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Localization effects induced by decoherence in superpositions of many-spin quantum states
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The spurious interaction of quantum systems with their environment known as decoherence leads, as a function
of time, to a decay of coherence of superposition states. Since the interactions between system and environment
are local, they can also cause a loss of spatial coherence: correlations between spatially distant parts of the system
are lost and the equilibrium states can become localized. This effect limits the distance over which quantum
information can be transmitted, e.g., along a spin chain. We investigate this issue in a nuclear magnetic resonance
quantum simulator, where it is possible to monitor the spreading of quantum information in a three-dimensional
network: states that are initially localized on individual spins (qubits) spread under the influence of a suitable
Hamiltonian apparently without limits. If we add a perturbation to this Hamiltonian, the spreading stops and
the system reaches a limiting size, which becomes smaller as the strength of the perturbation increases. This
limiting size appears to represent a dynamical equilibrium. We present a phenomenological model to describe
these results.
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I. INTRODUCTION

Controlling quantum-mechanical systems has received
increasing attention in recent years [1], mainly because
we are starting to be able to perform computations with
quantum-mechanical systems. This has the potential of solving
computational problems for which no efficient algorithm exists
for classical computers [2–4]. However, we will only be able
to realize this potential if we learn to control large quantum
systems with high reliability. The control of small quantum
systems has been thoroughly explored in the last years [1];
however, the study and control of large quantum systems
has not been tackled so far. The reason for this is partly the
difficulty of simulating large quantum systems on classical
computers, which limits the number of qubits to about 20
when the system is in a pure state [5,6]. Additionally, it is also
possible to calculate the dynamics of mixed states if the initial
state is localized by using quantum parallelism of a single
pure state evolution [7,8]. On the other hand, the present prim-
itive state of quantum computation only allows incomplete
control of large quantum states. So far, the only physical system
that offers this possibility is nuclear magnetic resonance
(NMR) of dipolar coupled spins [9–11]. In particular, the main
problems are the lack of individual addressing of qubits and
decoherence. The latter degrades the quantum information of
a given state [12]. Decoherence was shown to increase as
the size of the quantum system increases, making the largest
systems the most sensitive to perturbations [9–11,13–15].
While reducing the perturbation strength typically reduces
decoherence, the decoherence time in complex and large
systems can be independent of the perturbation strength over
a range of coupling strengths [16,17].

Decoherence is well known as a process that causes
the decay of quantum information. Avoiding or reducing
decoherence is thus the main ingredient for implementing
large-scale quantum computers. Several techniques have been
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proposed for this purpose, including dynamical decoupling
[18], decoherence-free subspaces [19], and quantum error
correction [20,21]. These proposals have been tested on
small systems of nuclear spins [22], trapped ions [23],
and spin model quantum memories [24,25]. Some of these
techniques were successfully applied to large quantum systems
with thousands of qubits where their decoherence time was
extended by almost two orders of magnitude [10,15].

Decoherence not only affects the survival time of quantum
information, it also affects the distance over which it can
be transmitted [26–34]. For example, spin systems, and in
particular spin chains, can be used to transfer quantum
information over large distances [35,36]. This kind of system
was studied with liquid-state NMR for small numbers of
spins [37–41] and with solid-state NMR for slightly larger
numbers [42–44]. However, once decoherence is considered,
it was shown in the simplest two-spin quantum channel that
when the effective system-environment interaction exceeds
a given strength, it becomes impossible to perform even a
simple SWAP operation [33,45]. Instead of having the expected
oscillatory transfer of a state going back and forth between
the two spins, an overdamped dynamics due to the appearance
of a localized state appears at a critical value or exceptional
point of the perturbation strength [45–49]. Similarly, this could
be observed in a three-spin chain. If one spin is suffering a
perturbation, when it exceeds a given strength the dynamics
localizes in the remaining two spins [50]. In a more general
situation with longer spin chains, it was recently pointed
out that imperfections or disorder of the spin coupling that
drives the state transfer can induce localization of the quantum
information [26–31,34] in a process related to Anderson
localization [51,52]. In more complex three-dimensional (3D)
spin-network topologies, we demonstrated experimentally a
similar behavior by studying the localization effects induced
by the finite precision of quantum gate operations used for
transferring quantum states [32].

In this paper, we extend our previous work [32], where
we prepared the system first as individual, uncorrelated spins
and measured the buildup of clusters of correlated spins of
increasing size. Introducing a perturbation to the Hamiltonian
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that generates these clusters, we find that the size of the cluster
reaches an upper bound. This upper bound appears to be a
dynamic equilibrium: if the cluster size is initially larger than
this equilibrium value, it decreases under the effect of the
perturbed Hamiltonian, while the unperturbed Hamiltonian
leads to an increase. The equilibrium size decreases with
increasing strength of the perturbation. For these experiments,
we use a solid-state NMR quantum simulator. While this
system does not allow addressing of individual qubits, it
represents an excellent test bed for studying different aspects
of decoherence and information transfer.

II. THE QUANTUM SIMULATOR

We consider a system of equivalent spins I = 1/2 in the
presence of a strong magnetic field. The Hamiltonian of the
system is

Ĥ = Ĥz + Ĥdd

= ωz

∑
i

Î i
z +

∑
i<j

dij

[
2Î i

z Î
j
z − (

Î i
x Î

j
x + Î i

y Î
j
y

)]
, (1)

where ωz is the Larmor frequency, dij the coupling constants,
and Î i

x ,Î
i
y,Î

i
z the spin operators that can be represented by

Î i
u = 1

2 σ̂u with σ̂u Pauli operators. Ĥz represents the Zeeman
interaction and Ĥdd the dipolar interaction [53]. The latter
is truncated to commute with the strong Zeeman interaction
(ωz � dij ), assuming that the effects of its noncommuting part
are negligible. In a frame of reference rotating at the Larmor
frequency [53], the Hamiltonian of the spin system reduces
to Ĥdd .

The quantum simulations start from the high-temperature
thermal equilibrium [53]. Using the notation Îz = ∑

i Î
i
z , we

can write the thermal equilibrium state as

ρ0 ≈
(

1̂ + h̄ωz

kBT
Îz

)/
Tr{1̂}. (2)

The unity operator 1̂ commutes with all operators, including
the Hamiltonian and the density operator. It does not contribute
to the observable signal and it is therefore convenient to
exclude it from the density operator. The resulting density
operator for the initial state of the system is then ρ̂0 ∝ Îz. In
this state, the spins are uncorrelated and the density operator
commutes with the Hamiltonian Ĥdd .

We performed all experiments on a home-built solid-state
NMR spectrometer with a 1H resonance frequency of ωz/2π =
300 MHz. The spins are the protons of polycrystalline
adamantane, where the average strength of the average dipolar
interaction, determined from the width of the resonance line,
is 7.9 kHz.

III. GROWTH OF SPIN CLUSTERS

A. Cluster size

The spin clusters that we consider can be written in product
operator form as

Î l
u . . . Î o

v Î p
w (u,v,w = x,y,z).

Here, the indexes l,o,p identify the spins involved in the given
cluster. We write K for the number of terms in this product,
i.e., for the number of spins in the cluster. Experimentally, we
generate these clusters using an NMR method developed by
Pines and coworkers [54,55]. It is based on generating an
average Hamiltonian Ĥ0 that does not commute with the
thermal equilibrium state

Ĥ0 = −
∑
i<j

dij

[
Î i
x Î

j
x − Î i

y Î
j
y

]

= −1

2

∑
i<j

dij [Î i
+Î

j
+ + Î i

−Î
j
−], (3)

where Î
j
± = (Î j

x ± iÎ
j
y ). In the usual computational basis, we

write the states as |M,nM〉 where M is the total magnetic
quantum number, i.e., Îz|M,nM〉 = M|M,nM〉, and nM dis-
tinguishes different states with the same M . The Hamiltonian
(3) flips simultaneously two spins with the same orientation.
Starting from the thermal equilibrium state, it generates a
density operator where only elements ρij with

�M = M(i) − M(j ) = 2n, n = 0,1,2, . . .

are populated. The index i and j refer to the different spin
states in the Zeeman basis as described above. Such a density
operator element ρij is called a �M quantum coherence.
Off-diagonal elements with �M = 0 represent zero quantum
coherences, and diagonal elements correspond to populations.

Figure 1 shows a graphical representation of the density
matrix in the computational basis. The black diagonal line
represents the population elements of the density matrix.
The diagonal blocks (gray) represent coherences of ρ̂ with
�M = 0 and moving away from these diagonal blocks, the

FIG. 1. Density matrix in the computational basis. The black
diagonal line represents the populations (Pop. in the legend). The
diagonal blocks (dark gray) represent coherences of ρ̂ with �M = 0
(ZQC) and the nondiagonal blocks are the �M multiple quantum
coherence (MQC) blocks (gray tones). The solid and dashed arrows
indicate the effect of Ĥ0 and the perturbation interaction � = Ĥdd ,
respectively, on the thermal equilibrium density operator. A schematic
representation of a typical distribution is given by the Gaussian-like
shape in the top-left corner.
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�M multiple quantum coherence (MQC) order increases, as
represented by different gray values. The solid arrows indicate
the effect of Ĥ0 on the thermal equilibrium density operator.
Adding the elements of ρ̂ with a given �M , we obtain a
distribution function of the MQC elements of the density
matrix ρ̂�M . A schematic representation of its distribution
is given by the Gaussian-like shape on the upper-left corner
of Fig. 1. This distribution is initially a delta function on the
diagonal of ρ̂ and spreads with time.

To determine the average number of correlated spins, the
technique relies on the fact that in a system of K spins, the
number of transitions with a given �M follows a binomial
distribution [56,57]

n(�M,K) = (2K)!

(K + �M)!(K − �M)!
. (4)

For K � 1, the binomial distribution can be well approxi-
mated with a Gaussian

n(�M,K) ∝ exp

(
−�M2

K

)
, (5)

whose half width at e−1 is σ = √
K . Thus, we can determine

the effective size of the spin clusters in a given state by
measuring the distribution of the MQCs of its density operator
ρ as a function of the coherence order �M .

B. Growth

Figure 2 shows two distribution functions of the MQCs
for two different durations Nτ0 of the evolution under Ĥ0.
They clearly demonstrate the increasing width of the MQC
distribution and thereby the increasing size of the spin clusters.

A M

K
K~30N 0 = 0. ms

N 0 = 0. ms K~3900

M
FIG. 2. (Color online) MQC distributions for two different evo-

lution times. The cluster size is extracted from the variance σ = √
K .

The elements of the density operator with a given �M can
be distinguished by rotating the system around the z axis. A
rotation φ̂z = e−iφÎz by φ changes the density operator as

ρ̂(φ,t) = φ̂zρ̂(t)φ̂†
z =

∑
�M

ρ̂�M (t)ei�Mφ, (6)

where ρ̂(t) = e−iĤ0t ρ̂0 eiĤ0t and ρ̂�M (t) contains the elements
that involve coherences of order �M . The experimental
observables in NMR are Îx , Îy , and by means of a π/2
pulse, also Îz. They are operators with �M = ±1 or �M = 0,
respectively. Thus we are not able to measure all the elements
of the density matrix. In order to quantify the ρ̂�M blocks, we
use the pulse sequence shown in Fig. 3.

The system initially evolves for a period of duration Nτ0

under the Hamiltonian (Ĥ0)φ = φ̂zĤ0φ̂
†
z , i.e.,

ρ̂0
(Ĥ0)φNτ0−−−−−→ ρ̂φ(Nτ0) = φ̂zρ̂(Nτ0) φ̂†

z

= φ̂ze
−iĤ0Nτ0 ρ̂0e

iĤ0Nτ0 φ̂†
z

=
∑
�M

φ̂zρ̂�M (Nτ0) φ̂†
z

=
∑
�M

ρ̂�M (Nτ0)ei�Mφ. (7)

A subsequent evolution period with the same duration Nτ0

under −Ĥ0, which causes an evolution backward in time,
yields the final density operator

(−Ĥ0)Nτ0−−−−−→ ρ̂f (2Nτ0) = eiĤ0Nτ0 ρ̂φ(Nτ0)e−iĤ0Nτ0

=
∑
�M

[
eiĤ0Nτ0 ρ̂�M (Nτ0)e−iĤ0Nτ0

]
ei�Mφ.

(8)

If Îz is the NMR observable, we obtain the signal

S(φ,Nτ0) = Tr{Îzρ̂f (2Nτ0)}
= Tr

{
e−iĤ0Nτ0 ρ̂0e

iĤ0Nτ0 ρ̂φ(Nτ0)
}

= Tr
{
ρ̂(Nτ0)ρ̂φ(Nτ0)

}
=

∑
�M

eiφ�MTr{ρ̂2
�M (Nτ0)} (9)

=
∑
�M

eiφ�MA(�M), (10)

N
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-
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x

FIG. 3. (Color online) NMR sequence for generating large spin
clusters. The effective Hamiltonian Ĥ0 is generated by the sequence of
π/2 pulses shown in the upper part of the figure, where �′ = 2� + τp

and τp is the π/2 pulse duration [55].
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FIG. 4. (Color online) Time evolution of the MQC distribution.
The main panel shows the time evolution of the MQC spec-
trum A(�M). The inset shows the time evolution of σ , where
A(σ,Nτ0)/A(0,Nτ0) = 1/e.

where A(�M) are the amplitudes of the MQC spectrum.
To extract these amplitudes from the experimental data, we
measure the signal S(φ,Nτ0) as a function of φ and perform
a Fourier transform with respect to φ. We quantify the cluster
size K by inverting the relation A(�M) = n(�M,K) (see
Ref. [55] for details).

If the system evolves under the Hamiltonian (3), the width
of the A(�M) distribution increases indefinitely, as shown in
Fig. 4. The main panel shows the MQC distributions A(�M)
for different evolution times. We quantify the spreading
of the MQC distribution by measuring their widths σ at
A(σ,Nτ0)/A(0,Nτ0) = 1/e for different evolution times. The
inset of the figure shows the time evolution of σ . Equivalently,
its corresponding cluster size of correlated spins also grows
indefinitely, as shown in Fig. 5.
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FIG. 5. (Color online) Time evolution of the cluster size of
correlated spins with the Hamiltonian Ĥ0 (black square points).
The main panel shows it in log scale manifesting the region where
the growth is exponential, and the inset shows it in log-log scale
manifesting its power law growth for long times.

The Hamiltonian of Eq. (3) is prepared by means of
the standard NMR sequence [54,55] shown in the upper
part of Fig. 3. This sequence consists of π/2 rotations of
the spins separated by periods of free precession, � and
�′, under the dipolar Hamiltonian Ĥdd and it was shown
to approximate quite well the ideal Hamiltonian Ĥ0. It is
inverted experimentally by shifting the phase of all rf pulses
by ±π/2 [54]. We used pulse durations τπ/2 = 2.8 μs and
delays � = 2 μs and �′ = 2� + τp giving a cycle time
τ0 = 57.6 μs.

C. MQC distributions and cluster size

In this section we summarize previous works that described
the MQC distribution, its evolution, and how it is related to
the cluster size of correlated spins in order to compare their
results with our experimental observation. So far, it has not
been possible to derive a consistent theoretical model of the
processes involved in this type of many-body system. The
most accepted and simplest model for interpreting the MQC
distributions was proposed by Baum et al. [55]. It assumes
equal excitation probabilities (for a given system size) for every
coherence term of the density matrix and therefore predicts a
Gaussian distribution whose variance is related to the number
of correlated spins. This is the usually adopted model because
it provides the simplest qualitative description of the MQC
evolution. However, the experimentally observed distributions
are not always Gaussian [58]. This is also the case in our
experiments: the data shown in Fig. 4 are better described by
an exponential distribution A(�M). Our results are therefore
more consistent with the distribution discussed by Lacelle
et al. [58], who predicted an exponential MQC distribution
and found agreement with earlier experimental results from
adamantane. Additionally, they predicted a dynamical scale
invariance in the growth process of the MQC.

Due to the difficulty of treating many-spin systems rigor-
ously, quantum-mechanical predictions for the MQC profile
shapes and their interpretations are still missing. For example,
if the MQC profile is not a Gaussian distribution, it is not
trivial how to extract from it the cluster size. While most of
the previous works studying the distribution of MQCs assumed
Gaussian distributions, it is more convenient to use a parameter
that is independent of the MQC distribution form. Khitrin
proposed using the second moment of the MQC spectrum for
this purpose [59]. This parameter was shown to be related to the
second moment of the system Hamiltonian, in our case given
by Eq. (3), and K(t) is proportional to the second moment of
the MQC distribution.

To determine the cluster size from our experimental data we
measured the half width σ = √

K of the MQC distributions
at 1/e. We chose σ = √

K because an exponential MQC
distribution of the form exp(−�M/

√
K(t)) has the same width

as the Gaussian distribution (5). Assuming this distribution, its
second moment is 2K while for a Gaussian distribution it is
K/2. With the exception of the Gaussian model for a MQC
distribution, there is no rigorous model that provides the exact
factor that converts the second moment of the distribution to
the cluster size K . However, they are of the same order of
magnitude and thus the error of the cluster-size determination
is a scale factor of order 1. In our experiments, the MQC
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distribution has the same shape during the complete range of
the experimentally accessible evolution time. Accordingly, any
error of the determination of the cluster size is thus a constant
factor independent of the value of K and this does not change
the conclusions of this article.

The growth depends on the spin-coupling network topol-
ogy as was observed experimentally [55,58–63]. Mainly
three types of growth were observed: (i) indefinite growth,
(ii) localized growth, and (iii) localized growth at a first stage
(intramolecular-like localization) and then a further indefinite
growth (intermolecular).

Results for adamantane fall into the first category. Some
models suggest a power law for the growth [61,64] and these
preliminary results [58,61] seem to match with an effective 3D
spin-coupling network topology. That 3D behavior seems to be
achieved only for cluster sizes above 1000 spins [61]. However,
more recent works suggest an exponential growth of the cluster
size when many neighboring spins are contained in the spin-
coupling topology [62,63]. This is the case of adamantane and
the experiments agree well with that prediction.

Experimentally, the data shown in Fig. 5 suggest three
stages of the cluster size evolution: (i) An initial period where
the evolution cannot be described as exponential or power
law, (ii) a period of exponential growth, and (iii) a power law
regime. During the first stage, the MQC distribution changes
from a Gaussian-like distribution to an exponential distri-
bution. Thus, the determination of the cluster size could be
affected by two kinds of systematic errors: (i) at small cluster
sizes, the small number of correlated spins may make the statis-
tical assumptions questionable and (ii) the change of distribu-
tion from Gaussian to exponential may change the appropriate
scale factors. The exponential growth agrees with the behavior
expected by theoretical predictions for this kind of system
[62,63]. And finally the power law behavior could be due to
the following two reasons: (i) as predicted by Lacelle [61] after
a certain number of spins (around 1000 in adamantane) the
effective spin-network topology turns into a 3D spin-coupling
network, which leads to a power law growth or (ii) because
the experimental generation of Ĥ0 contains nonidealities, they
can be considered as a perturbation that generates localization
effects, as was demonstrated in Ref. [32] and discussed in the
following sections. Something similar to the latter point could
be interpreted from the predictions of Ref. [63].

IV. EFFECT OF PERTURBATION

A. Perturbed evolution

The evolution under the Hamiltonian Ĥ0 can be reversed
completely by changing the Hamiltonian from Ĥ0 to −Ĥ0. If
this time reversal is perfect, the signal (9) for phase φ = 0 is
independent of the evolution time Nτ0,

∑
�M A(�M,Nτ0) =

const.
Experimentally, the Hamiltonian Ĥ0 is generated as an

effective Hamiltonian. Because of experimental imperfections,
it always deviates from the ideal Hamiltonian (3). As a result,
the actual dynamics deviates from the ideal one and, in
particular, we cannot exactly invert the perturbed Hamiltonian
and thus revert the time evolution. Because of the deviations
in Ĥ0, the quantity

∑
�M A(�M) is no longer conserved,

but decays with increasing evolution time. This decay is not
uniform, but it affects mostly those components of the density
operator that correspond to strongly delocalized coherence. As
a result, the spreading of the information is attenuated and the
system becomes effectively localized. It is this latter effect that
we want to study here; we isolate it from the overall decrease
of the signal by normalizing the MQC spectra such that the
total signal

∑
�M A(�M) for φ = 0 is again constant in time.

To analyze this deviation from the ideal evolution, we
introduce a perturbation �̂, whose strength we can control
experimentally, and study the behavior of the system as a
function of the perturbation strength. We choose the dipole-
dipole coupling for this perturbation, �̂ = Ĥdd , which is a
local interaction: every spin interacts mostly with its nearest
neighbors, while the coupling strength with more distant spins
drops off as 1/d3.

We add this Hamiltonian to the ideal Hamiltonian Ĥ0

by concatenating short evolution periods under Ĥdd with
evolution periods under Ĥ0. We label the durations of
the two time periods τ� and τ0, as shown in Fig. 6. When the
duration τc = τ0 + τ� of each cycle is short compared to the
inverse of the dipolar couplings dij , the resulting evolution can
be described by the effective Hamiltonian

Ĥeff = (1 − p)Ĥ0 + p�̂, (11)

where the relative strength p = τ�/τc of the perturbation �̂ =
Ĥdd can be controlled by adjusting the duration τ� . In the
experiment, we compare the artificially perturbed evolution of
Ĥeff with the Ĥ0 evolution with its intrinsic errors. While the
intrinsic errors reduce the signal or the overall fidelity, they
do not cause localization on the time scale of our experiments
(see Fig. 5).

Considering now this perturbation, starting from thermal
equilibrium, the state of the system at the end of N cycles is

ρ̂Heff (Nτc) = e−iĤeffNτc ρ̂0 eiĤeffNτc . (12)

Taking into account now the complete sequence of evolutions
given by Fig. 6,

ρ̂0
(Ĥeff )φNτc−−−−−→ ρ̂

Heff
φ (Nτc) = φ̂zρ̂

Heff (Nτc)φ̂†
z

= φ̂ze
−iĤeffNτc ρ̂0e

iĤeffNτc φ̂†
z

=
∑
�M

φ̂zρ̂
Heff
�M (Nτc)φ̂†

z

=
∑
�M

ρ̂
Heff
�M (Nτc)ei�Mφ, (13)

N

0

N

0

-

FIG. 6. (Color online) NMR sequence for the quantum simula-
tions. A perturbed evolution is achieved when τ� 	= 0. The effective
Hamiltonian Ĥ0 is generated by the sequence of π/2 pulses shown
in the upper part of Fig. 3, and �̂ = Ĥdd is the free evolution
Hamiltonian.

012320-5
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(−Ĥ0)Nτ0−−−−−→ ρ̂
Heff
f (Nτc + Nτ0)

= eiĤ0Nτ0 ρ̂
Heff
φ (Nτc)e−iĤ0Nτ0

=
∑
�M

[
eiĤ0Nτ0 ρ̂

Heff
�M (Nτc)e−iĤ0Nτ0

]
ei�Mφ. (14)

Thus the NMR signal, which is measured after the last
backward evolution exp{iĤ0Nτ0}, can be written as

S(φ,Nτ0 + Nτc) = Tr
{
Îzρ̂

Heff
f (Nτc + Nτ0)

}
= Tr

{
e−iĤ0Nτ0 ρ̂0e

iĤ0Nτ0 ρ̂
Heff
φ (Nτc)

}
= Tr

{
ρ̂H0 (Nτ0)ρ̂Heff

φ (Nτc)
}

=
∑
�M

eiφ�MTr
{
ρ̂
H0
�M (Nτ0)ρ̂Heff

�M (Nτc)
}

(15)

=
∑
�M

eiφ�MA(�M). (16)

Reinterpreting these expressions, we define the effective
observable Â = e−iĤ0Nτ0 ρ̂0 eiĤ0Nτ0 = ρ̂H0 (Nτ0), where ρ̂H0 is
the density operator of the unperturbed evolution. The NMR
signal becomes then S(φ,Nτc) = Tr{Âρ̂

Heff
φ (Nτc)}.

For the ideal evolution (p = 0), Eq. (9) is recovered, where
A(�M) corresponds to the squared amplitudes of the density
operator elements ρ̂

H0
�M (Nτ0) with coherence order �M . For

the perturbed evolution (p 	= 0), they are reduced by the
overlap of the actual density operator elements ρ̂

Heff
�M (Nτc) with

the ideal ones. We extract these amplitudes by performing a
Fourier transformation with respect to φ. Figure 7 shows, as
an example, the resulting A(�M) as a function of time for
p = 0.108. The main panel represents the MQC distributions
for different evolution times. The main difference compared to

FIG. 7. (Color online) Time evolution of the MQC distribution
under a perturbation p = 0.108. The main panel shows the time
evolution of the MQC spectrum A(�M). The inset shows the time
evolution of the standard deviation σ for the unperturbed case
compared with the perturbed case. This comparison shows directly
the localization.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
100

101

102

103

104

Total evolution time N
c
 [ms]

C
lu

st
er

 s
iz

e 
K

 0.000
 0.009
 0.017
 0.025
 0.034
 0.050
 0.065
 0.080
 0.108

P
erturbation strength p

FIG. 8. (Color online) Time evolution of the cluster size for
different perturbation strengths. The black squares represent the
unperturbed time evolution and the other symbols correspond to the
perturbed evolutions according to the legend.

Fig. 4 is that the MQC spectrum does not spread indefinitely
[32]. We consider this saturation of the spreading of the MQC
spectrum evolution as evidence of localization due to the
perturbation (see below). The localization effects are easily
visualized by directly comparing the generation of high-order
multiple quantum coherences of the unperturbed case of Fig. 4
with the perturbed one of Fig. 7. While the distribution spreads
continuously in Fig. 4, it reaches a limiting value in Fig. 7.
The inset of Fig. 7 shows the time evolution of the width σ for
p = 0.108 compared with the unperturbed case.

From the width of the MQC spectrum, we calculate the
size of the spin clusters. The black squares of Fig. 8 show
the average number of correlated spins as a function of time
for an unperturbed evolution, p = 0. This is the log scale
representation of the curve of Fig. 5. The other symbols of
the figure show the evolution of the number of correlated
spins for different values of p. Initially, the cluster size
K(Nτc) starts to grow as in the unperturbed evolution, but
then it saturates after a time that decreases with increasing
perturbation strength p. As we explained above, we consider
this as evidence of localization induced by the perturbation and
it is related to spatial localization. The size of the cluster at
which this saturation occurs is also determined by the strength
of the perturbation: increasing perturbation strength reduces
the limiting cluster size.

B. Interpretation

The terms in Eq. (15) are related to the fidelity of
the corresponding density operator component ρ̂�M with
respect to the corresponding component resulting from the
unperturbed evolution

f�M = Tr
{
ρ̂
H0
�M (Nτ0)ρ̂Heff

�M (Nτc)
}

Tr
{
ρ̂
H0
�M (Nτ0)ρ̂H0

�M (Nτ0)
} , (17)

which reaches unity for vanishing perturbation (p = 0). We
therefore consider the reduction as a quantitative measure of
the effect of the perturbation. The decoherence of different
�M blocks of the density matrix was studied when a given
quantum state prepared by evolution under Ĥ0 evolves under
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a pure Ĥdd = �̂ perturbation [9,13]. However, the quantifi-
cation and characterization of how a perturbation disturbs the
different blocks of the density matrix during the creation of
spin-cluster states is still not known. This merits further studies
like that in Ref. [65]. Here, we focus only on the effect on the
number of correlated spins and do not consider the change of
the overall amplitude. Thus we normalize the integral of each
spectrum and determine its width by fitting it to a Gaussian or
an exponential.

The spreading of the MQC spectrum is generated by the
effective Hamiltonian created with the sequence of Fig. 1. The
cluster size that we determine here corresponds to an overlap of
the actual state with the ideal state resulting from unperturbed
evolution. This is similar to the fidelity measure in quantum
computing, where the agreement between the actual state of the
system with the target state is measured. In our case, the target
state is a growing cluster, while the actual state grows only
for some time until it reaches a limiting size, which is typical
for localization. The size of this localized state decreases with
increasing perturbation strength.

During our experiment, the magnetization is uniform
throughout the sample, so the process does not lead to a spatial
redistribution of magnetization. However, since we measure
the number of correlated spins, we can attribute a length scale
to the resulting state. Given a suitable initial state, the same
process would generate highly entangled multiqubit states. In
the presence of a perturbation, the number of qubits that can
be entangled in this way is limited to the size of the resulting
cluster.

V. EVIDENCE FOR A DYNAMICAL EQUILIBRIUM
CLUSTER SIZE

The experimental results presented above show that the
cluster size reaches a stationary value. It remains to be seen if
this limiting size results from a slowdown in the growth [29]
or if it represents a dynamic equilibrium state. We showed
that actually the cluster size achieves a dynamical equilibrium
state [32]. In order to do that, we repeated the previous
experiment for a series of initial conditions corresponding
to different clusters sizes. Figure 9 shows the corresponding
pulse sequence: the initial state preparation, consisting of an
evolution of duration N0τ0 under the unperturbed Hamiltonian
Ĥ0, generates clusters of size K0. During the subsequent

a

FIG. 9. (Color online) NMR pulse sequence for preparing dif-
ferent initial clusters sizes and subsequently evolving them in the
presence of a perturbation.
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FIG. 10. (Color online) Time evolution of the MQC distribution
in the presence of a perturbation starting from an initial sate with
K0 
 141 correlated spins. The initial MQC distribution of the initial
state is given by the black squares and other colored symbols give
its further time evolution for two different perturbation strengths:
(a) p = 0.080 and (b) p = 0.025.

perturbed evolution of duration Nτc, these initial clusters
evolve and Eq. (15) becomes

S(φ,Nτc) =
∑
�M

eiφ�MA(�M)

=
∑
�M

eiφ�MTr
{
ρ̂
H0
�M (Nτ0,N0τ0)ρ̂Heff

�M (Nτc,N0τ0)
}
.

(18)

Figure 10 shows the results from these measurements. The
symbols represent the amplitudes A(�M) of the different
multiple quantum coherences as a function of the coherence
order �M for different evolution times. The time evolution
starts from an initial cluster size K0 = 141 for two different
perturbations strengths: p = 0.080 and p = 0.025. In this
figure, the A(�M) values are not normalized. We find that
the width of the MQC distributions contracts as a function
of time in Fig. 10(a), but expands in Fig. 10(b). As in the
case where we start from size K0 = 1, this expansion does not
continue indefinitely, but it saturates. Similarly, the contraction
also reaches an equilibrium value. This is evident at the longest
evolution times, where the gradients of the MQC distributions,
which give the cluster sizes, are parallel in the semi-log-scale
representation.

To quantify this, we determined the width of the MQC
spectra and from that the cluster size. Figure 11 shows
the evolution of the cluster size when we start from the
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FIG. 11. (Color online) Time evolution of the cluster size starting
from two different initial states as a function of the perturbation
strength. Filled symbols are evolutions from an uncorrelated initial
state (K0 = 1) and the empty symbols start from an initial state with
K0 = 141 correlated spins (marked with black squares joined with a
solid line). The equilibrium cluster sizes are represented by symbols
in the K-p plane.

initial value K0 = 141 for different perturbation strengths
(empty symbols). The solid symbols represent the cluster-size
evolution starting from K0 = 1, i.e., the curves shown in Fig. 8.
For all perturbation strengths, the time series for a given
perturbation strength converges to the same limiting value,
independent of the initial condition. Thus, we find that the
evolution leads to a limiting cluster size that varies with the
perturbation strength p, but does not depend on the initial
condition K0. The limiting cluster sizes are represented by the
symbols on the K-p plane in Fig. 11.

This is again confirmed by the results shown in Fig. 12,
which summarizes the results for additional initial values
and two perturbation strengths, p = 0.034 and p = 0.065.
The filled symbols correspond to uncorrelated initial states
(K0 = 1) and the empty symbols to various initial cluster sizes.
For a given perturbation strength, the size of the spin clusters
tends toward the same limiting value, independent of the initial
condition.

VI. LOCALIZATION SIZE VS PERTURBATION
STRENGTH

A. Experimental evidence

According to Figs. 8, 11, and 12, the size of the dynamical
equilibrium clusters decreases with increasing strength of the
perturbation. For a quantitative analysis of this dependence,
we determined the size of the localized clusters from the
data shown in Figs. 8, 11, and 12 and plotted them against
the perturbation strength in Fig. 13. The yellow or light
gray diagonal band in the figure represents a linear fit to
the experimental data that gives Kloc ∼ p−1.86±0.05, i.e., the
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FIG. 12. (Color online) Time evolution of the cluster size starting
from different initial sates. Filled symbols are evolutions from an
uncorrelated initial state for two different perturbation strengths given
in the legend. Empty symbols start from an initial state with K0

correlated spins.

cluster size decreases almost proportionally to the square of
the perturbation strength. The error of the fit is indicated
by the width of the band. The limiting value for p = 1,
Kloc ≈ 1, is consistent with the expectation that the system
becomes completely localized if the perturbation strength is
significantly larger than the unperturbed Hamiltonian.

The figure also summarizes the evolution of the cluster size
before the static (localized) size is reached. If the initial size
is larger than the stationary value for the given perturbation
strength, K0 > Kloc, the cluster shrinks [inset (a) in Fig. 13,
above the diagonal]. If it is smaller, K0 < Kloc, the size
increases with time [inset (b), below the diagonal].

(a)

(b)

FIG. 13. (Color online) Localized cluster size Kloc (square
symbols) of correlated spins vs the perturbation strength p. Three
dynamical regimes for the evolution of the cluster size are identified
depending on the number of correlated spins compared with the
perturbation-dependent localization value: (a) cluster size decreases,
(b) cluster size increases, and (c) stationary regime.
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B. Phenomenological model

A theoretical model that describes this behavior would
be highly desirable but is beyond the scope of this paper.
Instead, we describe here a simple phenomenological model
that summarizes the observed behavior. For this purpose, we
write the amplitudes of the MQC spectra as

A(�M,t) = Ae−�M/
√

K(t). (19)

The exponential form agrees with the experimental data (see,
e.g., Figs. 4 and 10). According to Fig. 5, the growth of the
cluster size is exponential during a large part of the experiment.
It may then be described by a differential equation of the type

dK

dt
= αK, (20)

where α is the growth rate, which is proportional to the second
moment of the NMR resonance line [62].

To derive an equation of motion for the perturbed evolution,
we first consider the effect of the perturbation alone. As we
have shown before [9], the interaction with the environment
causes a decay of the MQC amplitudes that depends on the
MQC order �M . It was shown in Ref. [9] that over the
range of our measurements the decay rate is almost ∝ �M .
The decay of the MQC amplitudes during a time τ is thus
δA(�M) ∝ −A(�M)�Mpbτ, where p is the perturbation
strength introduced above and b is the decay rate of single
quantum coherences under the full perturbation, p = 1.

During a short time τ , the MQC spectrum evolves thus from
Eq. (19) to

A(�M,t + τ ) = Ae−�M(1/
√

K1(t+τ )+pbτ ).

Here, K1 = K0(1 + ατ ) is the size that the cluster size would
reach, starting from K0 in the absence of the perturbation. We
can rewrite this as

A(�M,t + τ ) = Ae−�M/
√

K
′
1(t+τ ),

with

K ′
1 = K0(1 + ατ )

[1 + √
K0(1 + ατ )pbτ ]2

= K0(1 + ατ )

1 + 2
√

K0(1 + ατ )pbτ + K0(1 + ατ )(pbτ )2
, (21)

where for short τ ,

K ′
1 ≈ K0(1 + ατ )

1 + 2
√

K0(1 + ατ )pbτ

≈ K0(1 + ατ )[1 − 2
√

K0(1 + ατ )pbτ ]. (22)

We now look for the stationary solution where K ′
1 = K0 :

K ′
1 = K0 = K0(1 + ατ )[1 − 2

√
K0(1 + ατ )pbτ ]. (23)

If we consider only terms of O(τ ) in the infinitesimal time τ ,
this is equivalent to

(α − 2
√

K0pb) = 0. (24)

Solving for K0, we find the stationary cluster size as

Kloc =
(

α

2bp

)2

. (25)

Considering the simplicity of this phenomenological model,
this result agrees reasonably well with the experimentally
observed behavior.

VII. DISCUSSION AND CONCLUSIONS

As a step toward improved understanding of the evolution
of large quantum systems, we have studied the spreading
of information in a system of nuclear spins. Starting with
single qubits, the information can spread to clusters of several
thousand qubits. While decoherence is well known to limit the
time for which quantum information can be used, we focused
here on its effect on the distance over which a quantum state
can be transferred. For that purpose, a locally stored state
was left to evolve in a 3D spin-coupling network. Using
standard NMR techniques, we generated a Hamiltonian Ĥ0

that spreads the information and allows one to quantify the size
of the resulting cluster of correlated spins. By comparing this
unperturbed evolution with the evolution where a perturbation
Hamiltonian of variable strength is added to Ĥ0, we showed
that the information becomes localized on a distance scale that
decreases with increasing perturbation strength.

Our experimental results demonstrate that a common
dynamic equilibrium size of the localized state is achieved
independent of the initial state consisting of different numbers
of correlated spins. We developed a phenomenological model
to describe these effects, which may be attributed to the
competition between the spreading evolution driven by Ĥ0 and
its systematic reduction due to decoherence induced by the per-
turbation. These results are related to theoretical predictions on
similar systems that indicate a slowdown of the spreading [29]
and can induce localized states with a finite cluster size [66].
Further extensions of these previous works could show if a dy-
namical equilibrium independent of the initial state appears as
in our experiments. These previous works have considered dis-
order as the perturbation that produces Anderson localization.

The results presented here show a transition in the spin dy-
namics from an indefinite spreading to a localized dynamics. A
spin far away from the spin where the initial condition is stored
would receive excitation at some time if the perturbation is
below a critical value; however, if the perturbation exceeds this
threshold, no excitation will arrive at this site. Our experiments
show a transition for the cluster-size dynamics: if the cluster
size of the initial state exceeds the localization value, then
it shrinks until it reaches the equilibrium value, but when the
initial cluster size is lower than the localization value, it grows.

These results may also be connected to our earlier findings
that the decoherence rate of quantum states with many
correlated qubits increases with the size of the system [9] as√

K , indicating that larger systems are more sensitive to pertur-
bations. This increasing of the decoherence rate as the system
size increases balances the tendency of the system to spread.
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[41] G. A. Álvarez, M. Mishkovsky, E. P. Danieli, P. R. Levstein,
H. M. Pastawski, and L. Frydman, Phys. Rev. A 81, 060302(R)
(2010).

[42] P. Cappellaro, C. Ramanathan, and D. G. Cory, Phys. Rev. A 76,
032317 (2007).

[43] E. Rufeil-Fiori, C. M. Sanchez, F. Y. Oliva, H. M. Pastawski,
and P. R. Levstein, Phys. Rev. A 79, 032324 (2009).

[44] W. Zhang, P. Cappellaro, N. Antler, B. Pepper, D. G. Cory,
V. V. Dobrovitski, C. Ramanathan, and L. Viola, Phys. Rev. A
80, 052323 (2009).
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