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We studied the nonequilibrium dynamics of the q-state Potts model in the square lattice, after a quench to
subcritical temperatures. By means of a continuous time Monte Carlo algorithm �nonconserved order param-
eter dynamics� we analyzed the long term behavior of the energy and relaxation time for a wide range of
quench temperatures and system sizes. For q�4 we found the existence of different dynamical regimes,
according to quench temperature range. At low �but finite� temperatures and very long times the Lifshitz-Allen-
Cahn domain growth behavior is interrupted with finite probability when the system gets stuck in highly
symmetric nonequilibrium metastable states, which induce activation in the domain growth, in agreement with
early predictions of Lifshitz �JETP 42, 1354 �1962��. Moreover, if the temperature is very low, the system
always gets stuck at short times in highly disordered metastable states with finite lifetime, which have been
recently identified as glassy states. The finite size scaling properties of the different relaxation times involved,
as well as their temperature dependency, are analyzed in detail.
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I. INTRODUCTION

The problem of domain growth kinetics in systems with
many degenerate ground states had attracted a lot of attention
in the past �1–8�. In early works Lifshitz �1� and then Safran
�2� posed the discussion about the effect of activated pro-
cesses in the domain growth. They suggested that
d-dimensional, q-state degenerate models could become
trapped in local metastable states for q�d+1, which would
then greatly slow down the relaxational kinetics. Their argu-
ment in two dimensions is that a honeycomb structure of
hexagonal domains is stable under small distortions of the
interfaces because such distortions do not increase the inter-
facial free energy. Large distortions due to fluctuations are
then needed to move the interfaces and so domain growth
becomes activated. The prototype of such a system is the
q-state Potts model �9�, whose Hamiltonian is given by

H = − J�
nn

��si,sj�, J � 0, �1�

where si=1,2 , . . . ,q, ��si ,sj� is the Kronecker delta, and the
sum runs over all the pairs of nearest-neighbor sites. Sahni
and co-workers �3,4� performed Monte Carlo �MC� simula-
tions with Glauber dynamics for values of q up to 64 in
square and triangular lattices of size up to N=2002 sites and
time scales of the order 104 Monte Carlo steps �MCS� �1
MCS is defined as a complete cycle of N spin update trials,
according to a Metropolis MC algorithm�. On the square
lattice they found evidence of metastable configurations
composed by squares of different colors �i.e., different values
of q� that freeze the dynamics a T=0; Viñals and Grant �5�
obtained similar results in the square lattice. Moreover, they
argue that those frozen configurations only effectively domi-
nate at T=0 and growth at finite temperatures is not limited

by activated processes �5�. Hence, for long enough times the
average linear domain size should follow the Lifshitz-Allen-
Cahn �LAC� law l�t�� t1/2. This seems to be the case of the
triangular lattice, where Grest and co-workers �6� reported
results using MC simulations with N=10002 sites and values
of q up to q=64 at very low temperatures, which are consis-
tent with LAC behavior for any value of q, at least for time
scales up to 104 MCS. Analytical results on a coarse grained
model also confirm those results �8�. However, the time
scales considered in those works are very short to exclude
the existence of an activated process of the type predicted by
Lifshitz �1� and Safran �2�.

On the other hand, recent investigations �10–12� about the
pinning configurations found in the square lattice �3–5�
showed that the system gets stuck in those states at times
scales longer than 104 MCS; pinning also happens at low but
finite temperatures �13�, although in that case the metastable
states present a finite lifetime that increases with q �14�.
Those works also showed that the nature of those highly
disordered metastable states is more related to a glassy one
�10–13� than to the type of configurations predicted by Lif-
shitz �1� and Safran �2�. We will refer hereafter to those
disordered metastable states as the glassy ones.

In this work we concentrated mainly in the q=9 case in
square lattices with N=L�L sites and periodic boundary
conditions. Some complementary results are also presented
for other values of q. The implementation of a continuous
time MC algorithm or n-fold technique �15,16� allowed us to
analyze a large statistics on system sizes up to L=500 and
time scales running from 109 to 1014 MCS. Some details of
the continuous time MC implementation are presented in
Sec. II.

The main results of this work can be summarized as fol-
lows: after a quench from infinite temperature down to sub-
critical temperatures T, we found the existence of different
relaxational regimes according to the quench temperature
range. First of all there is some characteristic temperature
T*�Tc, such that for T*�T�Tc simple coarsening domi-
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nates the relaxation �that is, the domain growth follows the
LAC law even for very long times�, except very close to Tc,
where evidence of nucleation relaxation mechanisms appear;
however, the last case will not be analyzed in this work and
the corresponding results will be presented in a forthcoming
publication. For T�T* we found that, at long time scales
�i.e., much longer than those considered in previous works�,
the LAC relaxation is interrupted when the system gets
trapped in highly symmetric metastable states with finite
probability �i.e., for a large fraction of realizations that do
not decrease as the system size increases�. We found two
different types of those configurations: striped states and
honeycomblike structures; the latter are configurations com-
posed by macroscopic six-sided irregular polygonal domains
of different colors. Striped states are composed by two mac-
roscopic ferromagnetic domains with straight walls parallel
to the coordinate axis and have been previously observed in
the Ising model �17–21� �q=2� at T=0. For q�3 and T=0
the probability to reach a striped state becomes zero in the
thermodynamic limit �19�; we found that low but finite tem-
peratures make that probability become finite. The presence
of honeycomblike structures in the q-state Potts model is in
agreement with the Lifshitz’s prediction �1�. When the sys-
tem reaches either striped or honeycomblike states the dy-
namics becomes activated.

Finally, we found a temperature Tg�Tc, such that for T
�Tg the system always gets stuck at intermediate times in a
glassy state of the type reported previously �10–13� for other
values of q�4. We found that for q=9 those states present a
finite lifetime �i.e., independent of the system size� with a
well-defined free energy barrier associated to it.

We also analyzed the scaling properties of the character-
istic times associated with the different relaxation processes,
as well as the probability of reaching a striped or honeycomb
state for large values of q.

We verified that the whole relaxation scenario is qualita-
tively observed when open �instead of periodic� boundary
conditions are used. All the numerical results are presented
in Sec. III and some discussion is presented in Sec. IV.

Besides its theoretical interest, the large-q Potts model �or
variations of it� is used for simulating the dynamics of a
large variety of systems, such as soap froth �22,23�, grain
growth �24,25�, and biological cells �26�. The present results
help to establish the conditions under which equilibrium can
be actually reached, as well as the different possible low
temperature relaxation scenarios.

II. METHODS

We analyzed the time evolution under a type A dynamics
�nonconserved order parameter� of the system described by
Hamiltonian �1�, after a quench from infinite temperature
�i.e., a completely random initial configuration� down to sub-
critical temperatures. The Potts model undergoes a second
order phase transition for q=2, 3, and 4 and a first order one
for q�4, where the critical temperature in the square lattice
is known exactly �27� for any value of q and is given by
Tc=1/ ln�1+�q� �hereafter we will use natural units kB=J
=1�. Most of our analysis was concentrated in the q=9 case,

for which Tc=0.721 3. . ., and some complementary calcula-
tions were performed for q=2, 3, 4, 5, 15, and 30.

We were mainly interested in the late stages of the dy-
namics, where large domains are formed. In that case, the
computational cost of a single spin flip dynamics �for in-
stance, heat bath algorithm� becomes very high because the
flipping probability of spins inside the domains �which are
the majority� becomes very small. An efficient way to
achieve longer time scales for reasonably large system sizes
is the usage of continuous time MC methods or n-fold tech-
niques �15�. In these types of algorithms a flip occurs at each
step and the time such event would have elapsed in a single
spin flip algorithm is calculated from the associated flipping
probability. Let us briefly summarize the implementation of
the algorithm for the nearest-neighbors q-state Potts model.
For a given spin configuration we will call “potential spins”
to the q−1 possible states for each site in the lattice, different
from the present ones. All the potential spin of the system is
then classified into lists, where members of a given list
would produce the same change in the energy of the system,
if chosen to replace the old spin state in the corresponding
site. For a single flip there exist only nine possibilities � �E

J
=−4,−3,−2,−1,0 ,1 ,2 ,3 ,4�, so we have nine classes for
any value of q�3. In the Metropolis algorithm the probabil-
ity of a potential spin belonging to the class l �l=1, . . . ,9� to
be effectively flipped is

pl =
nl

N�q − 1�
min�1,exp	−

�El

kBT

� , �2�

where nl is the number of spins in class l. The total probabil-
ity of any flipping event occurring in a given step is

Q = �
l

pl. �3�

In the present algorithm, at each step a class is sorted with
probability �2� and a potential spin is sorted with equal prob-
ability among all the members in the class. After updating
the corresponding spin and the lists, the time step is incre-
mented by an amount

�t =
− ln r

NQ
, �4�

where r is a random number uniformly distributed between
zero and one and the time step �t is measured in MCS. The
details of the algorithm can be seen in Ref. �15�. The imple-
mentation of this algorithm allowed us to perform simula-
tions for time scales running from 109 MCS �for sizes up to
L=500� to 1014 MCS �for sizes up to L=100�. In order to
check the algorithm we also repeated several of the simula-
tions using a single spin-flip algorithm �heat bath� for L
=200 and time scales up to 106 MCS. The results were iden-
tical.

Our analysis of the dynamics was mainly focused on the
behavior of two quantities: the average energy per spin e�t�
�H�t�� /N as a function of t �the average was taken over
different initial configurations and different realizations of
the thermal noise� and the equilibration time 	; the last quan-
tity was defined as the time at which the instantaneous en-
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ergy falls below an equilibration threshold. Such a threshold
was set as the equilibrium energy at the corresponding tem-
perature plus one standard deviation, where those quantities
were first calculated by running a set of simulations starting
from the ordered state and letting the system equilibrate. We
calculated the probability distribution �normalized histo-
gram� P�	� for different values of T and L.

III. RESULTS

In order to compare the behavior of the average energy
per spin e�t�= H� /N for different temperatures, we first in-
troduce the relaxation function �or normalized excess of en-
ergy�


E�t� �
e�t� − e���
e�0� − e���

, �5�

where e��� is the equilibrium energy. In Fig. 1 we show the
typical behavior of 
E�t� for L=300 and temperatures be-
tween 0.72 and 0.5 �Tc=0.721 3. . . �. For temperatures close
enough to Tc �0.715�T�Tc� we see that the system clearly
stuck in a high energy metastable state. Close examination of
different quantities in the metastable state show that this cor-
responds to a disordered �i.e., paramagnetic� one and hence it
is directly related to the first order nature of the transition.
Moreover, we found evidence that in this regime relaxation
is dominated by nucleation mechanisms, but the details of
that analysis will be presented in a forthcoming publication.
For temperatures T�0.715 we see that the metastable pla-
teau disappears and the relaxation function decays �after a
short transient� for all temperatures as 
E�t�� t−1/2. Since the
excess of energy with respect to the equilibrium state in a
domain growth process is given by the average energy of the
domain walls, a simple calculation shows that 
E�t�
�1/ l�t�, l�t� being the average linear domain size. Hence the
behavior of Fig. 1 is consistent with the LAC law. As we will
show later, the finite size scaling properties of the average
typical equilibration time in this temperature range are also
consistent with the LAC law.

A. Relaxation at intermediate temperatures and blocked
states: Characterization and scaling

In Fig. 2 we see the typical behavior of P�	� for an inter-
mediate size �L=100� and different temperature ranges. The
different dynamical regimes can be already appreciated in
this figure. Close enough to Tc �T=0.719 in Fig. 2�a�� P�	�
exhibit a well-defined peak centered at a characteristic time
	nucl�105 MCS, which is associated to a nucleation based
relaxation mechanism already mentioned. As the temperature
decreases below some temperature 0.715�Tn�Tc, this peak
is suddenly replaced by another one centered at a character-
istic value 	1, which is about one order of magnitude smaller
than 	nucl and remains almost independent of the temperature
in the range 0.3�T�0.715; in the temperature range 0�T
�0.2 �see Fig. 2�b��, 	1 exhibits a strong temperature depen-
dency. For temperatures smaller than �but close to� Tn �see
Fig. 2�a��, P�	� develops a long right tail; for temperatures
T�T*�0.6 the tail becomes a distinct peak centered at a
new characteristic time 	2, which increases exponentially as
the temperature decreases. This behavior indicates the exis-
tence of two distinct phenomena affecting the relaxation at
different time scales, where T* acts as a reference tempera-
ture signaling the time scales separation crossover point. The
temperature behavior of 	1 and 	2 is summarized in the
Arrhenius plot of Fig. 3.

We will show that 	1 is associated with simple coarsening
processes that follow LAC law for all times, while 	2 is
associated to processes in which the system gets stuck in
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FIG. 1. �Color online� Relaxation function 
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striped metastable states, composed by two ferromagnetic
states whose walls are parallel to coordinate axis, as shown
in the example of Fig. 4. Those types of metastable states
have been already observed in the two-dimensional Ising
model �q=2� at zero temperature, where they become frozen
�17–21�. At finite temperature, striped states perform a ran-
dom parallel movement in the direction perpendicular to the
walls. Hence in a finite system those states relax to equilib-
rium when both walls collapse. Spirin, Kaprivsky, and Red-
ner �18� showed that the basic mechanism for the parallel
movement of a straight domain wall is the creation of a
“dent,” that is, the flip of one of the spins adjacent to the
wall. Since after flipping the spin its neighbors can flip with-
out energy cost, the energy barrier for the creation of a dent
is 2 �in units of the coupling constant J� for the q=2 Potts
model �or 4 for the Ising model�. For q�2 the energy cost of
any other movement �including a flipping to a third color
different from those of the domains� is larger. Hence once the
striped state is reached, the time needed to relax should be
basically independent of q and this is consistent with the
Arrhenius behavior 	2�e2/T observed in Fig. 3.

From Fig. 3 we can notice also that, for a wide range of
temperatures T�Tn �approximately down to T�0.2� 	1 re-
mains almost independent of T, consistently with a simple

coarsening behavior; at lower temperatures we see a cross-
over into an activated behavior that will be analyzed later.

A deeper understanding of the mechanisms involved in
the relaxation can be obtained from the finite size scaling of
the different quantities involved. In Fig. 5 we show the typi-
cal behavior of P�	� for different system sizes at a fixed
temperature T=0.2. The first thing we note is that the two-
peak structure remains in the large L limit. Moreover, the
ratio between the areas below both peaks becomes constant
in such a limit. The same property is observed for tempera-
tures up to T*. We will analyze this in more detail at the end
of this section. Let us now consider the finite size scaling of
the relaxation times.

From Fig. 6 we see that 	1�L2 for a wide range of tem-
peratures, both above and below T*. This is also consistent
with a simple coarsening process, in which equilibration will
be attained once l�	��	1/2�L.

Let us now analyze the finite size scaling of 	2. Spirin,
Kaprivsky, and Redner �18� suggested that, at low enough
temperatures, the movement of a flat interface will be domi-
nated by processes involving a single dent creation; once the
dent is created it performs a random walk, until either the
dent disappears or it covers the whole line, where the typical
time needed for the last event scales as �18� L. This mecha-
nism leads to a random walk movement of both interfaces, so
there must be typically L2 such hopping events for the inter-
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FIG. 4. �Color online� Energy per spin as a function of time and
typical spin configurations in one realization of the stochastic noise,
when the system gets stuck in a striped configuration �L=200, q
=9, and T=0.2�. The different colors codify different spin values
si=1, . . . ,9.
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faces to meet and therefore the relaxation time should scale
as �18� L3. However, this argument only works for small
system sizes. Once a dent is created, the probability of the
creation of new dents along the interface, before the dent
covers the line, increases with the system size; therefore the
typical time for a one-site hoping event of an entire interface
should increase slower than linearly with L and 	2 slower
than L3. This can be appreciated in the clear crossover from
	2�L3 to 	2�L with �3 around L=15, observed in Fig.
7, both for q=2 and 9 �the same effect is observed for any
temperature T�0.2�. Striped states appear for temperatures
up to T*, but the walls movements are no longer dominated
by one-site hopping events for T�0.2; instead of that, a
direct inspection of the spin configuration during relaxation
shows that, at temperatures close to T* the movements of the
domain walls resemble �for large system sizes� that of elastic
lines subjected to a random noise. Hence the temperature
dependence of 	2 departs from the e2/T behavior, as can be
seen from Fig. 3. However, the finite size scaling 	2�L still
holds for temperatures up to T*, where the exponent  dis-
plays a marked increase with the temperature, reaching val-
ues slightly larger than 3 as T approaches T* �see Fig. 8�.
Those values of the exponent can be understood through the
following argument. Suppose that each line behaves as a
chain of L unit masses joined by springs, constrained to
move along the direction perpendicular to the wall and sub-

jected to independent white noise. By solving the corre-
sponding Langevin equations in the overdamped limit, a
simple calculation shows that the distance between the cen-
ters of mass of both chains performs a Brownian motion with
an effective diffusion coefficient that scales as D�L−1. Since
the distance between walls is of the order of L, this implies
that the typical time needed for the walls to join each other
should scale approximately as L3. For q=2 Lipowski �17�
has shown that this scaling holds even for relatively large
values of the temperature T /Tc�2��0.8. The results of Fig. 8
suggest that the scaling properties of 	2 are independent of q,
showing that large degeneracies in the ground state have no
influence in this relaxation process.

Let us return to the equilibration time probability distri-
bution P�	�. Another salient feature of this distribution for
temperatures T�T* is that the right peak broadens for large
system sizes. To show this we redraw P�	� for L=300 and
T=0.2 in Fig. 9 �full line�. A careful inspection of individual
processes shows that such a broad peak is actually associated
with two different types of metastable configurations: the
striped ones already described and honeycomblike struc-
tures; the latter are composed macroscopic six-sided irregu-
lar polygonal domains of different colors �see inset of Fig.
9�, where the angles between domain walls at the threefold
edges fluctuate around 120°. Those states are in agreement
with the Lifshitz prediction �1� for q�3 and we shall call
them Lifshitz states. By a calculation of the equilibration
time starting directly from the Lifshitz and striped states, we
verified that the broad peak of P�	� is actually a superposi-
tion of two peaks, each one with its own distinctive maxi-
mum at characteristic times 	2, for the striped states, and 	3
for the Lifshitz ones �see Fig. 9�. Lifshitz states are only
detectable for system sizes L�100. Actually, an isolated
threefold vertex between flat domain walls of the type pre-
dicted by Lifshitz �1� also appears for smaller system sizes,
but complete honeycomblike structures can be stabilized dur-
ing detectable time scales �i.e., larger than the characteristic
coarsening time scales� only for large enough system sizes.
To determine the scaling properties of 	3, we calculated the
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FIG. 9. �Color online� Equilibration time probability distribution
P�	� starting from different initial configurations �arbitrary normal-
ization� for L=300 and T=0.2. The inset images show typical
blocked spin configurations at the corresponding times.
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escape time probability distribution starting from the closest
configuration to a Lifshitz state, that is, from an almost per-
fect four-colored honeycomb configuration �commensurabil-
ity with the system size does not always allow a perfect
honeycomb structure� for different values of L and T; we
show an example in Fig. 9. We verified that the system
quickly relaxes from that configuration into a Lifshitz state,
from which it can either relax directly to the equilibrium
state or pass first to a striped state, giving rise to a second
peak in the corresponding probability distribution �see Fig.
9�. For completeness, we also calculated the escape time
probability distribution starting from a perfect two-domains
striped state; the result is also shown in Fig. 9.

The temperature dependency of 	3 is shown in Fig. 10,
where we see that it displays a clear Arrhenius behavior with
an activation barrier of height one, which is the minimum
possible energy barrier associated with a single spin flip.
This can be understood if we analyze the basic mechanisms
behind the relaxation from Lifshitz states. We observed that
Lifshitz states relax when two vertices of a hexagon edge
collapse. A vertex movement, with the consequent displace-
ment of the converging walls, occurs through a series of
random hopping events. In Fig. 11 we show an example of
the hopping of a vertex one site to the right; one-site hopping
events in the other directions follow a similar process with
the same energy cost. The movement of a vertex starts with
the creation of a dent, by flipping one of the spins located at
the neighbor sites of the vertex, as depicted in Fig. 11�b�.
This movement has an energy cost of one unit. Once the dent
is created, the neighbor spins at the three converging walls
are free to flip without energy cost �see Figs. 11�c� and
11�d��, generating a diffusive motion of the dent along the
three lines, and may lead to the displacement of the whole
lines. This hopping movement of the vertex ultimately leads
to the collapse of two of them and the consequent disappear-
ance of the Lifshitz state. The whole mechanism is com-
pletely similar to that described by Spirin, Kaprivsky, and
Redner �18� in the case of a flat wall between two striped
domains, except that the creation of a dent adjacent to a
vertex has an energy cost of just one energy unit �instead of
2, as in the case of a dent in a flat interface�, which explains
the behavior of Fig. 10. Since hexagonal domains in a Lif-
shitz state are macroscopic, the same finite size scaling argu-
ments used by Spirin, Kaprivsky, and Redner �18� for the

relaxation time apply in this case. Hence, one expects 	3
�Le1/T. For the system sizes available, we verified this
scaling at low temperatures with an exponent �3, but we
would expect this value to be reduced for larger system sizes,
as in the case of striped states �	2�.

B. Probability of blocked states

We analyzed the probability Pb�q� of getting stuck in a
blocked state. We defined blocked states as those character-
ized by flat walls between domains. For q�3 this includes
Lifshitz and striped states. For q=2 the system can also get
trapped in another type of blocked states, characterized by
diagonal stripes, whose interfaces fluctuate without energy
cost �19�; we shall call them diagonal states. For q�3 we
did not observed diagonal states at finite temperatures. Al-
though their presence for q�3 with low probability cannot
be excluded, probably they are replaced at finite temperature
by the Lifshitz states.

From the previous calculations of P�	� we could estimate
Pb�q� by defining for �for every value of T and L� a threshold
value 	t�T ,L�, such that a single realization with 	�	t is
attributed to the presence of a blocked state; 	t can be esti-
mated as the first minimum of P�	� located above 	1 �see, for
instance, Fig. 5�. This procedure reduces the calculation of
Pb�q� to a binomial experiment. Hence a simple calculation
shows that a sample size of 2000 runs is enough to guarantee
a statistical error smaller than 1% in all cases, thus saving a
lot of CPU time.

In Fig. 12 we show the results for q=9. The main source
of error in this calculation is the choice of 	t, which is not
always evident, due to large fluctuations in the histograms
for small sizes and very low temperatures; the error bars in
Fig. 12 were estimated by varying 	t. From Fig. 12�a� we see
that, at T�0, Pb�9� saturates in a finite value for L�100,
indicating a finite probability in the limit L→�. In Fig. 12�b�
we show the temperature dependency of the saturation value.
We see that Pb�9� goes to zero as T→0, consistent with the
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FIG. 10. Characteristic relaxation time 	3 vs temperature for q
=9 and L=100; the continuous line is a guide to the eye.

FIG. 11. �Color online� Basic relaxation mechanism of a Lif-
shitz state at low temperatures. The circle in �b� marks the creation
of a dent in the vertex of �a�, by flipping a spin from 2→3 with an
energy cost �E=1. Circles in �c� and �d� exemplify spins that can
flip without energy cost ��E=0� along the three converging walls.
The whole process may lead to the hopping of the whole structure
�vertex plus walls� and ultimately to the collapse of two vertices.
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results of Spirin, Kaprivsky, and Redner �19�.
Next we analyzed the probability Pb�q� as a function of q.

The results are shown in Fig. 13 for T=0.15 and values of q
ranging from q=2 up to q=30. For q=2 and T=0 the prob-
ability of reaching a striped state is �18,28� 1/3, while the
probability of reaching a diagonal state is �19� �0.04. At T
=0.15 we found the values �0.345 and �0.045, respec-
tively, giving rise to the value Pb�2��0.39. The differences
with the T=0 values are consistent with the enhancement of
the probability at finite temperature, already observed for q
=9.

For q�3 the probability Pb�q� falls down to a tempera-
ture dependent finite value, that is almost independent of q
and smaller than half of Pb�2�.

It is worth noting that Spirin, Kaprivsky, and Redner �19�
reported another type of blocked states for q=3, character-

ized by both straight walls and diagonal walls, the latter fluc-
tuating without energy cost; they call these states “blinkers.”
We did not observe blinkers at finite temperature, at least for
periodic boundary conditions. Although their existence with
low probability cannot be excluded, probably they decay into
Lifshitz states in time scales smaller than the characteristic
Lifshitz relaxation times.

C. Low temperatures relaxation: Glassy states

Let us now analyze the coarsening at very low tempera-
tures. The increase of 	1 for temperatures T�0.2 observed in
Fig. 3 indicates that the normal coarsening is affected by
some kind of activated process. The increase in this relax-
ation time is associated with the plateau displayed by the
relaxation function in Fig. 14. We found that this plateau
appears below some characteristic temperature 0.1�Tg
�0.2 for q=9. This plateau corresponds to a disordered
metastable state characterized by almost square-shaped do-
mains with a wide distribution of sizes �see inset in Fig. 15�.
That type of metastable state was previously reported for q
=7 and it was identified as a glassy one �10–12�. These states
are only present for �13� q�4. We verified that for q=9 the
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FIG. 12. �Color online� Probability of getting stuck in a blocked
state Pb�q� for q=9: �a� as a function of L for different temperatures
and �b� as a function of T for different sizes. The dashed line cor-
responds to a linear fitting of the points for L=200, giving an ex-
trapolated value of 0.008±0.01 at T=0.
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FIG. 13. Probability of getting stuck in a blocked state Pb�q� for
L=200 and T=0.15.
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FIG. 14. �Color online� Relaxation function for q=9, L=200,
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FIG. 15. �Color online� Relaxation function for q=9, T=0.1,
and different values of L. The inset shows a typical configuration of
the glassy state associated with the plateau.
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normal coarsening is always interrupted for T�Tg and the
system gets stuck in one of those glassy states, from which it
relaxes through a complex sequence of activated jumps. This
explains the exponential increase of 	1 observed in Fig. 3 for
T�0.2. Once the system relaxes from the glassy state, it can
be either directly equilibrate or decay first in a blocked state.

In Fig. 15 we show the typical behavior of a relaxation
function for q=9 at a fixed temperature T�Tg and different
system sizes. We see that the relaxation time �	1� is size
independent for L�200, which shows that the lifetime of the
glassy states remains finite in the thermodynamic limit.

D. Boundary conditions

Finally, we analyzed the influence of the boundary condi-
tions in the relaxation. To this end, we repeated some of the
previous calculations using open boundary conditions. We
found that the overall relaxation scenario found using peri-
odic boundary conditions repeats qualitatively for open ones.
Moreover, the relaxation time associated with striped con-
figurations appears to be of the same order of magnitude of
that corresponding to periodic boundary conditions. Al-
though a more systematic study should be done to confirm
that, it seems reasonable since the basic activated mecha-
nisms here described should be still dominant in the case of
open boundary conditions. In Fig. 16 we show an example of
the equilibration time probability distribution for q=9 and
some typical blocked spin configurations. In this case, Lif-
shitz states are no longer composed only by hexagons for
relatively small system sizes �due to the presence of the bor-
ders�, but we see clearly the presence of a stable three-
colored vertex. Indeed, the observed configurations strongly
resemble the blinking states reported in Ref. �19�.

IV. SUMMARY AND CONCLUSIONS

The main conclusions of this work are summarized in the
scheme of Fig. 17. After a quench from infinite temperature
down to subcritical temperatures, the Potts model with single
spin flip kinetics and periodic boundary conditions presents
for q�4 different relaxational regimes, determined by dif-

ferent crossover characteristic temperatures. Close enough to
the critical temperature, i.e., for Tn�T�Tc, relaxation is
dominated by nucleation mechanisms. For intermediate tem-
peratures T*�T�Tn the system crosses over into a simple
coarsening dominated regime where LAC law l�t�� t1/2

holds until full equilibration, for most of the realizations of
the stochastic noise. For lower temperatures Tg�T�T* the
normal coarsening process is interrupted when the system
gets stuck into highly symmetric blocked configurations,
composed by macroscopic ferromagnetic domains, namely,
striped and Lifshitz states. In those cases, the dynamic be-
comes activated with characteristic energy barriers, which
give rise to distinct time scales for the different process.

Concerning the role of temperature in the relaxation
through blocked states, we found that it has a double effect:
at short time scales it enhances the probability of reaching
them �which is zero at T=0� and at long time scales it allows
escape from them through activation. At least for q=9, our
simulations �for system sizes up to L=500� suggest that the
probability of reaching a blocked state at finite temperatures
remains finite when L→�.

Striped states were previously found and characterized for
the Ising model �q=2� at very low temperatures. We found
that their influence in the relaxation process is relevant for
any value of q, even at relatively large values of T, but their
occurrence probability is smaller for q�3 than in the Ising
case.

We found that the relaxation times associated with the
blocked states present in general the finite size scaling be-
havior 	�L, where the exponent  depends on T, taking
values between 2 and 4. Such values of the exponent make
the associated time scales several orders of magnitude larger
than those associated with a normal coarsening process
�which scale as L2� for large enough sizes, even at relatively
large values of the temperature.

Lifshitz predictions have been recently verified in the
phase separation dynamics of diblock copolymers �Cahn-
Hillard model�, in a two-dimensional hexagonal substrate
�29�. We verified that the Lifshitz prediction also holds for
the q state Potts model with q�3, even in a square lattice, if
the system size is large enough. This strong finite size effect
is probably due to the square symmetry of the lattice �large
system sizes are required in order for the influence of the
lattice to be faded out� and one should expect it to be re-

FIG. 16. �Color online� Equilibration time probability distribu-
tion P�	� for q=9, L=200, and T=0.2, using periodic �p.b.c� and
open �o.b.c� boundary conditions. The inset images show typical
blocked spin configurations observed with o.p.c.

FIG. 17. Dynamical regimes in the long term relaxation of the
q-state Potts model with q�4, after a quench from infinite tempera-
tures down to a subcritical temperature T.
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duced in a lattice with threefold symmetry �for instance, tri-
angular�.

At very low temperatures T�Tg the system always gets
trapped in glassylike metastable configurations whose life-
time is size-independent and diverges for T→�. After relax-
ation from the glassy state, the system can again get trapped
in a blocked state. Even when the glassy states do not domi-
nate the relaxation at long enough time scales, a complete
description of the relaxation dynamics cannot exclude their
existence and therefore they deserve further investigations.
Finally, we verified that the whole qualitative relaxation sce-
nario appears both for periodic and open boundary condi-

tions, although the finite size scaling of the relaxation times
may differ in both cases.
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