Rentas perpetuas

Patricia Kisbye

Profesorado en Matemática Facultad de Matemática, Astronomía y Física

2010

Patricia Kisbye (FaMAF) 2010

Rentas perpetuas

Definición

Una renta perpetua es una sucesión infinita de capitales financieros:

$$(C_1, t_1), (C_2, t_2), \ldots, (C_n, t_n), \ldots$$

con $t_k < t_{k+1}$ para $k \ge 1$.

Al igual que en el caso de las rentas ciertas, se tienen rentas perpetuas

- de cuotas constantes (unitarias)
- de cuotas variables (en progresión aritmética, geométrica, y otras).
- de cuotas anticipadas.
- de cuotas vencidas.

Esta clasificación no es exhaustiva.

Patricia Kisbye (FaMAF) 2010

Rentas perpetuas unitarias

- Asumiremos que los períodos de la renta equivalen a la unidad de tiempo.
- La valoración de la renta se hará de acuerdo a una tasa de interés i, correspondiente a esta unidad de tiempo.

Denotaremos:

- $a_{\infty i}$: valor inicial de una renta perpetua unitaria con cuotas vencidas.
- $\ddot{a}_{\infty i}$: valor inicial de una renta perpetua unitaria con cuotas anticipadas.

Patricia Kisbye (FaMAF) 2010

Cálculo de $a_{\infty i}$ y $\ddot{a}_{\infty i}$

Recordemos que para una renta cierta, el valor inicial de la renta unitaria es

$$\boxed{a_{\overline{n}|i} = \frac{1 - (1+i)^{-n}}{i}}$$
 cuotas vencidas

$$\ddot{\mathbf{a}}_{\overline{n}|i} = (1+i)\frac{1-(1+i)^{-n}}{i}$$

cuotas anticipadas

Para un número infinito de cuotas, se obtiene entonces que

$$a_{\overline{\infty}|i}=\frac{1}{i}$$

$$a_{\overline{\infty}|i} = \frac{1}{i}$$
 y $\ddot{a}_{\overline{\infty}|i} = \frac{1+i}{i}$.

Ejemplo

La mayoría de las empresas al constituirse asumen que su vida será ilimitada. Los poseedores de acciones de la empresa reciben periódicamente dividendos a cuenta de los beneficios.

Si una empresa otorga \$100 anuales por acción, ¿cuál es el valor actual de la acción si se la valora al 4 %?

Solución:

$$100 a_{\overline{\infty}|0,04} = \frac{100}{0,04} = 2500.$$

Rentas perpetuas en progresión geométrica

Estas rentas son de la forma

$$c, c \cdot q, c \cdot q^2, \ldots, c \cdot q^n, \ldots$$

- $q \ge (1+i)$: el valor actual tiende a infinito.
- q < (1 + i): el valor actual es

cuotas vencidas	$c\frac{1}{1+i-q}$
cuotas anticipadas	$c\frac{1+i}{1+i-q}$

Rentas perpetuas en progresión aritmética

Estas rentas son de la forma

$$c, c+h, c+2h, \ldots, c+(n-1)h, \ldots$$

Para una renta cierta, el valor actual para rentas unitarias con cuotas vencidas está dado por

$$a_{\overline{n}|i} + \frac{h}{i} \left(a_{\overline{n}|i} - \frac{n}{(1+i)^n} \right).$$

Tomando límite cuando n tiende a infinito, se obtiene que el valor actual para rentas perpetuas en progresión aritmética está dado por

cuotas vencidas	$\left(c+\frac{h}{i}\right)\cdot\frac{1}{i}$
cuotas anticipadas	$\left(c+\frac{h}{i}\right)\frac{1+i}{i}$

Patricia Kisbye (FaMAF) 2010

Ejemplo

Como consecuencia de una herencia, una persona percibirá anualmente una renta perpetua, cuya primer cuota será de \$50.000 y se irá incrementando en un 4 % cada año. Calcular el valor actual asumiendo que las cuotas son vencidas y con una valoración del 9 % anual.

Solución:

$$C = 50000, \qquad q = 1.04, \qquad i = 0.09$$

$$\frac{c}{1+i-q} = \frac{50000}{0.05} = 1\,000\,000$$

8/8

Patricia Kisbye (FaMAF)