La capitalización continua - Operación de descuento

Patricia Kisbye

Profesorado en Matemática Facultad de Matemática, Astronomía y Física

2010

Patricia Kisbye (FaMAF) 2010 1 / 12

Capitalización continua

Dado un período de tiempo, se han definido las siguientes tasas:

- Tasa de interés efectiva en el período: *i(t)*.
- Tasa de interés efectiva en un subperíodo: i^(m)
- Tasa de interés nominal con capitalización en el superíodo: $j^{(m)}(t)$

Se cumplen las siguientes relaciones:

$$(1+i^{(m)})^m=1+i$$
 $j^{(m)}(t)=m\cdot i^{(m)}$

Patricia Kisbye (FaMAF) 2010

Ejemplo

Tasa efectiva anual del 5%		
frecuencia	<i>i</i> ^(m)	$j^{(m)}(t)$
m = 1	0.05	0.05
m = 2	0.024695	0.049390
m = 4	0.012272	0.049089
m = 12	0.004074	0.048889
m = 365	0.000134	0.048793

• La sucesión de tasas nominales anuales convergen a un único valor.

$$\lim_{m\to\infty}j^{(m)}(t)=r(t)$$

Patricia Kisbye (FaMAF) 2010

Tasa nominal instantánea

Dado un período de tiempo, asumamos que se conocen

$$j^{(1)}(t), j^{(2)}(t), j^{(3)}(t), \ldots, j^{(m)}(t), \ldots$$

Definición

Se llama tasa de interés nominal con capitalización continua, o tipo de interés instantáneo al límite

$$r(t) = \lim_{t \to \infty} j^{(m)}(t)$$

siempre que este límite exista.

Patricia Kisbye (FaMAF) 2010 4/12

Tasa nominal instantánea

Ejemplo

Sea i = 0.08 la tasa efectiva anual. Entonces $i^{(m)} = 1.08^{1/m} - 1$, por lo cual

$$j^{(m)}(t) = m \cdot (1.08^{1/m} - 1).$$

En este caso, la tasa instantánea, o tasa nominal con capitalización continua, viene dada por

$$r(t) = r = \log(1.08).$$

La tasa r(t)

Dado un capital C(t) se tiene que

$$C(t+1/m)-C(t)=C(t)\cdot i^{(m)}(t)=\frac{1}{m}\cdot C(t)\cdot j^{(m)}(t).$$

Por lo tanto,

$$\lim_{m\to\infty}\frac{C(t+1/m)-C(t)}{1/m}=\lim_{t\to\infty}C(t)\cdot j^{(m)}(t).$$

es decir

$$\frac{d}{dt}C(t)=C(t)\cdot r(t).$$

Ecuación diferencial para r(t)

Considerando un intervalo de tiempo $[t_0, t]$, se tiene que

$$\frac{C'(t)}{C(t)}=r(t),$$

por lo cual

$$\log C(t) - \log C(t_0) = \int_{t_0}^t r(s) \, ds.$$

Usando propiedades del logaritmo se obtiene que:

$$C(t) = C(t_0) \cdot exp(\int_{t_0}^t r(s)) ds = C(t_0) \cdot e^{\int_{t_0}^t r(s) ds}.$$

Patricia Kisbye (FaMAF) 2010

La tasa de interés instantánea

Sea el tipo de interés instantáneo constante: r(t) = r . Se tiene entonces que

$$C(t) = C(t_0) e^{r(t-t_0)}$$
.

En particular, tomando $t_0 = 0$ y t = 1, debe cumplirse que

$$C(1)\cdot (1+i)=C(0)\cdot e^r.$$

• Para una tipo de interés instantáneo constante r, la tasa de interés efectiva está dada por $i = e^r - 1$.

Factor de acumulación

Llamaremos factor de acumulación correspondiente al plazo $[t_0, t_1]$, a la cantidad

$$A(t_0,t_1)=e^{\int_{t_0}^{t_1}r(s)\,ds}.$$

- $C(t_1) = C(t_0) A(t_0, t_1)$
- $i(t_0) = A(t_0, t_0 + 1) 1$
- $i^{(m)}(t_0) = A(t_0, t_0 + \frac{1}{m}) 1$

La función de acumulación $t\mapsto A(t_0,t)$ está dada por

$$A(t_0,t)=e^{\int_{t_0}^t r(s)\,ds}.$$

Patricia Kisbye (FaMAF) 2010

Propiedades de la función de acumulación

- $A(t_0, t) \ge 1$, para todo $t \ge 0$.
- $A(t_0, t_0) = 1$
- Si $t_0 < t_1 < t_2$, entonces

$$A(t_0, t_1) < A(t_0, t_2).$$

• Principio de consistencia Si $t_0 < t_1 < t_2$, entonces

$$A(t_0, t_2) = A(t_0, t_1) \cdot A(t_1, t_2).$$

Observación: ¿Qué ocurre si se utiliza la capitalización simple?

Patricia Kisbye (FaMAF) 2010 10 / 12

Factor de descuento

Definición

El valor descontado en t de un capital de valor nominal C disponible o con vencimiento en t_2 es

$$v(t_1,t_2) = \frac{C}{A(t_1,t_2)} = Ce^{-\int_{t_1}^{t_2} r(s) ds}.$$

Propiedades

•
$$i(t_0) = \frac{1}{v(t_0, t_0 + 1)} - 1 = \frac{1 - v(t_0, t_0 + 1)}{v(t_0, t_0 + 1)}$$

$$i = \frac{1 - v}{v}.$$

•
$$i^{(m)}(t_0) = \frac{1 - v(t_0, t_0 + \frac{1}{m})}{v(t_0, t_0 + \frac{1}{m})}$$

Función de descuento

Definición

La función de descuento que determina el valor actual de una cantidad monetaria disponible en el tiempo t se define por

$$v(0,t) = v(t) = e^{-\int_0^t r(s) ds}$$
 $t \ge 0$.

Propiedades

- $v(t) = \frac{1}{A(0,t)}$
- v(0) = 1
- **3** 0 < v(t) < 1, para t > 0.
- **9** Si $t_1 < t_2$, entonces $v(t_1) < v(t_2)$.
- **5** Si $t_1 < t_2$, $v(t_1) \cdot v(t_1, t_2) = v(t_2)$

2010