Distribución para una suma de v. a. uniformes

Patricia

27 de marzo de 2007

1. Introducción

Se trata de probar que si $U_1, U_2, \ldots, U_n, \ldots$, son v.a. uniformemente distribuidas en el (0, 1), y N es la variable aleatoria dada por

$$N = \min\{n \mid \sum_{i=1}^{n} U_i > 1\},\$$

entonces E[N] = e.

Para ver esto, notemos en primer lugar que N es una variable aleatoria discreta, que toma valores enteros no negativos. Más aún, $N \ge 2$, puesto que cada U_j es un número positivo menor que 1.

Así, podemos escribir usando la definición de valor esperado, que

$$E[N] = \sum_{n=2}^{\infty} n \cdot P\{N = n\}.$$

2. Cálculo de $P\{N=n\}$

Para calcular la probabilidad $P\{N=n\}$, notemos que N=n si y sólo si la suma $\sum_{i=1}^n U_i>1$ y $\sum_{i=1}^{n-1} U_i \leq 1$. Para simplificar la notación, llamaremos S_n a la suma de las primeras n variables aleatorias: $S_n=\sum_{i=1}^n U_i$. Ahora bien,

$$S_n > 1$$
 si y sólo si $S_{n-1} > 1$ o $(S_{n-1} \le 1 \text{ y } S_n > 1)$,

siendo estas dos últimas posibilidades disjuntas. Por lo tanto,

$$P\{S_n > 1\} = P\{S_{n-1} > 1\} + P\{N = n\},$$

de donde obtenemos que

$$P\{N=n\} = P\{S_n > 1\} - P\{S_{n-1} > 1\}.$$
(1)

Así, será preciso calcular las densidades para S_n , con $n \ge 2$.

3. Cálculo de la densidad de S_n

Para este problema, es suficiente encontrar la densidad para S_n , para valores menores que 1.

Afirmación: Sea f_n la función de densidad de la variable aleatoria S_n , $n \ge 1$. Entonces

$$f_n(x) = \frac{x^{n-1}}{(n-1)!}$$
 para todo $x, \ 0 < x < 1$.

Probamos esto por inducción.

Para n=1, tenemos que $S_1=U_1$, y sabemos que su densidad es $\mathbb{I}_{(0,1)}(x)$, por lo que la afirmación es cierta en este caso.

Para n=2, tenemos que $S_2=U_1+U_2$. Así, S_2 es una v.a. que toma valores en el intervalo (0,2). Sea $f_{U_i}(t)$ la densidad de la v.a. U_i , con i=1,2. Tenemos que

$$f_2(x) = \int_{-\infty}^{\infty} f_{U_1}(t) f_{U_2}(x-t) dt = \int_{-\infty}^{\infty} \mathbb{I}_{(0,1)}(t) \mathbb{I}_{(0,1)}(x-t).$$

Para x < 1, esto es igual a

$$\int_0^x 1 \, dt = x.$$

Para 1 < x < 2, esto es igual a

$$\int_{x-1}^{1} dt = 1 - (x-1) = 2 - x.$$

Por lo tanto, la hipótesis inductiva se cumple para x < 1.

Supongamos ahora que $f_n(x) = \frac{x^{n-1}}{(n-1)!}$, para un cierto n, y para todo x, 0 < x < 1. Veamos que la afirmación se cumple para n+1.

Tenemos que $f_{n+1}(x) = f_{S_n+U_{n+1}}(x)$, y utilizando la fórmula de la densidad para suma de variables aleatorias, obtenemos

$$f_{n+1}(x) = \int_{-\infty}^{\infty} f_n(t) f_{U_n}(x-t)$$

$$= \int_{-\infty}^{\infty} f_n(t) \mathbb{I}_{(0,1)}(x-t) dt$$

$$= \int_{0}^{x} \frac{t^{n-1}}{(n-1)!}(t) dt$$

$$= \frac{x^n}{n!}.$$

Aquí hemos usado que $S_n(t)$ toma valores en el intervalo (0, n), mientras que $U_n(t)$ los toma en el (0, 1). Puesto que $(x - t) \in (0, 1)$ es equivalente a x - 1 < t < x, y dado que x - 1 < 0, el integrando resulta no nulo sólo en el intervalo (0, x).

4. Cálculo de E[N]

Ahora podemos calcular E[N]. Tenemos que

$$P\{S_n > 1\} = 1 - P\{S_n \le 1\} = 1 - \int_0^1 f_n(t) dt = 1 - \frac{1}{n!}.$$

Por lo tanto, y usando la fórmula (1), tenemos que

$$P\{N=n\} = (1 - \frac{1}{n!}) - (1 - \frac{1}{(n-1)!}) = \frac{n-1}{n!}.$$

Luego

$$E[N] = \sum_{n=2}^{\infty} n \cdot \frac{n-1}{n!}$$
$$= \sum_{n=2}^{\infty} \frac{1}{(n-2)!}$$
$$= \sum_{n=0}^{\infty} \frac{1}{n!}$$
$$= e.$$