ELEMENTOS DE FUNCIONES COMPLEJAS - Fa.M.A.F. - Año 2016

Práctico 6: Desarrollo en serie de potencias.

1. (i) Probar que

$$\sum_{n=1}^{\infty} z^n = \frac{z}{1-z}, \quad |z| < 1.$$

(ii) Escribiendo $z = re^{i\theta}$, 0 < r < 1, en la fórmula anterior, deducir las siguientes igualdades:

$$\sum_{n=1}^{\infty} r^n \cos(n\theta) = \frac{r \cos \theta - r^2}{1 - 2r \cos \theta + r^2}, \quad \sum_{n=1}^{\infty} r^n \sin(n\theta) = \frac{r \sin \theta}{1 - 2r \cos \theta + r^2},$$

$$\operatorname{para} 0 < r < 1.$$

2. Si $\sum_{n=1}^{\infty} z_n = S$, probar que:

(i)
$$\sum_{n=1}^{\infty} \overline{z_n} = \overline{S}$$
,

(ii) $\sum_{n=1}^{\infty} cz_n = cS$ para cualquier número complejo c.

3. Hallar la región de convergencia de las siguientes series de potencias:

(i)
$$\sum_{n=1}^{\infty} (-1)^n \frac{z^n}{n!},$$

(ii)
$$\sum_{n=0}^{\infty} \left(1 - \frac{1}{n}\right)^n z^n,$$

(iii)
$$\sum_{n=0}^{\infty} \operatorname{sen}\left(\frac{n\pi}{2}\right) z^n$$
.

4. Deducir la representación en serie de Maclaurin

$$z\cosh(z^2) = \sum_{n=0}^{\infty} \frac{z^{4n+1}}{(2n)!}, \quad z \in \mathbb{C}.$$

5. Demostrar que $e^z=e\sum_{n=0}^{\infty}\frac{(z-1)^n}{n!}$ para todo $z\in\mathbb{C}.$

6. Hallar la serie de Maclaurin de la siguiente función e indicar su dominio de convergencia:

$$f(z) = \frac{z}{z^4 + 9} = \frac{z}{9} \left(\frac{1}{1 + (z^4/9)} \right).$$

7. Escribir la representación en serie de Maclaurin de $f(z) = \operatorname{sen}(z^2)$ y deducir que $f^{(4n)}(0) = 0$ y $f^{(2n+1)}(0) = 0$ para todo $n \in \mathbb{N} \cup \{0\}$.

- 8. (i) Desarrollar $\cos z$ en serie de Taylor centrada en $z = \pi/2$.
 - (ii) Desarrollar senh z en serie de Taylor centrada en $z = \pi i$.
- 9. Derivando el desarrollo en serie de Maclaurin $\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n$, para |z| < 1, obtener las representaciones

$$\frac{1}{(1-z)^2} = \sum_{n=0}^{\infty} (n+1)z^n, \quad \frac{2}{(1-z)^3} = \sum_{n=0}^{\infty} (n+1)(n+2)z^n, \quad |z| < 1.$$

- 10. Deducir el desarrollo en serie de Maclaurin de $\cos z$ derivando el desarrollo en serie de Maclaurin de $\sin z$, para todo $z \in \mathbb{C}$.
- 11. Probar que si $c \in \mathbb{C}$ es una constante y

$$f(z) = \begin{cases} \frac{e^{cz} - 1}{z}, & \text{si } z \neq 0, \\ c, & \text{si } z = 0, \end{cases}$$

entonces f es entera.

12. Probar que si

$$f(z) = \begin{cases} \frac{\cos z}{z^2 - (\pi/2)^2}, & \text{si } z \neq \pm \pi/2, \\ -\frac{1}{\pi}, & \text{si } z = \pm \pi/2, \end{cases}$$

entonces f es entera.

13. Hallar el desarrollo en serie de Taylor de las siguientes funciones en los puntos indicados, y determinar el radio de convergencia de la serie obtenida.

(i)
$$f(z) = \frac{1}{z^2}$$
, en $z_0 = -1$,

(ii)
$$f(z) = \operatorname{Log} z$$
, en $z_0 = i$.