presence of LDD strategies generates distinctive spatial patterns of spread.
The main characteristic features of those patterns are some scale-invariant properties for certain
temporal scale, during which they become stationary: the fractal character of the main patch and
a large scale power law in the patch sizes distribution.

The effect of long-distance dispersal on the spatial pattern for the spread from a single focus
predicted by the our model can then summarized as follows. At intermediate time scales, that
is, at time scales larger than the characteristic reproductive period of the species, but smaller than
the time needed for the covering of the available area, a structured pattern emerges with several
stationary properties: a main central patch with a fractal border and a distribution of secondary
patches characterized by two different power laws at small and large spatial scales. Both the frac-
tal structure of the main patch and the large scale power law distribution of secondary patches are
a combined result of long range dispersal and reproduction. These properties are scale invariant
features, that is, one can expect to observe the same type of pattern on very different spatial scales,
at least a far as these properties are concerned. Moreover, as time goes these patterns will extend
on larger spatial scales, until the available habitat is fulfilled. Hence, the maximum spatial scale on
which those effects will be observed is correlated with the time since the introduction of the species
in the field. While the large scale part of the size distribution of secondary patches appears to be
insensitive to the range of the dispersal (as far as it is long ranged), the fractal dimension of the
main patch results very sensitive to the basic statistical structure of the dispersal function: it has an
almost constant average (with a value estimated around D � 1.73) when the dispersal function has
no finite moments (2 < a 6 3) and smaller values (with a strong dependency on a and tm) when the
first moment of the distribution is finite (3 < a 6 4). An infinite mean in the basic interactions usu-
ally implies mean field behavior [15–18]. This means basically that every individual experiences the
same effect from the rest of the system, as if it were interacting with some average environment
field. Knowing if a system presents mean field behavior is important because such type of systems
present a high degree of universality, that is, one can expect that most of the global properties do
not depend on microscopic details, such as heterogeneities in the landscape.

Those features can be detected when the observation time is longer than the reproductive period
of the species. While at large scales the power law for the patch sizes distribution appears as a
robust feature (i.e., independent of the exponent a of the dispersal distribution and slightly depen-
dent on tm), the fractal dimension of the main patch shows a strong and characteristic dependency
on the basic statistical properties of the dispersal distribution, namely, about its second and first
moments. Since this quantity can be relatively easily obtained from digitized aerial or satellite
images, it appears as a powerful indirect tool to extract statistical features of the basic mechanism
of dispersal, either of invasive species or pathogens affecting sessile organisms, like fruitflies or
crop fungi. There are also obvious implications for population genetic studies, since LDD events
driven by power law distributions of individuals are causing unexpected spatial and temporal
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genotypic arrangements. These population and genetic signatures can be easily traced by using the
IMCA model together with field remote data.
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[12] S.A. Cannas, D.E. Marco, S.A. Páez, Modelling biological invasions: species traits, species interactions and habitat
heterogeneity, Math. Biosci. 183 (2003) 93.

[13] J.F. Gouyet, Physics and Fractal Structures, Springer, 1996.
[14] H.A. Makse, J.S. Andrade Jr., M. Batty, S. Havlin, H.E. Stanley, Modeling urban growth patterns with correlated

percolation, Phys. Rev. E 85 (1998) 7054.
[15] S.A. Cannas, Phase diagram of a stochastic cellular automaton with long-range interactions, Physica A 258 (1998)

32.
[16] P.M. Gleiser, F.A. Tamarit, S.A. Cannas, Self-organized criticality in a model of biological evolution with long-

range interactions, Physica A 275 (2000) 272.
[17] P.M. Gleiser, S.A. Cannas, F.A. Tamarit, B. Zheng, Long-range effects in granular avalanching, Phys. Rev. E 63

(2001) 042301 (1-4).

S.A. Cannas et al. / Mathematical Biosciences 203 (2006) 155–170 169



Aut
ho

r's
   

pe
rs

on
al

   
co

py
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