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It is found that a proposed random number generator r an2, recently presented in the Numerical 
Recipes column [W. H. Press and S. A. Teukolsky, Comput. Phys. 6, 521-524 (1992)], is a good 
one, but a number of generators are presented that are at least as good and are simpler, much faster, 
and with periods “billions and billions” of times longer. They are presented not necessarily to 
supplant ran2, but to put it in perspective. Any serious user of Monte Carlo methods should have 
a variety of random number generators from which to choose. In addition to two specific programs, 
one in Fortran and one in C, a framework is offered within which the readers can easily fashion 
their own generators with periods ranging from 1027-10101. 

NfRomlcTuml 

In the Numerical Recipes column of this Journal, the Edi- 
tors, Press and Teukolsky, presented a portable random 
number generator, ran2 (Ref. 1). Since we have come to 
expect good things from the Numerical Recipes Project, 
rani! is likely to be widely used. That’s o.k., it is a good 
generator. But approval through that column invites con- 
structive dissent; we offer some here. 

Our comments relate mainly to the algorithms used in 
r an2. They were suggested by L’Ecuyer.* Implementation 
of the algorithms was provided in the Numerical Recipes 
column, and they are discussed in more detail in the Edi- 
tors’ book(s), Numerical Recipes in Fortran(C,L3 

We first suggest considerations that might have made 
ran2 better. Then we suggest several alternatives that are 
simpler. faster, and have longer periods. 

The appellation “portable” is not precise. It generally 
means that the program will compile and run properly on 
most computers, but brevity and simplicity are implicit cri- 
teria. The essence of ran2’s portability is the means to 
carry out modular arithmetic on 31-bit integers without 
overflow on multiplication. This is necessary for users not 
wanting to-or not willing to-use the automatic integer 
arithmetic modulo 2”’ that is built into most modern 2’s 
complement CPU’s. 

But circumventing the CPU’s built-in capabilities does 
not come cheap--at least for ran2. It uses three integer 
divisions, six limited multiplications, and from four to six 
additions for each random number, as well as the manipu- 
lations necessary to address, fetch, and store elements in a 
table. 

The built-in arithmetic modulo 232 that most modern 
CPU’s provide is, in our view, a great asset that should be 
exploited for random number generation. The authors of 

ran2 view its use as “abusing the compiler,” although 
their remark may have been tongue-in-cheek. So we will 
suggest methods for two levels of “portability”: one-for 
the timid or disadvantaged-that circumvents multiplica- 
tive overflow in what we think is a much simpler way than 
that of ran2; and the other for those millions of users who 
can take advantage of such a marvelous way of generating 
a nearly satisfactory random number by means of a simple 
statement such as n=b90b9*n. This latter method is often 
the one that is implemented in system generators---for ex- 
ample, in CDC’s and Vax’s, but by modern standards the 
period is too short and trailing bits are unsatisfactory. 

Taking advantage of such a remarkably simple, fast 
and nearly satisfactory method for our first step, then com- 
bining it with one of a number of simple very-long-period 
generators based on addition or subtraction, provides a 
composite generator that we rank highly in categories of 
speed, simplicity, very long periods and satisfactory perfor- 
mance on tests of randomness. We hope that-after reading 
this and perhaps trying some of your own versions-you 
will agree. 

We provide a number of ways to achieve such combi- 
nations. And a simple fix allows them to be used with com- 
pilers that forbid overflow on 32-bit multiplication. 

In using a deterministic sequence to simulate random- 
ness we are all, as Von Neumann said, “in a state of sin.” 
Every deterministic sequence will have problems for which 
it gives bad results, and a researcher should be able to call 
on a variety of random number generators for comparing 
results. While interesting theory can lead to new kinds of 
random number generation, in the end it is, alas, an empiri- 
cal science. Only through collective experience can we 
hope to reach a state where we may “go forth and sin no 
more.” 
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The generator ran2 uses two 31-bit congruential se- 
quences: x,, x2, x3 ,... and y,, y,, y, ,... . It keeps the 
x’s shuffled in a table: iy( 1) ,...,iy(32). To get a new ran- 
dom 31-bit integer, it generates a new y, uses y to form j in 
{1,...,32} with an integer division and an add, outputs 
iy(j) -y and stores a new x in location j. (Note that index- 
ing the table from 0 to 31 would save an addition when 
forming j, while “and”-ing y with 31 would be a much 
faster way to produce a j.) 

The key device of ran?, in our view, is subtraction of 
the elements of the two congruential sequences. There is 
considerable empirical evidence, and theoretical support, 
for the belief that combining two simple random number 
generators produces a better generator. See, for example, 
Ref. 4. We prefer to combine sequences with two entirely 
different algebraic structures, rather than two congruential 
sequences, as in r an2. And we think a satisfactory combi- 
nation can be provided with much less cost than in ran2. 

As for the shuffling: It helps. One of us (GM) invented 
it in the early 196Os, but abandoned it later. If you go to the 
trouble of maintaining a table of recent random numbers 
and indices, you might as well get the benefits of equally 
good results and far longer period with lagged Fibonacci or 
subtract-with-borrow4T5 or some such method. (With a table 
of 32 words you can get a period on the order of 2’024 
rather than the 2”2 of ran2. One of our examples below 
provides a period of 2309 from a table of ten 31-bit inte- 
gers.) 

Still, if you prefer the simple shuffle used in ran2, 
outputting differences, you have the choice of the two con- 
gruential sequences. In r a n2 they are 

x,=40014x,-t mod 23’-85 

and 

y,=40692y,-, mod 231-249. 

We suggest that you might consider 
(1) Using moduli of 32 rather than 31 bits. This takes 

advantage of the full computer word, and it costs no 
more-indeed, often less. In high-level languages that view 
negative integers as those with leading bit 1, you then get 
random signed integers, which may be floated to get uni- 
form reals on either (0,l) or (-1,l). The latter are more 
desirable in many simulations. 

(2) If you still want prime moduli of 31 bits, why not 
make then safeprimes, and choose the multipliers to pro- 
vide fast implementation? A safe prime p is one for which 
(p- 1)/2 is also prime. Then half of the residues of p are 
primitive roots. Factors of p- 1 are undesirable; they pro- 
vide periodic subsequences of the full period. If 2 is a 
primitive root of a safeprime p, then so is every odd power 
of 2, providing multipliers that simplify the generating pro- 
cedure. If the generators are to be used in combinations, 
their lattices are of no importance. The two greatest safep- 
rimes of 31 bits are 231-69 and 231-535. Both have 2 as a 
primitive root, so any odd power of 2 may be used as a 
multiplier, providing overflow-free multiplication by a 
shift, and thus avoiding the manipulations of ran2. The 
two largest safeprimes of 32 bits are 232-209 and 

2”‘- 1409. While 2 is not a primitive root of either, 2”+ 1 
is for the larger and 214- 1 for the smaller one, as are others 
within +l of a power of 2. They provide overflow-free 
multiplication by means of shifts and adds. 

(3) Whatever method you use to generate and combine 
two sequences, there is the problem of how to handle argu- 
ments and returned values in the resulting subroutine. With 
the Fortran r an2 you use r an2 ( i d u ar ) in expressions in 
the main program, initializing with idum negative. The 
value of idum is maintained in the main program and 
changed by the subroutine ran2, which is delivered an 
address rather than a value. Thus ran 2 can only be called 
from the main program. The subroutine must deal with both 
an argument idum and the returned value for ran2. Ineffi- 
cient. The modern trend for random number generators is to 
call them with an empty argument list, such as 
u = ran 2 ( 1. The problem of initializing is handled by an 
entry point in the subroutine, and default entry values are 
put in the subroutine to make its use fool proof. We illus- 
trate such a structure in our program mzran, below. 

(4) There is another point that bears consideration. Us- 
ers of a random number generator might want a random 
positive integer, a random signed integer, a random real on 
[O,l) or on (-l,l), or even a random byte for addressing a 
table. All these can be provided if the underlying generator 
is for 32- rather than 31-bit integers, as mentioned above, 
but even if the generator produces a 31-bit integer, the prac- 
tice of multiplying by .5**31 then returning a real on 
[O,l) (or (0,l) after a fix), “wastes” many of the bits of 
the integer, and makes reconstructing a (necessarily lim- 
ited) random integer costly. Why not have the subroutine 
return an integer (preferably, a signed integer), as, say, 
ir an2 ( ) ? Then users would have the full capabilities 
of generating random integers or masked parts of integers, 
or uniform reals UN1 on [O,l) or VNI on (-1,l) by 
the simple expedient of Fortran statement functions 
such as UNI( 1 =.5+.232830be -9*iran2( ) or 
VNIC 1 =.465bbL3e-9*iran2(). These would be 
coded in-line, and cost no more than would their (irrevers- 
ible) inclusion in the subroutine itself. 

Ii. SM?E NEW WWIATORS 

From our point of view, a random number generator is just 
a set of computer instructions that combine parts of a cur- 
rent set of integers to provide a new integer to serve as the 
output of the generator. This is usually done in a subpro- 
gram; before a return to the main program, the current set is 
updated to provide for the next iteration. 

If only a few values are involved, the current set might 
be designated, say a, b, c ‘I d, with a new n formed 
from them, then “promotions”: a=bi b=ci c=d i d=n 
form the new current set. If the number of elements in the 
current set is more than perhaps 5 or 6, the current set is 
maintained in a “circular” table, with pointers used to in- 
dicate elements to be used in the generating procedure. 

In principle, if there are r elements in the current set of 
32-bit integers, it is possible to produce a sequence of 232r 
integers before repetition-that is, before the initial (seed) 
set reappears. We will provide numerous examples that at- 
tain that period or come very close to it, or which attain the 
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maximal period that one fewer seed value would provide, 
in a few cases where that simplifies the generating process. 

The constraints we have in developing such examples 
are: (1) The resulting computer operations must be simple 
and fast, and (2) the underlying mathematics must be such 
that we can rigorously establish the period. 

Then, guided by experience and theory that suggest 
combining two different generators produces an even better 
one, we choose two different generators and combine 
them-usually by addition or subtraction-to form the 
composite generator, whose period will be the product of 
the component periods, or close to it. (Periods often have a 
few powers of 2 in common, reducing the lcm.) 

Experience has shown better results when the two gen- 
erators to be combined use very different arithmetic. Thus, 
in the list below, we stick to combining one of the first two 
generators, which use multiplication, with one of the last 
14, all of which use addition or subtraction: in all, 28 gen- 
erators. We have not yet tested all such combinations, but 
those we have tried so far have passed all tests for unifor- 
mity and independence. 

Some candidates for combination generators 

Approx. 
No. Modulus Sequence period 
(I) 232 

(2) 2”’ 
(3) 2”’ 
(4) 2” 
(5) 2”’ 
(6) 2”-69 
(7) PI-69 
(8) 2”‘-61 
(9) 2”’ - 69 
(IO) 2”‘-1 
(11) 2”‘-5 
(12) 2”‘-10 
(13) 2s2-18 
(14) 2”‘-5 
(15) 232-5 
(16) 2”2-5 

x,=69069x,-,+oddconst 
X,,=X,*-l*X,*-2 
x,=x,,-* +x,,-2+ “C” 
X,=X,,~l+X,,~~+“C” 
Xn=Xn-2+X,-3+ “C” 

X,t=Xn-3-X,*-1 
xn=x,,-.4-X,-I 

x,=2x,,-3-x,-2-x,-, 
x,,=x,-~-~x,,-~ 
x,=x,,-4-x,-5- “C” 

x,,=x,~~-x,,~‘o-“c” 
“ >2 x,*=x,I-2-x”-5- c 

X,=X,,-2-X,-3-“C 7, 

x,,=x,,-t-2x,-z 
x,*=x,*-1+x,-2--2x,-s 
x~=~x,-~-x,-~-x,-~ 

286 
262 
294 
2 93 

2124 
21% 
2307 
2160 

295 
264 
295 
2160 

Comments: (l)-(2) use 32-bit multiplication [but (1) can 
be implemented so as to avoid overflow-see below]. (3)- 
(5) are add-with-carry and (lo)-(13) are subtract-with- 
borrow generators, described in the next section. (4)-(11) 
are for 31-bit integers and may be implemented in Fortran 
or other languages that have only signed integers, while 
(12)-( 16) are best suited for machine language or C imple- 
mentations, which provide for 32-bit positive (long) inte- 
gers. 

q . SEIJENCES SUCR AS x,,=x,,~,+x,~,+‘c” mod 28’ 

Several generators on the above list, with a c in quotes, are 
add-with-carry (AWC) or subtract-with-borrow (SWB) 
generators described elsewhere.4 They were develoy;$ to 
provide immensely long periods, on the order of 2 or 

more. But simpler versions may be used to provide candi- 
dates suitable for the above list. Consider, for example, the 
AWC generator (4): x~=x~-~+x~-~+“c” mod23’. The 
c here is the carry bit, not a constant. It may change with 
each call, depending on whether the addition modulo 231 
produces overflow. An implementation works as follows: 
with a current pair i,j and current c, form s = i+ j+ c. If 
that sum exceeds the modulus, m = 2”‘, replace s by s-m 
and set c= 1, else keep s and set c=O. Then promote: 
i= j; j=s, output s, and the new i, j, c are ready for the 
next generating process. We choose m = 231 for use with 
Fortran compilers, while 232 is better for C implementations 
or for machine language. With m = 232, such AWC genera- 
tors are particularly well suited for machine language 
implementation, since the carry bit is automatically set with 
each addition. 

Implementation for the SWB generators such as (12) 
are similar, except that one does the subtraction and adds m 
if the result is negative, with the new c 0 or 1 accordingly. 
The essence of an implementation of (12) has modulus 
m=232- 10, five current integer values, say, 
u, w, x, y, z, and current c. The generating procedure is: 
if y<u+c, then s=u+c-y-10 and c=l, else 
s =y - u -c and c = 0. Then s is the output and promotions 
provide the new set of five: u=w; w=x; x=y; y=s. The 
period is 216’ for any five initial values, not all zero. 

All are assumed 32-bit positive integers, routine for C 
but not for Fortran. A Fortran implementation is possible 
but too tricky; better is to use one such as (10) with 31-bit 
integers, getting 2155 five-tuples out of any five 31-bit seeds 
not all zero. 

IV. THE 6ENERATOR mban 

We now give details of a generator that combines se- 
quences (1) and (6) from the list. For any choice of seed 
value for (1) and any three seed values for (6), not all zero, 
the composite period is 232(p2+p+ 1)>294, with 
~=2~‘-69. 

This is perhaps the fastest of the possible combina- 
tions for Fortran, although not by much-all of them are 
quite fast. Versions in C will be faster because one need not 
accommodate Fortran’s quaint insistence that an integer 
with leading bit 1 is negative. 

Other combinations will have a similar structure, only 
details on maintaining current values and arithmetic will 
vary. The reader is invited to try his own combinations: As 
with a Chinese restaurant menu, choose one from category 
(l)-(2) and one from (3)-(13). Combine them and savor 
the resulting combination. 

We use the constant 1013904243 for sequence (l), but 
any odd constant will do (as will almost any multiplier 
congruent to 23 mod 8). If n is the current integer in this 
sequence, the next n may be generated with the single in- 
struction n=b9069 *n+LOL39Cttt243. For For those 
compilers without a switch that permits the full modulo 232 
arithmetic inherent in modern CPU’s, this can be effected 
with shifts and masks-see below. 
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We suggest this implementation in Fortran 

function mzran0 
save i,j,k,n 
data i,j,k,n/521288629,362436069,16163801,1131199299/ 
mrran=i-k 
ifCmzran.lt.0) mzran=mzran+2147483579 
i=j 
j=k 
k=mzran 
n=69069*n+1013904243 
mzran=mzran+n 
return 
entry mzranset(is,js,ks,ns) 
i=l+iabs(is) 
j=l+iabs(jS) 
k=ltiabs(ks) 
n=ns 
mzranset=n 
return 
end 

Implementing mzr an requires consideration of the way 
that random number subroutines are likely to be used. As 
mentioned in our comments on ran 2, we think the subrou- 
tine should be invoked with an empty argument, as in mz - 
ran( ), and that an entry statement should be used to set 
seed values, with default values provided to make usage 
foolproof. And a random 32-bit integer should be returned, 
leaving the option of random reals on (0,l) or (- 1,l) to the 
user through statement functions such as 
UNIC )=-5+.232830be-9*mzran( ) or 
VNIC I=. YbLibbL3e-9*mzran( 1 . This costs no more 
and provides far greater versatility. 

Default seed values for i, j, k, n are included, via a 
data statement, for users who forget to, or do not care to, or 
do not know how to, initialize by using a statement in the 
main program such as m=mzranset(is, js, ks, 
ns ) ‘I with is 3 j s 7 ks 7 ns any four legal Fortran inte- 
gers. 

Note that m z r a n can be made to work without taking 
advantage of 32-bit multiplication. Merely replace the seg- 
ment n=bqLtbq*n by this segment: 

It slows the routine down a bit, but still makes mzran 
many times faster than r an2. If your compiler will not 
allow overflow on 32-bit multiplication, substitute the 
above segment. (The names of shift and “and” functions 
may vary with some compilers.) 

Note that m z r a n combines the congruential generator, 
which produces 32-bit integers, with the generator (6), 
which produces 31-bit integers. It takes the sum modulo 
232. That might seem strange, but the reader should be able 
to convince himself that: if x is a uniform random integer 
on CO,..., a -l}, and y is an independent random integer 
with any possible distribution, then x +y (or x -y) module a 
is uniform on {O,...,a -1). 

Because the periods of (1) and (6) are relatively prime, 
the period of the composite mzran is 232@2+p+1), 
which is about 294 or 102s. 

V. AN -ATION N C 

We now give an example of a combination generator in the 
programming language C, in which we have 32-bit positive 
integers. We combine (1) and (13) from the above list. The 
period of (1) is 232 and that of (13) is (p3-p2)/3, about 
29s, with p = 232 - 18. So the composite program, say m z - 
ranL3, has period some 2’=. And, as with mzran and 
other combinations of (l)-(2) with (3)-(16), it produces 
eminently satisfactory random 32-bit integers. 

We again use our recommended structure for a random 
number generator: An empty argument list, default seed 
values and an entry to set the seed values. Here is the 
program: 

typedef unsigned long int unlong; 
unlong x=521288629, y=362436069, z=16163801, c=l, 

n=1131199209; 
ulong mzranl30 
( long int s; 

if (px+c) {s=y- (x+c) ; c=O;l 
else { s=y-tx+c)-ia; c=l; ) 
x=y; y=z; return (z=s) + (n-69069*n+1013904243); 

1; 
void ra.n13set(ulong xx, ulong yy, ulong zz, long nn) 
( x=x)(; y=yy; z=zz; n=nn; c=yxz; ) 

This program is a bit tricky to figure out, but potential users 
can verify it by comparing with a more transparent version 
that combines (1) and (13) with the specified seed values, 
perhaps in double precision Fortran or in C with some re- 
dundant but more expository code. 

VI. OTRER coMtlNATIoNs 

Many other combinations are possible and worth consider- 
ing. For example, for years we used a generator called 
COMBO as our absolutely-reliable-against-which-all- 
others-are-compared generator. It combines sequence (2) 
with the sequence x,=x,-t-x,- mod 230-35 (not 
listed-its period is “only” some 2’). Over the years, 
COMBO has resisted all efforts to refute its randomness, 
and frequently a disparity between its results and those of 
another generator have shown the inadequacy of the latter. 
(Not all tests of randomness are based on problems for 
which we know the underlying probabilities. For many 
tough problems we can only compare results from different 
generators-another reason for having a variety of genera- 
tors available.) 

Sequence (2) seems as good as (1) for combining with 
one (or more) of those methods (3)-(16) based on addition 
or subtraction. It has period 3X2’9 for any two odd seed 
values, not both 1. 

Sequence (1) has been widely-and successfully- 
used by itself. It is, for example, the system generator on 
Vax’s, and it, combined with a shift-register generator, pro- 
vides the widely used McGill random number generator 
Super Duper. The shift register used in Super Duper may 
also be considered for use in combinations with one of 
(3)-(12) that use addition or subtraction. Effected by the 
two Fortran statements 

n=ieor(n,ishft(n,-15)); n=ieor(n,ishft(n,l7)) 

its period is 232- 22’-21’+1. It has provided seemingly as 
good combinations as (1) or (2) with (3)-(16), but we rend 
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to prefer multiplication over shifts and exclusive-or’s for 
scrambling bits. But if you want to try using it in place of 
(1) or (2), you get another 14 combinations, making a total 
of 42 from which to choose. 

v1. -Y 

We agree that the generator ran2, advocated by L’Ecuye? 
and implemented in the Numerical Recipes column’ and 
books,” is a good one, but suggest that it could be made 
better, and simpler, by choosing different multipliers and 
moduli for the two congruential generators it uses. We fur- 
ther suggest that 32-bit generators are preferable (and cost 
no more), and that the generator should be called with an 
empty argument list, with seed values set by a separate 
entry and default seed values provided. 

Then we propose considering up to 28 different kinds 
of new generators that are simpler than r an2 and have 
much longer periods. Two exemplary programs, mzr an in 
Fortran and mzr an 13 in C, are offered. They have our 
recommended calling procedure, entry, and default values 
for seeds. Furthermore, mzran may be easily modified to 
make it meet the most restrictive requirements of portabil- 
ity: no multiplications that exceed 32 bits. 

Spurred by the challenge put forward by Press and 

Teukolsky to refute the randomness of ran 2, we have sub- 
jected it to our battery of tests DIEHARD, many of which 
are described in Ref. 4. It has passed all of them, but so too 
have mzran, mzranl3 and various other combinations of 
sequences (1) or (2) with one from (3)-(16) in the above 
list. Since all are simpler, faster, provide a greater variety of 
random output and have longer periods, we recommend 
readers consider adopting them-not necessarily to replace 
ran& but perhaps to put it in perspective. Everyone who 
does serious Monte Carlo research should have several 
methods available. 
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