La fórmula de Black-Scholes

Patricia Kisbye

Profesorado en Matemática Facultad de Matemática, Astronomía y Física

2010

Patricia Kisbye (FaMAF) 2010 1/11

Movimiento browniano

Un proceso estocástico continuo B(t) se dice movimiento browniano si verifica:

- B(t+s) B(s) no depende de valores previos a B(s) (incrementos independientes),
- B(t+s) B(s) tiene distribución normal

$$B(t+s) - B(s) \sim N(\mu t, \sigma \sqrt{t}),$$

 μ y σ independientes de t y s.

Este modelo fue descripto por el botánico Robert Brown (1827), y utilizado para modelar precios de acciones y commodities por Bachelier (1900)

Desventaja: precios negativos.

Patricia Kisbye (FaMAF) 2010

Movimiento geométrico browniano

Un proceso estocástico continuo W(t) se dice un movimiento geométrico browniano si verifica:

- W(t+s) W(s) es independiente de valores previos a W(s)
- $\frac{W(t+s)}{W(s)}$ tiene distribución lognormal

$$\log\left(rac{W(t+s)}{W(s)}
ight) \sim N(\mu\,t,\sigma\sqrt{t}).$$

En particular

$$\boxed{E\left[\frac{W(t+s)}{W(s)}\right]=e^{\mu\,t+\sigma^2\frac{t}{2}}}$$

Patricia Kisbye (FaMAF) 2010 3 / 11

M.G.B.

Si consideramos un intervalo (s, t + s) muy pequeño, podemos aproximar

$$\log\left(\frac{W(t+s)}{W(s)}\right) \sim \frac{W(t+s)-W(s)}{W(s)} = \frac{\Delta W}{W}.$$

Un movimiento geométrico browniano puede describirse entonces como:

$$\boxed{\frac{\Delta W}{W} = \mu \, \Delta t + \sigma \, Z \, \sqrt{\Delta t}}$$

- μ Δt: componente determinística.
- $Z \sim N(0, 1)$: interviene en la componente estocástica.

Patricia Kisbye (FaMAF) 2010

M.G.B. como modelo de precios de activos

Consideremos una serie histórica de precios de un determinado activo, tomados en intervalos de tiempo Δt .

$$S_0, S_1, S_2, \ldots, S_n, \ldots$$

donde S_k es el precio del activo en el tiempo $t = k \Delta t$. Para cada $k \ge 0$,

$$S_{k+1} = S_k e^{r_k \Delta t}$$

donde r_k es la tasa de interés instantánea en $t = k \Delta t$.

Patricia Kisbye (FaMAF) 2010 5/11

Hipótesis

Para n suficientemente grande, (Δt pequeño), se asumen las siguientes hipótesis:

Los valores r₁, r₂, ..., r_n están normalmente distribuidos:

$$r_{j} \sim N(\mu, \sigma), \quad \forall j$$

- μ: Tendencia (anual) del activo.
- σ: Volatilidad (anual) del activo.
- El movimiento de precios no depende de precios anteriores del activo.

$$\boxed{ \log \left(\frac{\mathcal{S}_{k+1}}{\mathcal{S}_k} \right) \sim \mathcal{N} \left(\mu \, \Delta t, \, \sigma \sqrt{\Delta t} \right). }$$

Los precios del activo siguen un movimiento geométrico browniano

Patricia Kisbye (FaMAF) 2010

El M.G.B. como límite del modelo binomial

Consideremos un activo con valor inicial S_0 , tendencia μ y volatilidad σ . Definimos el modelo binomial de n períodos para el precio del activo en el intervalo [0, T] de acuerdo a los parámetros:

$$\Delta = \frac{T}{n}, \quad u = e^{\sigma\sqrt{\Delta}}, \qquad d = \frac{1}{u} = e^{-\sigma\sqrt{\Delta}}$$

$$p = \frac{e^{\mu\Delta} - d}{u - d} \sim \frac{1}{2} \left(1 + \frac{\mu\sqrt{\Delta}}{\sigma} \right)$$

Sea

$$X_i = \begin{cases} 1 & \text{con probabilidad } p \\ 0 & \text{con probabilidad } 1 - p \end{cases}$$

Patricia Kisbye (FaMAF) 2010 7 / 11

El M.G.B. como límite del modelo binomial

$$S(T) = S(0) \cdot u^{\sum_{1}^{n} X_{i}} \cdot d^{n-\sum_{1}^{n} X_{i}}$$

$$\tag{1}$$

$$= S(0) \cdot d^{T/\Delta} \left(\frac{u}{d}\right)^{\sum_{i=1}^{T/\Delta} X_{i}}$$
 (2)

$$\log\left(\frac{S(T)}{S(0)}\right) = \frac{T}{\Delta}\log(d) + \log\left(\frac{u}{d}\right)\sum_{i=1}^{T/\Delta}X_i$$
 (3)

$$= \frac{-T\sigma}{\sqrt{\Delta}} + 2\sigma\sqrt{\Delta}\sum_{i=1}^{T/\Delta}X_i \tag{4}$$

Teorema Central del Límite: $\sum_{i=1}^{T/\Delta} X_i$ tiende a una distribución normal.

Patricia Kisbye (FaMAF) 2010 8 / 11

Resultados

Para ∆ pequeño:

$$\log\left(\frac{S(T)}{S(0)}\right)$$
 está normalmente distribuido.

$$E\left[\log\left(rac{S(T)}{S(0)}
ight)
ight]=\mu T$$

$$Var\left[\log\left(rac{S(T)}{S(0)}
ight)
ight]\simeq\sigma^2T.$$

El modelo binomial converge a un movimiento geométrico browniano

Patricia Kisbye (FaMAF) 2010

Valoración de un derivado

Modelo binomial

• Si el payoff del derivado es F(S(T)), entonces

$$V_0 = e^{-rT} E[F(S(T))]$$

Modelo continuo: geométrico browniano

- Si el payoff del derivado es lineal: OK
- Si se trata de una opción call:

$$F(S(T)) = (S(T) - K)^{+}$$

Fórmula de Black-Scholes

Patricia Kisbye (FaMAF) 2010

Fórmula de Black-Scholes

Sea C la prima de una opción call sobre un activo con precio S(t), $0 \le t \le T$, modelado por un movimiento geométrico browniano con tendencia μ y volatilidad σ . Sea K el strike de la opción, y sea r la tasa de mercado libre de riesgo.

Fórmula de valuación de riesgo neutral para la opción:

$$C = S(0)\Phi(\omega) + Ke^{-rT}\Phi(\omega - \sigma\sqrt{T})$$

$$\omega = \frac{rT + \sigma^2 T/2 - \log(\frac{K}{S(0)})}{\sigma \sqrt{T}}$$

Φ: f.d.a. normal.

Patricia Kisbye (FaMAF) 2010