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Dynamical decoupling, a generalization of the original NMR spin-echo sequence, is becoming in-
creasingly relevant as a tool for reducing decoherence in quantum systems. Such sequences apply
non-equidistant refocusing pulses for optimizing the coupling between systems, and environmental
fluctuations characterized by a given noise spectrum. One such sequence, dubbed Selective Dynam-
ical Recoupling (SDR) [P. E. S. Smith, G. Bensky, G. A. Álvarez, G. Kurizki, and L. Frydman,
Proc. Natl. Acad. Sci. 109, 5958 (2012)], allows one to coherently reintroduce diffusion decoher-
ence effects driven by fluctuations arising from restricted molecular diffusion [G. A. Álvarez, N.
Shemesh, and L. Frydman, Phys. Rev. Lett. 111, 080404 (2013)]. The fully-refocused, constant-
time, and constant-number-of-pulses nature of SDR also allows one to filter out “intrinsic” T1 and T2

weightings, as well as pulse errors acting as additional sources of decoherence. This article explores
such features when the fluctuations are now driven by unrestricted molecular diffusion. In particu-
lar, we show that diffusion-driven SDR can be exploited to investigate the decoherence arising from
the frequency fluctuations imposed by internal gradients. As a result, SDR presents a unique way
of probing and characterizing these internal magnetic fields, given an a priori known free diffusion
coefficient. This has important implications in studies of structured systems, including porous media
and live tissues, where the internal gradients may serve as fingerprints for the system’s composi-
tion or structure. The principles of this method, along with full analytical solutions for the unre-
stricted diffusion-driven modulation of the SDR signal, are presented. The potential of this approach
is demonstrated with the generation of a novel source of MRI contrast, based on the background
gradients active in an ex vivo mouse brain. Additional features and limitations of this new method
are discussed. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4865335]

I. INTRODUCTION

Even when subject to a strong, uniform external field,
nuclear spins experience fluctuations in their nuclear mag-
netic resonance (NMR) frequencies. These will arise from
the orientation- and the position-dependencies that charac-
terize the NMR interactions.1 In heterogeneous systems in
particular, susceptibility differences between various matri-
ces and interfaces give rise to (often complicated) spatially-
varying magnetic field patterns �B0(r).2–5 Spins residing
in these interface locations – which may span length-scales
ranging from nanometers in porous systems to macroscopic
lengths – will experience a range of frequency offsets
�ν = γ�B0. These offsets will appear as an effective
line broadening in the NMR spectrum, shortening the trans-
verse dephasing rate of the ensemble. If these susceptibility-
driven offset distributions6 do not have a zero average, the
NMR signals may also experience frequency shifts.7 While
a complication in high-resolution NMR, such susceptibility-
induced effects have proven remarkably useful for NMR
imaging (MRI). In MRI of the Central-Nervous-System, for
example, phase maps can generate unique, susceptibility-
weighted-imaging contrasts.7–9 Furthermore, time-dependent
T ∗

2 contrasts form the basis of functional MRI, which re-
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flects susceptibility-driven variations between oxygenated
and oxygen-deprived blood.10 Recently, it has been further
demonstrated that the susceptibility tensor can be charac-
terized by a rotation of the specimen with respect to B0,11

yielding remarkably detailed information on local magnetic
field anisotropies, and providing a new means for infer-
ring microstructural orientations.12, 13 T ∗

2 is also emerging as
an orientation-dependent marker,14, 15 suggesting its poten-
tial usefulness for characterizing the composition16 and/or
microstructure12, 17 of complex systems.

Despite all this clear potential, the detection of the afore-
mentioned effects may be hampered by inherent complica-
tions arising from global static-field distortions; macroscopic
artifacts that are unrelated to the interfacial (and usually
microscopic-level) effects being sought. Applying refocusing
π -pulses can compensate for the evolutions incurred from
these static B0 distortions, but at the expense of the infor-
mation on the desired susceptibility-induced effects – which
will also be refocused upon applying π -pulses. Spatially-
varying local magnetic fields, often termed “background
gradients,”18 can still be measured if aided by molecular dif-
fusion effects.19, 20 Spins diffusing in susceptibility-driven in-
ternal gradients will accumulate phases that cannot be refo-
cused by the application of π -pulses, since a phase evolved
at a position r1 will not necessarily be refocused by a time-
reversed evolution at another position r2. In NMR/MRI, such
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effects are exploited for extracting diffusion coefficients, usu-
ally with the aid of external diffusion-sensitizing gradients.
Internal gradients, however, will also interact with these ex-
ternal fields, producing cross-terms that may hamper accurate
measurements of diffusion-derived phenomena.18 Numerous
methods have been proposed and implemented for counteract-
ing these background gradients effects.3, 18, 21–28 Conversely,
Cho et al.29 have recently shown that internal field distribu-
tions can be obtained from the cross-terms between the ap-
plied diffusion gradients and the internal fields. Han et al.
demonstrated how this concept can be used further to de-
rive orientations of anisotropic systems.30 Diffusion mea-
surements under the sole influence of the internal gradients
are also feasible; they are the basis of the Decay due to
Diffusion in Internal Fields (DDIF) approach,3, 20, 31–33 which
determines rock microstructures utilizing the internal gradi-
ents as the diffusion-sensitizing “apparatus.” Other studies
explored diffusion in the presence of a constant background
gradient modulated by a different number of pulses or by dif-
ferent evolution times.19, 34 Still, as these methods are not ap-
plied in a constant-time and constant number of pulses fash-
ion, they are prone to other decoherence sources such as T2,
pulse artifacts or T1 losses.

In the present article, we propose an alternative method-
ology for measuring the internal gradients directly: in a
constant-time fashion, using a constant number of π -pulses,
and without introducing external diffusion-sensitizing gra-
dients. The approach is based on the recently introduced
Selective-Dynamical-Recoupling (SDR) concept,35, 36 which
entails varying the delay distributions of N refocusing
π -pulses applied over a constant evolution time. SDR has
been recently shown sensitive to diffusion-driven decohering
effects when a constant external gradient was applied, yield-
ing accurate compartment sizes when spins undergo restricted
diffusion.36, 37 Here, we extend these concepts by assuming
that susceptibility-driven background gradients are the only
source of (unrestricted) diffusion-driven decoherence; thus,
characterizations of internal gradients in heterogeneous sys-
tems are made possible, with the aid of the free diffusion co-
efficients that can be measured in separate experiments.

We set forth in Sec. II, the theory for SDR under the
influence of a background gradient and show how SDR can
quantify these background gradients as aided by unrestricted
diffusion. An application of SDR in MRI, aimed at detect-
ing internal gradients in ex vivo mouse brains, is presented in
Sec. IV (experimental setup details are given in Sec. III).
Section V concludes with a discussion on potential extensions
of these concepts.

II. SELECTIVE DYNAMICAL RECOUPLING OF
BACKGROUND GRADIENTS ASSISTED
BY FREE DIFFUSION

We consider spins-1/2 Ŝ that are solely coupled to a
longitudinal magnetic field B0 and that are part of a fluid
immersed in a heterogeneous structure. Two sources of
static magnetic field variations may influence these spins:
(1) (unwanted) effects arising from inhomogenities in the ex-
ternal magnetic field, (2) (sought) variations arising from in-

homogenities induced by susceptibility differences between
the immersed fluid and the structure’s interface. As a re-
sult of these variations, diffusing spins will experience fluc-
tuations in their felt magnetic field. In the usual NMR res-
onant rotating frame,38 the relevant Hamiltonian is ĤSE(t)
= ωSE(t)Ŝz, where ωSE(t) is a fluctuating frequency (noise)
originated by the random motions. Under the assumption that
diffusing spins will acquire a random phase φi(t) exhibit-
ing a Gaussian distribution,39 the total signal arising from
the spin ensemble at an evolution time TE will be: M(T E)
= ∑

i e
−iφi,0(T E)− 1

2 [〈φ2
i (T E)〉−φ2

i,0(T E)]. Here, the average value of
the random phase, φi, 0(t) = 〈φ(t)〉, depends on the position of
the spin.

Normally, the decay of this magnetization will be driven
by inhomogenities of the external magnetic field.40 These ef-
fects can be reduced by applying refocusing pulses. We con-
sider thus the application of a spin-echo sequence that pe-
riodically reverses the spins’ phases, and hence reduces the
effects of static external magnetic field inhomogenities41–43

We focus in particular on the SDR scheme35, 36 (Fig. 1), a se-
quence which can be divided into two parts: a CPMG mod-
ulation involving N − 1 pulses42, 43 with a delay x, and a
Hahn-echo refocusing period41 of duration y. Whereas with-
out these pulses the average evolution of each spin will de-
pend on its position in the sample, SDR’s fully-refocused na-
ture makes the average phase φi, 0(TE) = 0. This results in a
signal M(T E) = e− 1

2 〈φ2(T E)〉; a decay that can be quantified
by the exponentials argument44, 45

1

2
〈φ2(T E)〉 = 1

2

∫ ∞

−∞
dωS(ω)|F (ω, T E)|2. (1)

In this equation, F(ω, TE) is a filter function, given by the
Fourier transform of the modulation function

√
2πfN (t ′, T E)

that switches between ±1 at the position of every pulse
(Fig. 1(b)).46–49 S(ω) is the spectral density of the preces-
sion frequency fluctuation, given by the Fourier transform of
the auto-correlation function g(τ ) = 〈�ωSE(t)�ωSE(t + τ )〉,
where �ωSE(t) is the instantaneous frequency devia-
tion from the average value at time t. This �ωSE(t)
= γ 〈G〉 [r(t) − 〈r(t)〉] reflects in turn the mean average gra-
dient 〈G〉 felt by the randomly walking spin, as well as the
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FIG. 1. Selective dynamical recoupling NMR sequence for probing a dif-
fusion spectrum and background gradients. (a) Sequence of N RF π pulses
applied to the nuclear spins during the total evolution time TE, incorporating a
CPMG sequence with pulses spaced by x and a Hahn sequence of echo time y.
(b) Modulating function fN(t′, TE) of the resulting sequence.
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FIG. 2. Spectral density of the frequency fluctuations due to diffusion

S(ω) = �ω2
SE

τc

(1+ω2τ2
c )π

(black squares). The dashed line shows the free diffusion

regime given by the power law tail ∝ω−2 for frequencies larger than the in-
verse of the fluctuation correlation time 1/τ c. Empty circles show the change
in this spectrum upon considering the addition of an effective T2-like decay
assumed constant (T2 = 5τ c), whose spectral density is independent of the
frequency.

displacement fluctuation r(t) − 〈r(t)〉 along the magnetic field
gradient direction.50 Assuming that diffusion takes place un-
der the Gaussian random-phase approximation50 this auto-
correlation will be characterized by an exponential decay:
g(τ ) = �ω2

SE exp{−|τ |/τc}, where �ω2
SE = 〈�ω2

SE(0)〉 is a
mean square frequency and τ c is the fluctuation’s correlation
time. Plausible spectral density functions associated with dif-
ferent fluctuating models are plotted in Fig. 2. Notice that
since these fluctuations are wholly ascribed to translational
motions, S(ω) will be proportional to the molecular diffusion
spectral density D(ω): D(ω) = ω2S(ω)/(〈G〉2γ 2).51, 52 It then
follows that 〈�ω2

SE〉 = γ 2〈G〉2D0τc = γ 2〈G〉2l2
c /2, where lc

is the correlation length associated with the diffusion process
and is given by the Einstein expression l2

c = 2D0τc, where D0

is the free diffusion coefficient.
With this as background, we consider SDR’s potential to

probe the average background gradient 〈G〉 felt by the spins,
when these are in the free diffusion regime. In this restriction-
less τ c 	 TE limit, the relevant time scales x, y associated
with the SDR pulse sequence are shorter than τ c, and one can
probe the background gradient without knowledge of the cor-
relation or restriction length lc. Indeed, since the longest delay
between pulses max {x, y} 
 τ c, the peaks of the filter func-
tion F(ω, TE) introduced in Eq. (1), will appear at frequencies
ω 	 1/τ c.48, 49, 51 The decoherence time of the spin signal at
the end of the SDR sequence is thus dominated by the “tail”

of the spectral density S(ω) ∼ �ω2
SE

ω2τcπ
= 2γ 2〈G〉2D0

πω2 (dashed red
line in Fig. 2).49, 53 To quantify this feature we consider the
magnetization decays for the two parts of the SDR sequence
in Fig. 1. The signal decay for the CPMG portion of the se-
quence (x = y in Fig. 1) is well known,42 and is given by

M
f ree

CPMG((N − 1)x,N − 1)

= exp

{
− 1

12

�ω2
SE

τc

(N − 1)x3

}
= exp

{
− 1

12
γ 2 〈G〉2 D0(N − 1)x3

}
. (2)

As expected, M
f ree

CPMG is independent of τ c. The decay for a
Hahn sequence (N = 1 and x = 0 in Fig. 1) follows from

setting N − 1 = 1 in this expression:

M
f ree

Hahn(y) = exp

{
− 1

12
γ 2 〈G〉2 D0y

3

}
. (3)

Notice that, without pulses, the evolution of the free induction
decay (FID) is

M
f ree

FID (T E) = exp

{
−1

2
�ω2

SET E2

}
(4)

= exp

{
−1

2
γ 2 〈G〉2 D0τcT E2

}
. (5)

Contrary to M
f ree

CPMG and M
f ree

Hahn, this expression depends on
τ c and consequently on the sample size.

While CPMG decays monitored as a function of x are
normally used for measuring the diffusion coefficient, they
can be also used for determining 〈G〉 when the diffusion coef-
ficient is known. Figure 3 shows the features that will in such
instances arise, if attempting to measure internal fields gradi-
ents 〈G〉 in the presence of global �B0 inhomogenities. While
the span of the external magnetic field �B0 over the complete
sample of length L is larger than the internal fields, this will
not be the case for the external field changes �b0 if smaller
distances �r are considered. This lies at the heart of using
CPMG, in combination with diffusion, to characterize 〈G〉
while avoiding �B0’s dominance. By relying on diffusion-
driven fluctuations but refocusing the spins’ coherent evolu-
tion before they have traveled long distances �r, the 〈�B0

L
〉

≈ 〈�b0
�r

〉 
 〈G〉 condition can be fulfilled. In these cases, the
internal gradients that arise from microstructure-induced sus-
ceptibility effects, will dominate their global counterparts.

While this justifies the use of CPMG to monitor internal
gradients, these arguments consider the spins’ precession fre-
quency fluctuations (as a function of TE) as the only source of

FIG. 3. Different sources and scales of magnetic field inhomogenities. The
solid black line represents a global external variation over the full length L,
carrying no morphological content. The red solid line shows the magnetic
field additions generated by the susceptibility changes of interest. The global
external �B0 dominates the internal 〈G〉�r; but dynamical decoupling allows
one to choose times over which distances �r are allowed to be explored by
diffusion. On these length scales, the internal magnetic field gradients 〈G〉 are
larger than the ones generated by the external magnetic field inhomogenity
�b0/�r ≈ �B0/L.
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FIG. 4. Generic filter function F(ω, TE) of the SDR sequence, shown as
normalized intensity for N = 16 and illustrating how different spectral modes
can be probe by changing the delay x. The Hahn filter contribution dominates
for x = 0 and the CPMG harmonics dominates for x = TE/N. The dashed line
shows the behavior of the CPMG filter component.

decay. This will be valid if the applied pulses are ideal and if
no other sources of decoherence exist; in reality, CPMG sig-
nals will also decay due to the pulses’ non-idealities, and due
to intrinsic spin-spin relaxation (T2). The manner by which
these decohering sources modify typical S(ω) spectral densi-
ties is shown by Fig. 2’s empty circles. Such contributions can
eclipse the power law tail of the diffusion spectrum, and are
thereby known to limit the precision with which the sought
parameters can be determined. In other words: since by mea-
suring the 〈G〉-induced CPMG decay according to Eq. (2) one
needs to vary TE/N by either keeping TE fixed and chang-
ing the number of pulses, or by keeping constant the number
of pulses and changing TE, the diffusion-driven decay will
be either contaminated by N-dependent contributions from
the pulse imperfections, or it will reflect additional T2 signal
weightings.

To avoid these alternative sources of decoherence, the
SDR sequence departs from the CPMG scheme by keeping
fixed both the number of pulses N and the overall evolu-
tion time TE, and introducing non-equidistant delays into the
sequence.35, 36 By systematically varying the ratio x/y one can
still probe the power law tail of the spectral density S(ω) and
determine 〈G〉2D0, yet avoid the losses associated with chang-
ing TE or suffering from pulse-driven imperfections. The con-
sequences of this choice follow from the formalism given in
Eq. (1): the variable at the experimentalist’s control in the
SDR sequence is the filter function F(ω, TE), shown for a
generic case in Fig. 4. This figure evidences how the Hahn
and the CPMG contributions in F(ω, TE), will probe different
modes of S(ω) as a function of x.36, 49

Note that the fact that TE and N are constant means
that T2- or pulse-error-induced effects just rescale the overall
spin magnetization, independent of x; no decoherence sources
other than those related to diffusion need to be considered in
SDR.

The formalism in Eq. (1) allows one to calculate an ana-
lytical solution for the SDR signal decay, as

MSDR(T E, x, y,N)

= MCPMG((N − 1)x,N − 1)

×MHahn (y) × MCross−SDR(T E, x, y,N), (6)

reflecting a Hahn-decay, a CPMG-decay, and a potential
cross-term between the two filters that in principle cannot
be neglected. A rigorous derivation of these various compo-
nents is given in Ref. 36. While under restricted diffusion the
cross-term in Eq. (6) is essential for endowing SDR with its
high sensitivity for determining restriction lengths,36 the Ap-
pendix demonstrates why, for the free diffusion regime here
considered, this cross term contribution MCross−SDR is negligi-
ble. Therefore, the signal decay for SDR in this latter case is
given by

M
f ree−diff

SDR (T E, x, y,N)

= MCPMG ((N − 1) x,N − 1) × MHahn (y)

= exp

{
− 1

12
γ 2 〈G〉2 D0[(N − 1)x3 + y3]

}
. (7)

Considering that (N − 1)x + y = TE and using dimension-
less variables normalized by an equidistant delay TE/N, i.e.,
x′ = xN/TE and y′ = yN/TE, the SDR decay can be expressed
solely as a function of the x′ variable

M
f ree−diff

SDR

(
T E, x ′, N

)
= exp

{
− 1

12
γ 2 〈G〉2 D0T E3

×
[

1 − 3
N (N − 1)

N2
x ′ + 3

(
N2 − 2 N + 1

)
N2

x ′2

−
(
N2 − 3N + 2

)
N2

x ′3
]}

. (8)

The amplitude modulation of this method is then given
by the difference between the Hahn-echo extreme
M

f ree−diff

SDR (T E, x ′ = 0, N ) = M
f ree−diff

Hahn (T E), and the
CPMG extreme M

f ree−diff

SDR (T E, x ′ = 1, N ) = M
f ree−diff

CPMG

(T E,N ). Figure 5 shows typical SDR curves following
from Eq. (8) as a function of x′ and y, for TE = 80 ms, D0

= 2.01 × 10−5 cm2/s, 〈G〉 = 1G/cm and different values
of N. Notice that all curves converge towards x′ = 0 to the
Hahn decay M

f ree−diff

Hahn (T E), and for x′ = 1 to the CPMG
decay M

f ree−diff

CPMG (T E,N ) shown by the empty circles.
Note as well that by increasing N, the SDR modulations
converge to the Hahn modulation for a refocusing period
y, i.e., to M

f ree−diff

Hahn (y) (Fig. 5(b)). Important to stress
is the amplitude modulation that all SDR curves undergo
as a function of x′. This amplitude modulation �MSDR

= M
f ree−diff

CPMG (T E,N ) − M
f ree−diff

Hahn (T E) depends on
〈G〉2D0 and on the chosen TE, N. If a reasonable value
for D0 is assumed, these modulations can thus map the
background gradients 〈G〉. Alternatively, by measuring in a
separate experiment the fluid’s D0, fitting SDR’s modulation
will yield a quantitative description of the background
gradients in a constant-time, constant-pulsing fashion.
Suitable experiments to extract D0 values may rely on
oscillating-gradient or CPMG sequences;51, 54 alternatively,
Non-uniform Oscillating-Gradient Spin-Echo (NOGSE)
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FIG. 5. SDR modulations as a function of x′ = xN/TE (left) and y (right) for different number of pulses N, and for the indicated D0, TE, and 〈G〉 values. The
thick solid line gives the Hahn decay (i.e., a simple Hahn spin echo sequence with a total evolution time of TE) in the left panel, while in the right panel it is for
a total evolution time y. The empty circles show the CPMG value for the SDR modulations.

sequences37 incorporating strong external applied gradients
would also deliver this information.

III. EXPERIMENTAL SETUP

SDR’s abilities to monitor background gradients were ex-
perimentally tested on a 9.4 T Bruker Avance NMR spec-
trometer operating at 400.17 MHz for 1H’s, equipped with
a Micro5 imaging probe capable of producing maximum
pulsed-field-gradients of 291 G/cm in all three dimensions. To
explore the usefulness of this diffusion-based approach, a se-
ries of NMR imaging experiments were carried out. These
experiments were performed in ex vivo mouse brains, and
were aimed at characterizing the internal background gradi-
ents’ spatial distribution. The MRI sequence shown in Fig. 6
was used; this begins with a slice-selective excitation, follows
with a SDR “module” including N slice-selective refocusing
pulses, and concludes with a conventional 2D line-by-line im-
age encoding scheme. The formaline-fixed mouse brains an-
alyzed were washed twice with PBS, left thereafter in PBS
overnight, dried externally, and placed in a 10 mm NMR tube
for their examination in the magnet. Brains were aligned with
their anterior–posterior axes coinciding with the z-direction,
and allowed to thermally equilibrate for ∼2 h prior to the MRI
experiments.

N-2Gc(1) Gc(1)

GSL

GRO

RF

GPE

TE

Gprg

Gc(N-2) Gc(N-2)
Gc(N) Gc(N)

FIG. 6. SDR MRI sequence assayed, involving a slice-selective (SL) exci-
tation, followed by a train of slice-selective SDR refocusing π -pulses sur-
rounded by unequal gradient crushers Gc, and concluded with phase encoding
(PE), purging (prg), and readout (RO) gradients to encode a two-dimensional
image. The notation Gc(i) denotes pairs of crushers associated with the ith
SDR pulse; these crusher pairs must be applied randomly both in magnitude
and orientation to avoid refocusing of unwanted coherence pathways. In our
implementation, the following imaging parameters were used: TE = 80 ms,
repetition time = 3.5 s, number of dummy scans = 4, number of averages
= 8, slice thickness – 500 μm, field of view – 11 × 11 (mm)2 with a ma-
trix size = 96 × 96 leading to an isotropic in-plane resolution of 114 × 114
(μm)2. SDR-related parameters were: N = 4; x was varied from 3 to 20 ms in
10 steps, whereas y was concomitantly reduced from 71 ms to 20 ms. The gra-
dients associated with the slice-selective pulses contribute a diffusion-driven
decay that is an order of magnitude smaller than that arising from the internal
gradients.

x = 3 ms

y = 71 ms

x = 5 ms x = 7 ms x = 9 ms x = 11 ms

x = 13 ms x = 15 ms x = 17 ms x = 19 ms x = 20 ms
y = 65 ms y = 59 ms y = 53 ms y = 47 ms

y = 41 ms y = 35 ms y = 29 ms y = 23 ms y = 20 ms

 SDR-MRI data

FIG. 7. Raw SDR MRI images arising from ex vivo mouse brain experiments acquired with the sequence and parameters shown in Fig. 6 for the indicated
x- and y-combinations. Signal increases with increasing x-values are clearly evident in these raw data.
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(b) (c)ROI locations(a)

1

23
4

FIG. 8. Region-of-interest (ROI) analysis of SDR MRI data. (a) ROI definitions within the MRI image. (b) Absolute-valued SDR MRI signal evolution
in each ROI (symbols) along with fittings of the experimental points to Eq. (8) with only 〈G〉2D0 and the overall signal amplitude as fitting parameters.
(c) Normalized SDR MRI signal evolution. Note the good agreement between experimental data and theory, and the differential increases in the SDR MRI
signals with increasing x-values. The contrast in (c), manifested as the difference between the two extremes of the SDR curve, reflects the magnitude of the
〈G〉2D0 term.

IV. SDR-BASED DIFFUSION MRI: MAPPING
BACKGROUND GRADIENTS IN BIOLOGICAL TISSUES

Figure 7 shows representative raw data obtained from
SDR MRI scans in a mouse brain. Note the clear signal
changes observed with changing x-values, with most brain
regions showing the expected increase in signal as the x in-
terval is prolonged. To further analyze this SDR evolution,
a number of regions of interest (ROIs) were defined within
representative grey matter (Fig. 8(a), black and red ROIs)
and white matter tissues (Fig. 8(a), blue and magenta ROIs).
The averaged signal in each of these ROIs was then plotted
(Fig. 8(b), symbols). A signal increase was clearly observed
in all of these ROIs, as expected from the theory outlined
above. Upon fitting the data arising from these ROIs to Eq. (8)
(Fig. 8(b), solid lines) with only 〈G〉2D0 as a fitting parameter,
we found that all of these ROIs followed the predicted SDR
evolutions, with a very good agreement between the experi-
mental data and fitted curves. Another view of these data is
given in Fig. 8(c), showing the signal normalized to the first
SDR point M

f ree

SDR (T E, x = 0, N ) of the fitted curve, and re-
vealing that the range of signal variation was ∼5%−30% of
the initial signal. These relative signal changes, when viewed
in such normalized scale, directly contrast 〈G〉2D0 for each
ROI.

The SDR MRI data were then subject to a pixel-by-
pixel fitting of the data to Eq. (8), with only 〈G〉2D0 and
the overall signal amplitude as fitting parameters. 〈G〉 maps
can then be obtained from the 〈G〉2D0 extracted for each
pixel, if D0 is known or has been measured by a sep-
arate experiment (cf. Sec. II). Figure 9 assumes that D0

was uniform throughout the entire brain and equal to 0.7
× 10−5 cm2/s55, 56 related measurements (not shown) sug-
gested that little variation in D0 occurs within the brain.
The contrast derived from this SDR map is dramatically
different from any of the raw MRI images, reflecting the
new information extracted from these data. The magnitudes
of these background brain gradients range from ∼0.05 to
∼0.9 G/cm; remarkably, this 〈G〉-based contrast in the brain
appears spontaneously symmetric, suggesting that it arises

due to purely internal effects and confirming SDR’s indepen-
dence from global shimming-induced field distributions. In-
terestingly white matter tissue, and specifically the corpus cal-
losum, evidences stronger background gradients, consistent
with recent literature suggesting larger susceptibility-induced
field distributions in these regions.15, 57 The molecular origins
of these contrasts are under investigation but it seems that
myelin, a major constituent of white matter, may be at least
in part responsible.16 It should be added that the magnitudes
of the internal gradients in Fig. 9 appear to be slightly larger
than would be expected for soft tissues; this may be due in
part to our D0 value assumption, or due to decays introduced
by crusher gradients during the sequence. Changes on the for-
mer’s value or accounting for the latter would rescale the in-
ternal gradient map, but would leave unchanged its overall

<G>
[G/cm]

SDR MRI-derived
background gradient map
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0.1

0.2

0.3
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FIG. 9. Background gradient 〈G〉 map derived from the SDR MRI data. The
map arises from a pixel-by-pixel fitting of the data in Fig. 7, of the kind
that was illustrated in Fig. 8 for four ROIs, assuming that D0 is identical
throughout all ROIs.
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morphology. This reflects the self-normalized nature being fit
in these SDR signal measurements.

V. CONCLUSIONS

This study introduced a new method for determining in-
ternal gradients induced by susceptibility effects in structured
samples. By probing the decay dynamics within a regime
where spins diffuse effectively freely, we were able to ex-
tract unknown background gradient strengths, from simple
analytical fits; the sole unknown to extract these maps was
the free diffusion coefficient D0, which can usually be rea-
sonably assumed or determined by separate experiments with
known applied gradients. The method is based on applying
a non-equidistant spin-echo sequence that selectively modu-
lates diffusion decoherence effects, while keeping fixed the
total evolution time and the number of pulses.36 By changing
the pulse delay distribution, the ensuing SDR sequence only
probes the spectral density of the spin’s frequency fluctua-
tions due to the diffusion process. Analytical solutions of the
diffusion-driven modulations based on a spectral density ap-
proach, led to the background gradient maps being sought. As
a test of this method, we applied it to generate a new source
of MRI contrast based on the internal gradient strengths in a
mouse’s brain. Compared to other approaches utilizing diffu-
sion decay for probing the internal gradients,3, 19, 20, 31–33 the
SDR approach offers a constant-time and constant-pulsing
mode of operation which alleviates decoherence effects re-
lated to T1, T2, or RF imperfections, albeit at the expenses of
a relatively long TE (which might bias the measurement to-
wards longer T2 species). This approach to 〈G〉-mapping is by
contrast to most contemporary methods that aim at detecting
susceptibility-induced effects, by either mapping the phase
of gradient-echo images11 or by weighting the signals by T ∗

2
effects.14 Such methods are more susceptible than SDR to de-
phasing due to static (B0-based) inhomogenities, which may
obscure the desired microstructural information. This may be
further exacerbated by phase-unwrapping inaccuracies58 or
signal distortions near interfaces. SDR MRI on the other hand
is much less prone to static inhomogenities due to its applica-
tion of refocusing π -pulses, rendering the methodology sensi-
tive only to diffusion-assisted decoherence. Finally, it is worth
remarking that in every given pixel of a SDR image the un-
derlying structures will induce a distribution of internal gradi-
ents, both in magnitude29 and possibly also in orientations.30

〈G〉 maps like the ones shown in Fig. 9 only reflect an aver-
aged value across this distribution; one could envision that, by
applying alternative SDR gradient strategies, also these dis-
tributions might be directly probed. Work along such lines of
thought is currently in progress.
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APPENDIX: ANALYTICAL EXPRESSIONS AND
JUSTIFICATION OF NEGLECTING SDR’S HAHN-CPMG
CROSS-TERM UNDER FREE DIFFUSION

The full analytical expression and justification of Eq. (6)
can be found in Ref. 36. We justify here our neglecting of the
MCross−SDR(TE, x, y, N) cross-term on the SDR modulations,
on the basis of a Taylor expansion of those expressions as a
function of TE/τ c – a reasonable assumption since the free dif-
fusion regime fulfills TE/τ c 
 1. The cross-term in question
is then different depending on whether the number of pulses
N is even or odd

ln
{
Meven−N

Cross−SDR(T E, x, y,N )
}

≈ 1

16
γ 2 〈G〉2 D0TE 3

{(
TE
τc

) [
(N − 1)2 x ′4

N4

− 2
(N − 1) x ′3

N3
+ x ′2

N2

]
+ O

((
TE
τc

)2
)}

(A1)

and

ln
{
Modd−N

Cross−SDR(T E, x, y,N )
}

≈ 1

32

�ω2
SE

τc

T E3

{(
TE
τc

)2
[

(N − 1)3 x ′5

N5

− 2
(N − 1)2 x ′4

N4
+ (N − 1) x ′3

N3

]
+ O

((
TE
τc

)3
)}

,

(A2)

where x′ = xN/TE. These two expressions show that cross-
terms are scaled by (TE

τc
) and (TE

τc
)2 terms for N even or odd,

respectively. These are both smaller than the unity scaling ap-
pearing in both the Hahn- and CPMG-modulations given in
Eq. (8), thereby justifying their neglect. Physically, this ne-
glect reflects the fact that the Hahn and CPMG-derived filter
functions are very narrow compared with the changes of S(ω),
and while the direct terms are strictly positive, the cross terms
are fast oscillatory functions around zero that cancel out.
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