La capitalización compuesta - Tasas de interés

Patricia Kisbye

Profesorado en Matemática Facultad de Matemática, Astronomía y Física

2010

Patricia Kisbye (FaMAF) 2010 1 / 12

Principio básico de las finanzas

- Oportunidad de arbitraje: Es la posibilidad de invertir un dos capitales idénticos durante un mismo período de tiempo, con diferente rentabilidad.
- El arbitraje permite obtener interés positivo sin capital inicial

Un principio básico de la economía es la hipótesis de no arbitraje.

 Bajo esta hipótesis, dos operaciones alternativas realizadas con capitales idénticos y durante un mismo período de tiempo, producen el mismo interés.

Patricia Kisbye (FaMAF) 2010 2 / 12

Tasa de interés efectiva

Consideremos una operación financiera, y fijamos el inicio en t=0. Sea t un instante durante el período de la operación, t+1: una unidad de tiempo posterior.

Definición

Diremos que i(t) es la tasa de interés efectiva en [t, t+1] si el interés producido por una unidad de capital en dicho período es i(t). Es decir, el capital final producido es 1 + i(t).

Patricia Kisbye (FaMAF) 2010 3/12

Capital acumulado

- La tasa de interés efectiva está expresada en la unidad de tiempo correspondiente: anual, mensual, diaria,
- Asumiremos un ambiente de certidumbre: i(0), i(1), i(2), ... son conocidas.
- Un capital C invertido durante n unidades de tiempo producirá un capital:

$$C \cdot (1 + i(0) \cdot (1 + i(1)) \cdots (1 + i(n-1))$$

 Si las tasas de interés efectivas son constantes e iguales a i, el capital final será

$$C \cdot (1+i)^n$$

Patricia Kisbye (FaMAF) 2010

Ejemplo

Ejemplo

La tasa de interés efectiva que se paga por un depósito es del 2.5% los dos primeros años, con una reducción al 2% a partir de los dos años. Calcular el capital acumulado luego de 7 años por una inversión de \$10 000.

Solución:

$$C(7) = C_0 \cdot (1 + 0.025)^2 \cdot (1 + 0.02)^5 = 11599,75$$

El capital acumulado es de \$11 599.75.

La tasa de interés efectiva anual equivalente es i = 2.14%.

Patricia Kisbye (FaMAF) 2010

El valor temporal del dinero

- La existencia de las tasas de interés implica un valor temporal del dinero.
- Es preferible disponer de \$1000 hoy que \$1000 dentro de un año.
- Capital financiero: (C, t), donde C es un capital disponible en el tiempo t.
- Equivalencia de capitales financieros: Leyes de capitalización.

Patricia Kisbye (FaMAF) 2010 6 / 12

Subperíodos y tasa de interés

Definición

Dado un período de tiempo [t, t+1], i(t) la tasa de interés efectiva en dicho período, y m un número natural, llamamos tasa de interés efectiva periódica correspondiente al período

$$[t+\frac{s}{m},t+\frac{s+1}{m}]$$

a la tasa de interés efectiva en dicho período.

$$i^{(m)}\left(t+\frac{s}{m}\right)$$

Patricia Kisbye (FaMAF) 2010 7 / 12

Tasas de interés en subperíodos

El principio de no arbitraje implica que

$$1 + i(t) = \left(1 + i^{(m)}(t)\right) \left(1 + i^{(m)}(t + \frac{1}{m})\right) \dots \left(1 + i^{(m)}(t + \frac{m-1}{m})\right)$$

Si las tasas de interés periódicas son iguales (= $i^{(m)}$)

$$1 + i(t) = (1 + i^{(m)}(t))^m$$
.

• i(t) e $i^{(m)}$ son tasas equivalentes.

Ejemplo

Ejemplo

Dada una tasa de interés anual i(t) del 3%, entonces

- $i^{(2)} = 1.4889\%$ es una tasa semestral equivalente.
- Las tasas semestrales $i_1^{(2)}(t) = 1.25\%$ e $i_2^{(2)}(t + \frac{1}{2}) = 1.7284\%$ producen en una unidad de tiempo el mismo interés. No son equivalentes a la tasa anual del 3%.

$$(1+0.014889)^2=1.03$$

$$(1 + 0.0125)(1 + 0.017284) = 1.03.$$

Patricia Kisbye (FaMAF) 2010 9 / 12

Tasas de interés nominales

Definición

Dada una tasa de interés efectiva i(t), y una tasa periódica $i^{(m)}(t)$, llamamos tasa nominal del período [t, t+1] a la cantidad

$$j^{(m)}(t) = m \cdot i^{(m)}(t).$$

- La tasa nominal $j^{(m)}(t)$ es proporcional a $i^{(m)}(t)$.
- La tasa nominal no es aplicable, es una tasa enunciada.
- La tasa nominal no es equivalente a la tasa periódica $i^{(m)}$, y es estrictamente menor que i(t) si m > 1.

Patricia Kisbye (FaMAF) 2010

Ejemplo

Tasa nominal anual $j^{(m)}$ del 8%		
frecuencia	$i^{(m)}(t)$	i(t)
m=1	0.08	0.08
m=2	0.04	0.0816
m=4	0.02	0.082432
<i>m</i> = 12	0.00667	0.083
<i>m</i> = 365	0.000219	0.083278

La sucesión de tasas equivalentes anuales convergen a un único valor.

$$\lim_{m\to\infty}\left(1+\frac{j^{(m)}}{m}\right)^m=j$$

Patricia Kisbye (FaMAF) 2010

Capitalización instantánea

Definición

Dada una tasa de interés i(t), correspondiente a una unidad de tiempo (año), se define la tasa de interés nominal instantánea al límite

$$r(t) = \lim_{m \to \infty} j^{(m)}(t)$$

donde $i^{(m)}(t)$ es la tasa periódica equivalente a i(t) y $m \cdot i^{(m)}(t) = j^{(m)}(t)$.

 La tasa r(t) es la tasa nominal pactada diariamente en el mercado financiero.

Patricia Kisbye (FaMAF) 2010