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Abstract. We classify exact indecomposable module categories over
the representation category of all non-trivial Hopf algebras with coradi-
cal S3 and S4. As a byproduct, we compute all its Hopf-Galois extensions
and we show that these Hopf algebras are cocycle deformations of their
graded versions.

1. Introduction

Given a tensor category C, an exact module category [EO1] over C is an
Abelian category M equipped with a biexact functor ⊗ : C ×M → M sub-
ject to natural associativity and unity axioms, such that for any projective
object P ∈ C and any M ∈ M the object P ⊗M is again projective.

Exact module categories, or representations of C, are very interesting ob-
jects to consider. They are implicitly present in many areas of mathematics
and mathematical physics such as subfactor theory [BEK], affine Hecke alge-
bras [BO], extensions of vertex algebras [KO], [HuKo], Calabi-Yau algebras
[Gi] and conformal field theory, see for example [BFRS], [FS], [CS1], [CS2].

Module categories have been used in the study of fusion categories [ENO1],
[ENO1], and in the theory of (weak) Hopf algebras [O1], [M1], [N].

The classification of exact module categories over a fixed finite tensor
category C has been undertaken by several authors:

1. When C is the semisimple quotient of Uq(sl2) [KO], [EO2],
2. over the tensor categories of representations of finite supergroups

[EO1],
3. over Rep(D(G)), D(G) the Drinfeld double of a finite group G [O2],
4. over the tensor category of representations of the Lusztig’s small

quantum group uq(sl2) [M1],
5. and more generally over Rep(H), where H is a lifting of a quantum

linear space [M2].
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The main goal of this paper is the classification of exact module categories
over the representation category of any non-trivial (i.e. different from the
group algebra) finite-dimensional Hopf algebra with coradical kS3 or kS4.

Finite-dimensional Hopf algebras with coradical kS3 or kS4 were classified
in [AHS], [GG], respectively. For all these Hopf algebras the associated
graded Hopf algebras grH are of the form B(X, q)#kSn, n = 3, 4 where X
is a finite set equipped with a map B : X×X → X satisfying certain axioms
that makes it into a rack and q : X ×X → k× is a 2-cocycle. We have the
following result:

Let n = 3, 4 and let M be an exact indecomposable module category over
Rep(B(X, q)#kSn), then there exist

• a subgroup F < Sn and a 2-cocycle ψ ∈ Z2(F, k×),
• a subset Y ⊆ X invariant under the action of F ,
• a family of scalars {ξC} compatible (Definition 7.1) with (F, ψ, Y ),

such that M ' B(Y,F,ψ,ξ)M, where B(Y, F, ψ, ξ) is a left B(X, q)#kSn-
comodule algebra constructed from data (Y, F, ψ, ξ). We also show that
if H is a finite-dimensional Hopf algebra with coradical kS3 or kS4 then H
and grH are cocycle deformations of each other. This implies that there
is a bijective correspondence between module categories over Rep(H) and
Rep(grH).

The content of the paper is as follows. In Section 3 we recall the basic
results on module categories over finite-dimensional Hopf algebras. We recall
the main result of [M2] that gives an isomorphism between Loewy-graded
comodule algebras and a semidirect product of a twisted group algebra and
a homogeneous coideal subalgebra inside the Nichols algebra. In Section 4
we show how to distinguish Morita equivariant classes of comodule algebras
over pointed Hopf algebras.

In Section 5 we recall the definition of a rack X and a ql-datum Q, and

how to construct (quadratic approximations to) Nichols algebras B̂2(X, q)
and pointed Hopf algebras H(Q) out of them. In particular, we recall a
presentation of all finite-dimensional Hopf algebras with coradical kS3, kS4.
In Section 6, we give a classification of connected homogeneous left coideal

subalgebras of B̂2(X, q) and also a presentation by generators an relations.

In Section 7 we introduce a family of comodule algebras large enough
to classify module categories. We give an explicit Hopf-biGalois extension

over B̂2(X, q)#kSn, n ∈ N, and a lifting H(Q), proving that there is a bi-

jective correspondence between module categories over Rep(B̂2(X, q)#kSn)
and Rep(H(Q)), n = 3, 4. In particular we obtain that any pointed Hopf
algebra over S3 or S4 is a cocycle deformation of its associated graded al-
gebra, a result analogous to a theorem of Masuoka for abelian groups [Ma].

Finally, the classification of module categories over Rep(B̂2(X, q)#kSn) is
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presented in this section and as a consequence all Hopf-Galois objects over

B̂2(X, q)#kSn are described.

Acknowledgments. We thank N. Andruskiewitsch for suggesting us this
project and for his comments that improved the presentation of the paper.

2. Preliminaries and notation

We shall denote by k an algebraically closed field of characteristic zero.
The tensor product over the field k will be denoted by ⊗. All vector spaces,
algebras and categories will be considered over k. For any algebra A, AM
will denote the category of finite-dimensional left A-modules.

The symmetric group on n letters is denoted by Sn and by On
j we shall

denote the conjugacy class of all j-cycles in Sn. For any group G, a 2-cocycle
ψ ∈ Z2(G, k×) and any h ∈ G we shall denote ψh(x, y) = ψ(h−1xh, h−1yh)
for all x, y ∈ G.

If H is a Hopf algebra, a 2-cocycle σ in H is a convolution invertible linear
map σ : H ×H → k such that

(2.1) σ(x(1), y(1))σ(x(2)y(2), z) = σ(y(1), z(1))σ(x, y(2)z(2))

and σ(x, 1) = σ(1, x) = ε(x), for every x, y, z ∈ H. The set of 2-cocycles in
H is denoted by Z2(H).

If A is an H-comodule algebra via λ : A → H⊗A, we shall say that a
(right) ideal J is H-costable if λ(J) ⊆ H⊗J . We shall say that A is (right)
H-simple if there is no nontrivial (right) ideal H-costable in A.

IfH =
⊕
H(i) is a coradically graded Hopf algebra we shall say that a left

coideal subalgebra K ⊆ H is homogeneous if K =
⊕
K(i) is graded as an

algebra and, for any n, K(n) ⊆ H(n) and ∆(K(n)) ⊆
⊕n

i=0 H(i)⊗K(n− i).
K is said to be connected if K ∩H(0) = k.

If H = B(V )#kG, where V is a Yetter-Drinfeld module over G and
K ⊆ H is a coideal subalgebra, we shall denote by StabK the biggest
subgroup of G such that the adjoint action of StabK leaves K invariant.

If H is a finite-dimensional Hopf algebra then H0 ⊆ H1 ⊆ · · · ⊆ Hm = H
will denote the coradical filtration. When H0 ⊆ H is a Hopf subalgebra then
the associated graded algebra grH is a coradically graded Hopf algebra. If
(A, λ) is a left H-comodule algebra, the coradical filtration on H induces
a filtration on A, given by An = λ−1(Hn⊗A). This filtration is called the
Loewy series on A.

The associated graded algebra grA is a left grH-comodule algebra. The
algebra A is right H-simple if and only if grA is right grH-simple, see [M1,
Section 4].
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3. Representations of tensor categories

Given C = (C,⊗, a,1) a tensor category, a module category over C or
a representation of C is an Abelian category M equipped with an exact
bifunctor ⊗ : C ×M → M and natural associativity and unit isomorphisms
mX,Y,M : (X ⊗ Y ) ⊗ M → X ⊗ (Y ⊗ M), `M : 1 ⊗ M → M satisfying
natural associativity and unit axioms, see [EO1], [O1]. We shall assume, as
in [EO1], that all module categories have only finitely many isomorphism
classes of simple objects.

A module category is indecomposable if it is not equivalent to a direct
sum of two non trivial module categories. A module category M over a
finite tensor category C is exact [EO1] if for any projective P ∈ C and any
M ∈ M, the object P⊗M is again projective in M.

If M is an exact module category over C then the dual category C∗
M,

see [EO1], is a finite tensor category. There is a bijective correspondence
between the set of equivalence classes of exact module categories over C
and over C∗

M, see [EO1, Theorem 3.33]. This implies that for any finite-
dimensional Hopf algebra there is a bijective correspondence between the set
of equivalence classes of exact module categories over Rep(H) and Rep(H∗).

3.1. Module categories over pointed Hopf algebras. We are interested
in exact indecomposable module categories over the representation category
of finite-dimensional Hopf algebras. If H is a Hopf algebra and λ : A →
H⊗A is a left H-comodule algebra the category HMA is the category of
finite-dimensional right A-modules left H-comodules where the comodule
structure is a A-module morphism. If A′ is another left H-comodule algebra
the category H

AMA′ is defined analogously.
The category of finite-dimensional left A-modules AM is a representation

of Rep(H). The action ⊗ : Rep(H)×AM → AM is given by V⊗M = V⊗M
for all V ∈ Rep(H), M ∈ AM. The left A-module structure on V⊗M is
given by the coaction λ.

If M is an exact indecomposable module over Rep(H) then there exists
a left H-comodule algebra A right H-simple with trivial coinvariants such
that M ' AM as modules over Rep(H) see [AM, Theorem 3.3].

If A, A′ are two right H-simple left H-comodule algebras such that the
categories AM, A′M are equivalent as representations over Rep(H). Then
there exists an equivariant Morita context (P,Q, f, g), that is P ∈ H

A′MA,

Q ∈ H
AMA′ and f : P⊗AQ→ A′, g : Q⊗A′P → A such that they are bimod-

ule isomorphisms. Moreover, it holds that A′ ' EndA(P ) as comodule alge-
bras. The comodule structure on EndA(P ) is given by λ(T ) = T (−1)⊗T (0),
where

(3.1) 〈α, T (−1)〉T (0)(p) = 〈α, T (p(0))(−1)S−1(p(−1))〉T (p(0))(0),

for any α ∈ H∗, T ∈ EndA(P ), p ∈ P . See [AM] for more details.
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By the previous paragraph, we can see that the categories HMA play a
central role in the theory. The following theorem will be of great use in the
next section.

Theorem 3.1. Let H be a Hopf algebra and A a left H-comodule algebra,
both finite dimensional.

• [Sk, Theorem 3.5] If A is H-simple and M ∈ HMA, then there
exists t ∈ N such that M t, the direct sum of t copies of M , is a free
A-module.

• [Sk, Theorem 4.2] M ∈ HMA is free as A-module if and only if
there exists a maximal ideal J ⊂ A such that M/M · J is free as
A/J-module. �

The first statement of this theorem is actually present in the proof of [Sk,
Theorem 3.5]. The second one will be particularly useful when the ideal J
is such that A/J = k, since in this case M/M · J is automatically free.

Theorem 3.2. [M2, Theorem 3.3] Let G be a finite group and let H be a
finite-dimensional pointed Hopf algebra with coradical kG. Assume there is
V ∈ G

GYD such that grH = U = B(V )#kG. Let A be a left H-comodule
algebra right H-simple with trivial coinvariants. There exists

1. a subgroup F ⊆ G,
2. a 2-cocycle ψ ∈ Z2(F,k×),
3. a homogeneous left coideal subalgebra K = ⊕m

i=0K(i) ⊆ B(V ) such
that K(1) ⊆ V is a kG-subcomodule invariant under the action of F ,

such that grA ' K#kψF as left U -comodule algebras. �

The algebra structure and the left U -comodule structure of K# kψF is
given as follows. If x, y ∈ K, f, g ∈ F then

(x#g)(y#f) = x(g · y)#ψ(g, f) gf,
λ(x#g) = (x(1)#g)⊗(x(2)#g),

where the action of F on K is the restriction of the action of G on B(V ) as
an object in G

GYD. Observe that F is necessarily a subgroup of StabK.

4. Equivariant equivalence classes of comodule algebras

In this section we shall present how to distinguish equivalence classes of
some comodule algebras over pointed Hopf algebras and then we will apply
this result to our cases. Much of the ideas here are already contained in
[M1], [M2] although with less generality.

Let Γ be a finite group andH be a finite-dimensional pointed Hopf algebra
with coradical kΓ and with coradical filtration H0 ⊆ H1 ⊆ · · · ⊆ Hm = H.
Assume there is V ∈ Γ

ΓYD such that grH = U = B(V )#kΓ.

We begin with the following lemma.
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Lemma 4.1. Let Γ, U as above. Let σ ∈ Z2(Γ,k×) be a 2-cocycle. Then
there exists a 2-cocycle ς ∈ Z2(U) such that ς|Γ×Γ = σ.

Proof. Let us consider the linear map ς : U×U → k defined, on homogeneous
elements x, y ∈ U by

ς(x, y) =

{
σ(x, y), if x, y ∈ U(0);

0, otherwise.

Notice that ς(x, 1) = ς(1, x) = ε(x) by definition. We have to check that, for
x ∈ U(m), y ∈ U(n), z ∈ U(k), m,n, k ∈ N, (2.1) holds. Now, if k > 0, the

LHS of (2.1) is zero. Set ∆(z) =
∑k

i=0 z
i⊗zk−i, with zs ∈ U(s), s = 0, . . . , k.

Analogously, set ∆(y) =
∑n

j=0 y
j⊗yn−j , with yt ∈ U(t), t = 0, . . . , n. Then,

the RHS is
k∑
i=0

n∑
j=0

ς(x, yn−jzk−i)ς(yj , zi) = ς(x, ynzk) = 0,

and thus (2.1) holds. Both sides of this equation are similarly seen to be
zero if m > 0 or n > 0, while the case m = n = k = 0 holds by definition
of ς. This map is convolution invertible and its inverse ς−1 is defined in an
analogous manner, using σ−1. �

Let A,A′ be two right H-simple left H-comodule algebras. Let F, F ′ ⊆ Γ
be subgroups and let ψ ∈ Z2(F,k×), ψ′ ∈ Z2(F ′,k×) be two cocycles such
that A0 = kψF and A′

0 = kψ′F ′. Let K,K ′ ∈ B(V ) be two homogeneous
coideal subalgebras such that grA = K#kψF and grA′ = K ′#kψ′F ′.

The main result of this section is the following.

Theorem 4.2. The categories AM, A′M are equivalent as modules over
Rep(H) if and only if there exists an element g ∈ Γ such that A′ ' gAg−1

as comodule algebras.

Proof. Let us assume that AM ∼= A′M as Rep(H)-modules. By [AM,
Proposition 1.24] there exists an equivariant Morita context (P,Q, f, h).
That is P ∈ H

A′MA, Q ∈ H
AMA′ and f : P⊗AQ → A′, h : Q⊗A′P → A

are bimodule isomorphisms and A′ ' EndA(P ) as comodule algebras. The
comodule structure on EndA(P ) is given by λ : EndA(P ) → H⊗EndA(P ),
λ(T ) = T (−1)⊗T (0) where

(4.1) 〈α, T (−1)〉T (0)(p) = 〈α, T (p(0))(−1)S−1(p(−1))〉T (p(0))(0),

for any α ∈ H∗, T ∈ EndA(P ), p ∈ P .

For any i = 0, . . . ,m define P (i) = Pi/Pi−1, where P−1 = 0. The graded
vector space grP = ⊕m

i=0 P (i) has an obvious structure that makes it into

an object in the category UMK#kψF . We shall denote δ : grP → U⊗grP

the coaction. In particular grP ∈ UMK , thus by Theorem 3.1 (ii) we have
that grP 'M⊗K, where M = grP/(grP ·K+), since K/K+ = k.
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We have that δ(grP · K+) ⊂ (U⊗grP )(K+⊗1 + U⊗K+), since K =

k ⊕ K+ and thus the map δ induces a new map δ̂ : M → U ′⊗M , where
U ′ = U/UK+U . Notice that U ′ is a pointed Hopf algebra with coradical
kΓ, since U is coradically graded and the ideal UK+U is homogeneous and
does not intersect U0. M is also a kψF -module with m · f = m · f , for
f ∈ F , m ∈M . This action is easily seen to be well defined and, moreover,
M ∈ U ′MkψF .

Let Ψ ∈ Z2(Γ,k∗) be a 2-cocycle such that Ψ|F×F = ψ see [Br, Proposi-

tion III (9.5)]. Let ζ ∈ Z2(U ′) be such that ζ|Γ×Γ = Ψ−1, as in Lemma 4.1.

By [M1, Lemma 2.1] there exists and equivalence of categories U ′ζMkF '
U ′M(kF )Ψ . By Theorem 3.1 (ii) any object in U ′ζMkF is a free kF -module.

Thus there is an object N in U/U(kF )+M such that grP ' N⊗K⊗kψF .
Whence dimP = (dimN)(dimA). Similarly we can assume that there is
s ∈ N such that dimQ = sdimA′.

Using Theorem 3.1 (i) there exists t ∈ N such that P t is a free right
A-module, that is, there is a vector space T such that P t ' T⊗A, hence

t dimN = dimT.(4.2)

Since P⊗AQ ' A′ then P t⊗AQ ' T⊗Q ' A′t, then sdimT dimA′ =
t dimA′ and using (4.2) we obtain that s dimN = 1 whence dimN = 1 and
thus dimP = dimA.

Claim 4.1. Let n ∈ P0, then P = n · A.

Notice that P0 6= 0. In fact, if P0 = 0 and k ∈ N is minimal with Pk 6= 0,

then λ(Pk) ⊂
∑k

j=0Hk−j⊗Pj = H0⊗Pk, which is a contradiction. Let g ∈ Γ

be such that λ(n) = g⊗n. Now, if J = {a ∈ A : n · a = 0}, then J
is a right ideal of A. We shall prove that J = 0. Let a ∈ J and write
λ(a) =

∑n
i=1 a

i⊗ai, in such a way that the set {ai : i = 1, . . . , n} ⊂ H
is linearly independent. Now, {gai : i = 1, . . . , n} ⊂ H is also linearly
independent and we have 0 = λ(n · a) =

∑n
i=1 ga

i⊗n · ai. Thus n · ai = 0,
∀ i = 1, . . . , n, that is, λ(a) ∈ H⊗J and J is H-costable. As A is right
H-simple, J = 0. Therefore, the action · : N⊗A → P is injective and since
dimP = dimN dimA, the claim follows.

It is not difficult to prove that the linear map φ : gAg−1 → EndA(P )
given by φ(gag−1)(n · b) = n · ab is an isomorphism of H-comodule algebras.

Conversely, if A′ ' gAg−1 as comodule algebras and M ∈ AM, then
the set gMg−1 has a natural structure of A′-module in such a way that
the functor F : AM → A′M, M 7→ gMg−1 is an equivalence of Rep(H)-
modules. �
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5. Pointed Hopf algebras over S3 and S4
In this section we describe all pointed Hopf algebras whose coradical is

the group algebra of the groups S3 and S4. These were classified in [AHS]
and [GG], respectively.

Recall that a rack is a pair (X,B), where X is a non-empty set and
B : X ×X → X is a function, such that φi = iB (·) : X → X is a bijection
for all i ∈ X satisfying: iB (j B k) = (iB j)B (iB k), for all i, j, k ∈ X. See
[AG2] for detailed information on racks.

Let (X,B) be a rack. A 2-cocycle q : X × X → k×, (i, j) 7→ qij is a
function such that for all i, j, k ∈ X

qi,jBk qj,k = qiBj,iBk qi,k.

In this case it is possible to generate a braiding cq in the vector space kX
with basis {xi}i∈X by cq(xi⊗ xj) = qijxiBj ⊗ xi, for all i, j ∈ X. We denote
by B(X, q) the Nichols algebra of this braided vector space.

5.1. Quadratic approximations to Nichols algebras. Let J = ⊕r≥2J r

be the defining ideal of the Nichols algebra B(X, q). Next, we give a descrip-
tion of the space J 2 of quadratic relations. Let R be the set of equivalence
classes in X ×X for the relation generated by (i, j) ∼ (iB j, i). Let C ∈ R,
(i, j) ∈ C. Take i1 = j, i2 = i and, recursively, ih+2 = ih+1 B ih. Set
n(C) = #C and

R′ =
{
C ∈ R |

n(C)∏
h=1

qih+1,ih = (−1)n(C)
}
.

Let T be the free associative algebra in the variables {Tl}l∈X . If C ∈ R′,
consider the quadratic polynomial

(5.1) φC =

n(C)∑
h=1

ηh(C)Tih+1
Tih ∈ T ,

where η1(C) = 1 and ηh(C) = (−1)h+1qi2i1qi3i2 . . . qihih−1
, h ≥ 2. Then, a

basis of the space J 2 is given by

φC({xi}i∈X), C ∈ R′.(5.2)

We denote by B̂2(X, q) the quadratic approximation of B(X, q), that is the
algebra defined by relations 〈J 2〉. For more details see [GG, Lemma 2.2].

Let G be a finite group. A principal YD-realization over G of (X, q),
[AG2, Def. 3.2], is a way to realize this braided vector space (kX, cq) as a
Yetter-Drinfeld module over G. Explicitly, it is a collection (· , g, (χi)i∈X)
where

• · is an action of G on X,
• g : X → G is a function such that gh·i = hgih

−1 and gi · j = iB j,
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• the family (χi)i∈X , where χi : G→ k∗ is a 1-cocycle, that is

χi(ht) = χi(t)χt·i(h),

for all i ∈ X, h, t ∈ G, satisfying χi(gj) = qji.

If (· , g, (χi)i∈X) is a principal YD-realization of (X, q) over G then kX ∈
G
GYD as follows. The action and coaction of G are determined by:

δ(xi) = gi⊗xi, h · xi = χi(h)xh·i i ∈ X,h ∈ G.

Lemma 5.1. Assume that for any pair i, j ∈ X, (iB j)B i = j, then

χi(f) qf ·iBf ·j,f ·i = χj(f) qiBj,i for any f ∈ G, i, j ∈ X. �(5.3)

5.2. Nichols algebras over Sn. Let X = On
2 or X = O4

4 considered as
racks with the map B given by conjugation. Consider the applications:

sgn : Sn ×X → k∗, (σ, i) 7→ sgn(σ),

χ : Sn ×On
2 → k∗, (σ, i) 7→ χi(σ) =

{
1, if i = (a, b) and σ(a) < σ(b)

−1, if i = (a, b) and σ(a) > σ(b).

We will deal with the cocycles:

−1 : X ×X → k∗, (j, i) 7→ sgn(j) = −1, i, j ∈ X;

χ : On
2 ×On

2 → k∗, (j, i) 7→ χi(j) i, j ∈ On
2 .

The quadratic approximations of the corresponding Nichols algebras are

B̂2(On
2 ,−1) = k〈x(lm), 1 ≤ l < m ≤ n |x2(ab), x(ab)x(ef) + x(ef)x(ab),

x(ab)x(bc) + x(bc)x(ac) + x(ac)x(ab),

1 ≤ a < b < c ≤ n, 1 ≤ e < f ≤ n, {a, b} ∩ {e, f} = ∅〉,

B̂2(On
2 , χ) = k〈x(lm), 1 ≤ l < m ≤ n |x2(ab), x(ab)x(ef) − x(ef)x(ab),

x(ab)x(bc) − x(bc)x(ac) − x(ac)x(ab),

x(bc)x(ab) − x(ac)x(bc) − x(ab)x(ac),

1 ≤ a < b < c ≤ n, 1 ≤ e < f ≤ n, {a, b} ∩ {e, f} = ∅〉,

B̂2(O4
4,−1) = k〈xi, i ∈ O4

4|x2i , xixi−1 + xi−1xi,

xixj + xkxi + xjxk, if ij = ki and j 6= i 6= k ∈ O4
4〉.

Example 5.2. A principal YD-realization of (On
2 ,−1) or (On

2 , χ), respec-
tively (X, q) = (O4

4,−1), over Sn, respectively S4, is given by the inclusion
X ↪→ Sn and the action · is the conjugation. The family {χi} is determined
by the cocycle. In any case g is injective. For n = 3, 4, 5, this is in fact the
only possible realization over Sn.

Remark 5.3. Notice that all (On
2 ,−1), (On

2 , χ), for any n and (O4
4,−1) satisfy

that R = R′.
When n = 3, 4, 5, we have from [AG1, GG] B̂2(On

2 ,−1) = B(On
2 ,−1),

B̂2(On
2 , χ) = B(On

2 , χ) and dimB(On
2 ,−1),dimB(On

2 , χ) <∞.
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5.3. Pointed Hopf algebras constructed from racks. A quadratic lift-
ing datum Q = (X, q,G, (·, g, (χl)l∈X), (γC)C∈R′), or ql-datum, [GG, Def-
inition 3.5], is a collection consisting of a rack X, a 2-cocycle q, a finite
group G, a principal YD-realization (·, g, (χl)l∈X) of (X, q) over G such that
gi 6= gjgk, for all i, j, k ∈ X, and a collection (γC)C∈R′ ∈ k satisfying that
for each C = {(i2, i1), . . . , (in, in−1)} ∈ R′, k ∈ X,

γC = 0, if gi2gi1 = 1,(5.4)

γC = qki2qki1γkBC , if k B C = {k B (i2, i1), . . . , k B (in, in−1)}.(5.5)

To each ql-datum Q there is attached a pointed Hopf algebra H(Q) gener-
ated as an algebra by {al,Ht : l ∈ X, t ∈ G} subject to relations:

He = 1, HtHs = Hts, t, s ∈ G;(5.6)

Ht al = χl(t) at·lHt, t ∈ G, l ∈ X;(5.7)

φC({al}l∈X) = γC(1−Hgigj ), C ∈ R′, (i, j) ∈ C.(5.8)

Here φC is as in (5.1) above. The algebra H(Q) has a structure of pointed
Hopf algebra setting

∆(Ht) = Ht⊗Ht, ∆(ai) = gi⊗ai + ai⊗1, t ∈ G, i ∈ X.

See [GG] for further details.

5.4. Pointed Hopf algebras over Sn. The following ql-data provide ex-
amples of (possibly infinite-dimensional) pointed Hopf algebras over Sn.

1. Q−1
n [t] = (Sn,On

2 ,−1, ·, ι, {0, α, β}),
2. Qχ

n[λ] = (Sn,On
2 , χ, ·, ι, {0, 0, α}) and

3. D[t] = (S4,O4
4,−1, ·, ι, {α, 0, β}),

for α, β, λ ∈ k, t = (α, β). We will present explicitly the algebras H(Q)
associated to these data. It follows that relations (5.8) for each C ∈ R′

with the same cardinality are Sn-conjugated. Thus it is enough to consider
a single relation for each C with a given number of elements.

1. H(Q−1
n [t]) is the algebra presented by generators {ai,Hr : i ∈ On

2 , r ∈
Sn} and relations:

He = 1, HrHs = Hrs, r, s ∈ Sn,
Hjai = −ajijHj , i, j ∈ On

2 ,

a2(12) = 0;

a(12)a(34) + a(34)a(12) = α(1−H(12)H(34));

a(12)a(23) + a(23)a(13) + a(13)a(12) = β(1−H(12)H(23)).
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2. H(Qχ
n[λ]) is the algebra presented by generators {ai,Hr : i ∈ On

2 , r ∈
Sn} and relations:

He = 1, HrHs = Hrs, r, s ∈ Sn,
Hjai = χi(j) ajijHj , i, j ∈ On

2 ,

a2(12) = 0;

a(12)a(34) − a(34)a(12) = 0;

a(12)a(23) − a(23)a(13) − a(13)a(12) = α(1−H(12)H(23)).

3. H(D[t]) is the algebra generated by generators {ai,Hr : i ∈ O4
4, r ∈

S4} and relations:

He = 1, HrHs = Hrs, r, s ∈ Sn,
Hjai = −ajijHj , i ∈ O4

4, j ∈ O4
2,

a2(1234) = α(1−H(13)H(24)),

a(1234)a(1432) + a(1432)a(1234) = 0,

a(1234)a(1243) + a(1243)a(1423) + a(1423)a(1234) = β(1−H(12)H(13)).

These Hopf algebras have been defined in [AG1, Def. 3.7], [GG, Def.
3.9], [GG, Def. 3.10] respectively. Each of these algebras H(Q) satisfy

grH(Q) = B̂2(X, q)#kG, for G = Sn, n as appropriate [GG, Propositions
5.4, 5.5, 5.6].

Remark 5.4. Classification results:

(a) [AHS] H(Q−1
3 [t]), t = (0, 0) or t = (0, 1) are all the non-trivial finite-

dimensional pointed Hopf algebras over S3.
(b) [GG] H(Q−1

4 [t]), H(Qχ
4 [ζ]), H(D[t]), t ∈ P1

k ∪ {(0, 0)}, ζ ∈ {0, 1}
is a complete list of the non-trivial finite-dimensional pointed Hopf
algebras over S4.

We will classify module categories over the category of representations of
any pointed Hopf algebra over S3 or S4, that is, of the algebras listed in
Remark 5.4.

6. Coideal subalgebras of quadratic Nichols algebras

A fundamental piece of information to determine simple comodule al-
gebras is the computation of homogeneous coideal subalgebras inside the
Nichols algebra. This is part of Theorem 3.2. The study of coideal subalge-
bras is an active field of research in the theory of Hopf algebras and quantum
groups, see for example [HK], [HS], [K] and [KL].

In this section we present a description of all homogeneous left coideal
subalgebras in the quadratic approximations of the Nichols algebras con-
structed from racks.
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Fix n ∈ N, X = {i1, . . . , in} a rack of n elements and q : X ×X → k∗ a
2-cocycle. Let R be as in 5.1. Assume that, for any equivalence class C in
R and i, j, k ∈ X,

(i, j), (i, k) ∈ C ⇒ j = k and (i, j), (k, i) ∈ C ⇒ k = iB j.(6.1)

Let G be a finite group and let (·, g, (χi)i∈X) be a principal YD-realization
of (X, q) over G. We shall further assume that

g is injective and R = R′.(6.2)

For each subset Y ⊆ X, Y = {ij1 , . . . , ijr} ⊆ X, denote by KY the subal-

gebra of B̂2(X, q)#k1 generated by xj1 , . . . , xjr . Set H = B̂2(X, q)#kG.

Proposition 6.1. For each set Y = {ij1 , . . . , ijr} ⊆ X the algebra KY is
an homogeneous coideal subalgebra of H. For each such selection, if S =
{gij1 , . . . , gijr } then

StabKY = SGY = {h ∈ G : hSY h
−1 = SY }.

Moreover, if K is a homogeneous coideal subalgebra of H generated in
degree one, then there exists a unique Y ⊆ X such that

K = KY .

In particular, the set of homogeneous coideal subalgebras of H generated in

degree one inside B̂2(X, q)#k1 is in bijective correspondence with the set
2X of parts of X.

Proof. It is clear that K = KY is a homogeneous coideal subalgebra. Now,
to describe StabK it is enough to compute the stabilizer of the vector
space k{xj1 , . . . , xjr}. But h · xjk = χjk(h)xh·jk , k = 1, . . . , r and xh·jk ∈
{xj1 , . . . , xjr} if and only if h · jk ∈ {j1, . . . , jr}, if and only if gh·jk = gjl
for some l = 1, . . . , r. And the first part of the proposition follows since
gh·jk = hgjkh

−1.
Now, let K be a homogeneous coideal subalgebra of H generated in degree

one. If K = k the result is trivial, so let us assume that K 6= k. Since K is
homogeneous then K(1) 6= 0. Let 0 6= y =

∑
i λixi ∈ K(1), then

∆(y) = y⊗1 +
∑
i

λiHgi⊗xi ⇒
∑
i

λiHgi⊗xi ∈ H0⊗K(1).

Let
∑

i λiHgi⊗xi =
∑

t∈GHt⊗κt, κt =
∑

j∈X ηtjxj ∈ K(1), ηtj ∈ k, ∀ t, j.
As Ht = Hgj if and only if t = gj and gi = gj if and only if i = j, for

every i, j ∈ X, t ∈ G, (6.2), then ηtk = 0 if t 6= gk for some k ∈ X. Let us
denote ηij = ηgij , thus,∑

i

λiHgi⊗xi =
∑
i,j

ηijHgi⊗xj .

Therefore, λi 6= 0 implies ηij = δi,jλi and so κi = xi. Thus, {xi |λi 6= 0} ⊂
K, K(1) =

⊕
xi∈K(1)

k{xi} and therefore if Y = {i ∈ X : xi ∈ K(1)} then
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K = KY . Finally, if Y 6= Y ′ then it follows from the injectivity of g that
KY � KY ′ as coideal subalgebras. �

The next general lemma will be useful in 6.1 to prove that certain subal-
gebras are generated in degree one. Given a rack X, let us recall the notion
of derivations δi associated to every element of the canonical basis {ei}i∈X .
If {ei}i∈X denotes the dual basis of this basis, then δi = (id⊗ei)∆. If i ∈ X
we denote by Xi the set X \ {i} and thus kXi = k{xj | j ∈ Xi}. Let us
assume, furthermore, that

(6.3) qii = −1, for all i ∈ X.

This condition is satisfied, for example, if dim B̂2(X, q) < ∞ or X is such
that iB i = i for all i, by (6.2).

Lemma 6.2. Let K ⊂ B̂2(X, q)#k1 be a homogeneous coideal subalgebra of
H. Let i ∈ X and let us assume that there is ω ∈ K such that δi(ω) 6= 0.
Then xi ∈ K(1).

Proof. Let K =
⊕

sK(s), ω ∈ T (kX) and i ∈ X. In H,

ω = αi(ω) + βi(ω)xi, αi(ω), βi(ω) ∈ KXi .

It suffices to see this for a homogeneous monomial ω. We see it by induction
in ` = `(ω) ∈ N such that ω ∈ T `(kX). If ` = 0, or ` = 1 this is clear.
Let us assume it holds for ` = n − 1, for some n ∈ N. If `(ω) = n and
ω = xj1 . . . xjn , two possibilities hold, that is j1 6= i or j1 = i. In the
first case, let ω′ = xj2 . . . xjn . Thus, `(ω′) ≤ n − 1 and therefore there
exist αi(ω

′), βi(ω
′) ∈ KXi such that ω′ = αi(ω

′) + βi(ω
′)xi. As xj1αi(ω

′),
xj1βi(ω

′) ∈ KXi the claim follows in this case.
In the second case, let j = j2 and let us note that j 6= i, by (6.3). By

(6.2), we can consider the relation

xixj = qijxiBjxi − qijqiBj ixjxiBj .

Thus, if ω′′ = xj3 . . . xjn , ω = qijxiBjxiω′′−qijqiBj ixjxiBjω′′ and both mem-
bers of this sum belong to KXi + KXixi because of the previous case and
thus the claim follows.

Let π :
m⊕
s=0

H(s)⊗K(m − s) → H(m − 1)⊗K(1) be the canonical linear

projection. Let ω ∈ T (kX), i ∈ X and αi(ω), βi(ω) as above. Then,

π∆(ω) ∈ βi(ω)⊗xi +
⊕
j 6=i

H⊗xj .

Notice that δi(ω) = βi(ω), and therefore if δi(ω) 6= 0 it follows that xi ∈ K(1)
using (6.2) as in the proof of Proposition 6.1. �

In this part we shall assume that X is one of the racks On
2 , n ∈ N, or O4

4, q
one of the cocycles in 5.2. Notice that (6.1) is satisfied in these cases. Using
the previous results we shall describe explicitly all connected homogeneous
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coideal subalgebras of the bosonization of the quadratic approximations to
Nichols algebras described in 5.2.

We first introduce the following notation. Let Y ⊂ X be a subset and
define

RY
1 = {C ∈ R : C ⊆ Y × Y },

RY
2 = {C ∈ R : | C ∩ Y × Y |= 1}, and

RY
3 = {C ∈ R : C ∩ Y × Y = ∅}.

Remark 6.3. For the ql-data in 5.4, R = RY
1 ∪RY

2 ∪RY
3 , for any subset Y .

Moreover, if f ∈ StabKY then f · RY
s ⊆ RY

s for any s = 1, 2, 3. Also, (6.3)
holds.

Definition 6.4. Take the free associative algebra T in the variables {Tl}l∈Y .
According to this, we set ϑC,Y ({Tl}l∈Y ) in T as
(6.4)

ϑC,Y ({Tl}l∈Y ) =


φC({Tl}l∈X), if C ∈ RY

1 ;

TiTjTi − qiBj,i TjTiTj , if C ∈ RY
2 , (i, j) ∈ C ∩ Y × Y ;

0, if C ∈ RY
3 .

We define the algebra LY as follows

(6.5) LY = k〈{yi}i∈Y 〉/〈ϑC,Y ({yl}l∈Y ) : C ∈ R〉.

Notice that, if Y = X then LX ∼= B(X, q). For simplicity we shall
sometimes denote ϑC = ϑC,Y .

We now take B one of the quadratic (Nichols) algebras B̂2(On
2 ,−1),

B̂2(On
2 , χ), or B(O4

4,−1). Accordingly, let X = On
2 , q = −1, χ or (X, q) =

(O4
4,−1). Consider a YD-realization for (X, q) such that (6.2) is satisfied

(for instance, the ones in Example 5.2). Set H = B#kG.

Theorem 6.5. Let Y ⊂ X. LY is an H-comodule algebra with coaction

δ(yi) = gi⊗yi + xi⊗1, i ∈ Y.

The application yi 7→ xi, i ∈ Y defines an epimorphism of H-comodule
algebras LY � KY . Moreover, if n = 3, it is an isomorphism and LY ∼= KY .

Proof. The relations that define LY are satisfied in B. In fact, it suffices to
check this in the case C ∈ RY

2 since in the other ones ϑC = 0 or ϑC = φC ,
and φC = 0 in B, see (5.2). Now, if C ∈ RY

2 and (i, j) ∈ C ∩ Y × Y , let
k = iB j. By the definition of RY

2 , we have that necessarily k 6= i, j. Then,
if we multiply the relation xixj − qijxiBjxi+ qijqiBj ixjxiBj = 0 by xi on the
right and apply this relations to the outcome, we get

0 = xixjxi + qijqiBj i xjxiBjxi = xixjxi + qiBj ixj(xixj + qijqiBj i xjxiBj)

= xixjxi + qiBj i xjxixj .
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Thus, we have an algebra projection π : LY � KY . It is straightforward to
see that, for every C ∈ R,

δ(ϑC,Y ({yl}l∈Y )) = ϑC,Y ({xl}l∈Y )⊗1 + gC,Y⊗ϑC,Y ({yl}l∈Y ),

where

gC,Y =


gigj if C ∈ RY

1 , (i, j) ∈ C,

gigjgi if C ∈ RY
2 , (i, j) ∈ C ∩ Y × Y,

0, if C ∈ RY
3 .

Therefore, δ provides LY with a structure of H-comodule in such a way that
π becomes a homomorphism.

We analyze now the particular case n = 3. If |Y | = 1, the result is
clear. Let us suppose then that Y = {i, j} ⊂ O3

2. Notice that the map π
is homogeneous. Then, if γ ∈ ker(π), π(γ) = 0 in B(O3

2,−1). By (5.2), we
have that necessarily deg γ ≥ 3. Now, if deg γ = 3,

γ = αyiyjyi + βyjyiyj = (α+ β)yjyiyj .

for α, β ∈ k. Then, π(γ) = 0 implies that α = −β and γ = 0. Finally,
we can see that there are no elements γ ∈ LY with deg γ ≥ 4. In fact, an
element γ with deg γ = 4 would be of the form

γ = αyiyjyiyj + βyjyiyjyi = αyiyiyjyi + βyjyjyiyj = 0.

This also shows that there are no elements of greater degree. Therefore,
LY = KY . �

Remark 6.6. If n 6= 3, then in general LY 6= KY . In fact, if n = 4, q = −1
and we take Y = {(13), (23), (34)} ⊆ O4

2, then we have

LY ∼= k〈x, y, z : x2, y2, z2, xyx− yxy, yzy − zyz, xzx− zxz〉.

Now, in the subalgebra of B(O4
2,−1) generated by x = x(23), y = x(34),

z = x(13) we have the relation

(xyz)2 = x(23)x(34)x(13)x(23)x(34)x(13)

= −x(23)x(34)(x(23)x(12) + x(12)x(13))x(34)x(13)

= x(23)x(34)x(23)x(34)x(12)x(13)

+ x(23)x(12)x(34)x(13)x(34)x(13)

= x(23)x(23)x(34)x(23)x(12)x(13)

+ x(23)x(12)x(34)x(34)x(13)x(34)

= 0.

But (xyz)2 6= 0 in LY . We prove this by using the computer program [GAP]
together with the package [GBNP]. See Proposition 6.9 (6), for a description
of KY in this case.
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6.1. Coideal subalgebras of Hopf algebras over Sn. Set n = 3, 4, B
a finite-dimensional Nichols algebra over Sn, H = B#kSn. Recall that
these Nichols algebras coincide with their quadratic approximations. We
will describe all the coideal subalgebras of H. We will also calculate their
stabilizer subgroups.

We start out by proving that in this case these coideal subalgebras are
generated in degree one.

Theorem 6.7. Let K be a homogeneous left coideal subalgebra of H. Then
K is generated in degree one. In particular, K = KY for a unique Y ⊆ X.

Proof. We will se that, given ω ∈ K, ω ∈ 〈xi : δiω 6= 0〉. Then, by Lemma
6.2, it will follow that ω ∈ 〈K(1)〉. Let I = {i ∈ X : δiω = 0} and let us
assume I has m elements. We will see this case by case, for m = 0, . . . , 6.

Cases m = 0 (that is, for all i ∈ X xi ∈ K(1)) and m = 6, or m = n
in general, (since in this case ω = 0, see [AG1, Section 6]) are clear. Case
m = 1 is Lemma 6.2, which also holds for any n ∈ N.

Let us see case m = 2, for any n ∈ N. Let I = {i, p}. We know that
there is an expression of ω without, v.g., xi. Let us see that we can write
ω without xi nor xp. Let j ∈ X such that pB j = i. Using the relations as
in Lemma 6.2, and using that xlxrxl = −qlBrlxrxlxr and that xrxlxrxl = 0
for all l, r ∈ X, we can assume that ω can be written as

ω = γ0 + γ1xp + γ2xpxj

with γ0, γ1, γ2, such that they do not contain factors xi, xp in their ex-

pressions. Let us see this in detail. We can assume that ω ∈ T `(kX) is a
homogeneous monomial. For each appearance of a factor xpxl, with l 6= j
we change it by qpl xlxpBl + qplqpBlp xpBlxp. That is, we change for an ex-
pression in which xp is located more to the right and an expression that does
not contain xi nor xp (in the place where we had an xp). If we have a factor
of the form xpxj we move it to the right, until we get to xpxjxp, but we can
change this expression by −qpBjp xjxpxj .

Now, 0 = δpω = γ1gp + γ2gpxj = (γ1 + qpjγ
2xi)gp, and therefore we have

ω = γ0 + γ1xp + qpjγ
2xixp + qpjqipγ

2xjxi = γ0 + qpjqipγ
2xjxi.

But then 0 = δiω = qpjqipγ
2xjgi and therefore ω = γ0 can be written

without xi, xp.

This finishes the case n = 3, since in this case |X| = 3. We now fix n = 4,
to deal with the cases m = 3, 4, 5.

Let us see case m = 3. Fix I = {i1, i2, p}. There are three possibilities

I = {i, j, iB j};(6.6)

I = {i, j, k}, such that iB k = k or j B k = k;(6.7)

I = {i, j, l}, the remaining case.(6.8)
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Set j1, j2 ∈ X be such that p B js = is, s = 1, 2. We can assume that ω
is written without xis , s = 1, 2. Notice that not always j1, j2 exist. For
instance, in (6.6) there are no j1 nor j2 and in (6.7) j1 or j2 does not exist.
We analyze the three cases separately.

In (6.6), as there are no j1, j2, we can write ω in the form ω = γ0 + γ1xp
with γ0, γ1 without factors xj , j ∈ I. But from δpω = 0 it follows that
ω = γ0 and therefore we can write ω without factors xj , j ∈ I.

Case (6.7) is similar. Assume, for example, that i2 B p = p. Thus, we
have no j2. Accordingly, we can assume that ω is of the form

ω = γ0 + γ1xp + γ2xpxj1 = γ0 + γ1xp + qpj1γ
2xi1xp + qpj1qj1i1γ

2xj1xi1

with γ1, γ2, γ3 without factors xj , j ∈ I. Now, 0 = δpω = (γ1p+qpj1γ
2xi1)gp

and thus ω = γ0 + qpj1qj1i1γ
2xj1xi1 but as δi1ω = 0, it follows ω = γ0 and

therefore ω is written without factors xj , j ∈ I.
It remains to see (6.8). The existence of j1, j2 makes this case more subtle

than the previous ones. Let us analyze the set I = {i1, i2, p}. We have that
k = i1Bi2 = i2Bi1 /∈ I, but, moreover, we have that X = {i1, i2, p, k, j2, j1}.
In fact, we cannot have i1 B i2 = j1 since this implies i2 = p and neither
i1B i2 = j2 because this implies i1 = p. Moreover, we have that i2B j1 = j1,
and therefore xi2xj1 = qi2j1xj1xi2 . Set

a = xp, b = xj1 , c = xj2 ,

d = xi1 , e = xi2 , f = xk.

Now we analyze which are the longest words we can write with the “con-
flictive” factors a, b and c, starting with a. Recall that aba = ±bab, and
abb = 0. Starting with ab, we can preliminary form the words abca and abcb.
Now, abcac = ±babca, and thus we discard it. Consider abcb. abcabc = 0,
so we are left with abcaba. As abcabab = 0, we reach to abcabac. As
abcabaca = abcabacb = 0, we keep this word. In the case of abcb, arguing
similarly, we reach to abcbacb. If we start with acb, as acbc = ±abcb, we
consider those words starting with acba. The longest one is acbacab, but
this is ±abcbacb. So the longest word we can form not considered before is
acbac.

In consequence, we can assume there exist γi ∈ K, i = 0, . . . , 15 without
factors xj , j ∈ I, such that ω is of the form

ω =γ0 + γ1a+ γ2ab+ γ3abc+ γ4abca+ γ5abcab+ γ6abcaba+ γ7abcabac

+ γ8abcb+ γ9abcba+ γ10abcbac+ γ11abcbacb+ γ12ac+ γ13acb

+ γ14acba+ γ15acbac.

Using the relations and the fact that δsω = 0, s = p, i1, i2 we will show that
we can write ω without factors xs, s = p, i1, i2. When using the relations,
by abuse of notation, we will omit the scalars q.. that may appear, including
them in the (new) factors γi. We will denote by γi

′
, γi

′′
, γi

′′′ ∈ K to some
of these scalar multiple of the factors γi, i = 0, . . . , 15, when needed.
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As δpω = 0, we can re-write ω as

ω =γ0 + γ2bd+ γ3bdc+ γ3
′
dce+ γ5bdcbd+ γ5

′
dcebd+ γ7abcabce

+ γ8bdcb+ γ8
′
dceb+ γ8

′′
debd+ γ10abcbce+ γ11abcbebd+ γ11

′
abcbceb

+ γ12ce+ γ13ebd+ γ13
′
ceb+ γ15acbea+ γ15

′
acbce.

Now, using that δi1ω = 0, and the relations dc = ±cd, be = ±eb, bcb = ±cbc
and abcabc = bcbc = 0, we see that

ω =γ0 + γ2bd+ γ3bcd+ γ3
′
cde+ γ5bdcbd+ γ5

′
dcebd

+ γ7abcdeae+ γ8bdcb+ γ8
′
dcbe+ γ8

′′
dbed+ γ11abcbeda

+ γ12ce+ γ13bed+ γ13
′
cbe+ γ15acbce+ γ15

′
edaea.

Using that δi2ω = 0 together with the relations, we get to

ω =γ0 + γ2bd+ γ3bcd+ γ5bcbad+ γ5
′
cbafe+ γ5

′′
cbaed

+ γ8bcad+ γ8
′
bcba+ γ8

′′
baed+ γ8

′′′
bafe+ γ11abcbebd

+ γ11
′
abcbeab+ γ11

′′
abcbfea+ γ11

′′′
abcbfac+ γ13bed+ γ13

′
bfe.

Using now that δi1ω = 0,

ω =γ0 + γ5cbafe+ γ8bcba+ γ8
′
bafe

+ γ11abcbacb+ γ11
′
abcbfce+ γ11

′′
abcbfac+ γ13bfe.

Using again that δi2ω = 0,

ω = γ0 + γ8bcba+ γ11abcbacb+ γ11
′
abcbafc

= β0 + β1a+ β2abcbacb+ β3abcbabf

for βi ∈ K, i = 0, . . . , 3 without factors xj , j ∈ I. Using that δpω = 0,

ω = β0 + β2dedaeda+ β3dedadaf = β0,

since edaeda = dada = 0. That is, we can write ω without factors xj , j ∈ I.

In the case m = 4, we look at the different subsets of three elements of I.
If we have a subset of three elements that corresponds to the case (6.8) it
follows that ω can be written without the factors xj with j in that subset,
and then ω is in an algebra isomorphic to B(O3

2,−1), for which we have
already proved the result. If we have a subset as in the case (6.6) when we
add to this subset a fourth element we obtain another subset as in the case
(6.8). If our subset corresponds to the case (6.7), in order to get to a case
different from (6.8), we necessarily have to add a fourth element such that
I is

I = {i, j, k, l}, with iB k = k and j B l = l.

We analyze this case. If p ∈ I is fixed and ω is written without factors xj ,
j ∈ I \ {p} = {i1, i2, i3}, notice that if p B i3 = i3 there is no other j3 such
that p B j3 and, moreover, if j1, j2 are such that p B js = is, s = 1, 2, then
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xj1xj2 = ±xj2xj1 . Therefore, we can assume that there are γi, i = 0, . . . , 4
such that they do not contain factors xj , j ∈ I and such that ω can be
written as

ω = γ0 + γ1xp + γ2xpxj1 + γ3xpxj1xj2 + γ4xpxj1xj2xp
δpω=0
= γ0 + γ2xj1xi1 + γ3xj1xi1xj2 + γ3

′
xi1xj2xi2 + γ4xi1xi2xp

δpω=0
= γ0 + γ2xj1xi1 + γ3xj1xi1xj2 + γ3

′
xi1xj2xi2

δi2ω=0
= γ0 + γ2xj1xi1 + γ3xj1xi1xj2

δi1ω=0
= γ0 + γ3xj1xj2xi2

δi2ω=0
= γ0.

Then, we can write ω without xj , for j ∈ I. In the case m = 5, ω necessarily
belongs to an algebra isomorphic to B(O3

2,−1). �
Now we apply Theorems 6.5 and 6.7 to calculate the coideal subalgebras

and stabilizer subgroups of H = B(O3
2)#kS3.

Corollary 6.8. The following are all the proper homogeneous left coideal
subalgebras of B(O3

2,−1)#kS3:
(1) Ki = 〈xi〉 ∼= k[x]/〈x2〉, i ∈ O3

2;
(2) Ki,j = 〈xi, xj〉 ∼= k〈x, y〉/〈x2, y2, xyx− yxy〉, i, j ∈ O3

2.

The non trivial stabilizer subgroups of S3 are, on each case

(1) StabKi = Z2
∼= 〈i〉 ⊂ S3;

(2) StabKi,j = Z2
∼= 〈k〉 ⊂ S3, k 6= i, j. �

Next, we use the computer program [GAP], together with the pack-
age [GBNP], to compute the coideal subalgebras of the finite-dimensional
Nichols algebras over S4 associated to the rack of transpositions O4

2. In the
same way, the coideal subalgebras of the Nichols algebra B(O4

4,−1) asso-
ciated to the rack of 4-cycles can be computed. The presentation of these
algebras may not be minimal, in the sense that there may be redundant re-
lations. Moreover, in the general case, non-redundant relations in a coideal
subalgebra K may become redundant when computing the bosonization with
a subgroup F ≤ StabK.

First, we need to establish some notation and conventions. Let k〈x, y, z〉
be the free algebra in the variables x, y, z. We set the ideals

R±(x, y, z) = 〈x2, y2, z2, xy + yz ± zx〉 ⊂ k〈x, y, z〉.

Set B+
4 = B(O4

2,−1), B−
4 = B(O4

2, χ). Recall that Y stands for a subset of
O4

2.

Proposition 6.9. Let ε = ±.Any homogeneous proper coideal subalgebra
Kε of Bε

4#k1 is isomorphic to one of the algebras in the following list:
dimKε(1) = 1,
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(1) Y = {i}, Kε = k[x]/〈x2〉, and dimKε = 2.

dimKε(1) = 2,

(2) Y = {i, j}, iB j = j,
Kε = k〈x, z〉/〈x2, z2, xz + εzx〉, and dimKε = 4.

(3) Y = {i, j}, iB j 6= j,
Kε = k〈x, y〉/〈x2, y2, xyx− εyxy〉, and dimKε = 6.

dimKε(1) = 3:

(4) Y = {i, j, k}, iB j = k,
Kε = k〈x, y, z〉/〈Rε(x, y, z)〉, and dimKε = 12.

(5) Y = {i, j, k}, iB j 6= j, k, iB k = k
Kε
i,j,k := k〈x, y, z〉/〈x2, y2, z2, xyx − εyxy, zyz − εyzy, xz + εzx〉,

and dimKε = 24.
(6) Y = {i, j, k}, iB j, j B k, iB k /∈ {i, j, k},

Kε
Y = k〈x, y, z :x2, y2, z2,

yxy − εxyx, zxz − εxzx, zyz − εyzy,

zxyz + yzxy + xyzx, zyxz + yxzy + xzyx

zxyxzx+ εyzxyxz, zxyxzy + εxzxyxz〉,

and dimKε = 48.

dimKε(1) = 4:

(7) Y = {i, j, k, l}, iB j = k, iB l = l;

Kε
Y = k〈x, y, z, w :x2, y2, z2, w2,

zx+ εyz + εxy, zy + yx+ εxz, wz + εzw,

yxy − εxyx,wxw − εxwx,wyw − εywy,

wyx+ εwxz − εzwy,wyz + wxy − zwx

wxyz − zwxz,wxzw + xwxz,

wxyw + ywxy + xywx,wxyxz − εzwxyx,

wxyxwx+ εywxyxw,wxyxwy + εxwxyxw〉,

and dimKε = 96.
(8) Y = {i, j, k, l}, iB j 6= j, k, iB k = k, j B l = l,

Kε
Y = k〈x, y, z, w :x2, y2, z2, w2, zy + εyz, wx+ εxw,

yxy − εxyx, zxz − εxzx,wyw − εywy,wzw − εzwz,

zxyx+ yzxy, zxyz + εxzxy,

wyx− εzwy − yxz + εxzw,wzx− εzxy − ywz + εxyw,

wyzxy − εywyzx− xyzwy + xyxzw,

wyzxw + zxywz − yxzwy − xwyzx,

wyzw − εzxwz − yzxw + yxwy + εxwyz − εxyzx〉,

and dimKε = 144.
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dimKε(1) = 5:

(9) Y = {i, j, k, l,m}, i B j = k, i B l = m, j B l 6= l, k B m 6= m,
j Bm = m, k B l = l,

Kε = k〈x, y, z, w, u :x2, y2, z2, w2, u2, wz + εzw, uy + εyu,

zx+ εyz + εxy, zy + yx+ εxz,

ux+ εwu+ εxw, uw + wx+ εxu,

yxy − εxyx,wxw − εxwx,wyw − εywy, uzu− εzuz,

wyx+ εwxz − εzwy,wyz + wxy − zwx,

uzw − εwxz − xuz,wxyz − zwxz,

wxyw + ywxy + xywx,

wxyxz − εzwxyx,wxzw + xwxz,

wxyxwx+ εywxyxw,wxyxwy + εxwxyxw〉,
and dimKε = 288.

The stabilizers subgroups of S4 are, in each case, the following:

(1) Z2 × Z2
∼= 〈gi, gj〉 ⊂ S4 with iB j = j;

(2) D4
∼= 〈gi, σ〉 ⊂ S4 (if, e.g., gi = (12), σ = (1324));

(3) Z2
∼= 〈gk〉 ⊂ S4, k = iB j.

(4) S3 ∼= 〈gi, gj , gk〉 ⊂ S4, iB j = k;
(5) Z2

∼= 〈gjgl〉, j 6= l, j B l = l;
(6) S3 ∼= 〈giBj , gjBk, gkBi〉 ⊂ S4;
(7) If Kε belongs to items (7) to (8) then StabKε = 1. �

Examples 6.10. We give, as an illustration, an example of a subset Y ⊆ O4
2

for each case in the previous proposition. Note that any comodule algebra
KY ′ such that Y ′ is not in the next list, is S4-conjugated to another, KY ,
with Y a set in the list.

(1) Y = {(12)},
(2) Y = {(12), (34)},
(3) Y = {(12), (13)},
(4) Y = {(12), (13), (23)},
(5) Y = {(12), (13), (34)},
(6) Y = {(12), (13), (14)},
(7) Y = {(12), (13), (23), (14)},
(8) Y = {(12), (13), (24), (34)},
(9) Y = {(12), (13), (23), (14), (24)}. �

Remark 6.11. Let Y ⊂ O4
2 and let Z ⊂ O4

2 be such that O4
2 = Y tZ, as sets.

Denote by Yj one of the subsets of item j of Proposition 6.9, and by Zj the
corresponding complement. Notice that we have the following bijections

Z1
∼= Y9, Z2

∼= Y8, Z3
∼= Y7, Z4

∼= Y6, Z5
∼= Y5.

Therefore, we have that dimKY dimKZ = dimBε, for every Y . An analo-
gous statement holds for the case X = O4

4.
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7. Representations of Rep(B̂2(X, q)#kG)

In this Section, we take Q = (X, q,G, (·, g, (χl)l∈X), (λC)C∈R′) as one of
ql-data from Section 5.4. Note that in this case, the set Ci = {(i, i)} belongs
toR = R′ and (iBj)Bi = j, for any i, j ∈ X. LetH(Q) be the corresponding

Hopf algebra defined in Section 5.3 and set H = B̂2(X, q)#kG. We will

assume dim B̂2(X, q) < ∞ (and thus dimH(Q) < ∞, [GG, Proposition
4.2]). In particular, this holds for n = 3, 4, 5.

7.1. B̂2(X, q)#kG-Comodule algebras. We shall construct families of co-
module algebras over quadratic approximations of Nichols algebras. These
families are large enough to classify module categories in all of our examples.

Definition 7.1. Let F < G be a subgroup and ψ ∈ Z2(F,k×). If Y ⊆ X
is a subset such that F · Y ⊆ Y , that is F < StabKY , we shall say that a
family of scalars ξ = {ξC}C∈R, ξC ∈ k is compatible with the triple (Y, F, ψ)
if for any f ∈ StabKY ,

ξf ·C χi(f)χj(f) = ξC ψ(f, gigj)ψ(fgigj , f
−1), if C ∈ RY

1 , (i, j) ∈ C;

ξf ·C χ
2
i (f)χj(f) = ξC ψ(f, gigjgi)ψ(fgigjgi, f

−1), if C ∈ RY
2 , (i, j) ∈ C;

ξCi = ξCj = 0, if C ∈ RY
2 , (i, j) ∈ C.

We will assume that the family ξ is normalized by ξC = 0 if either C ∈ RY
1 ,

(i, j) ∈ C, and gigj /∈ F or if C ∈ RY
2 , (i, j) ∈ C, and gigjgi /∈ F .

We now introduce the comodule algebras we shall work with.

Definition 7.2. Let F < G be a subgroup, ψ ∈ Z2(F,k×), and let Y ⊆ X
be a subset such that F · Y ⊆ Y and let ξ = {ξC}C∈R′ be compatible with
(Y, F, ψ). Define A(Y, F, ψ, ξ) to be the algebra generated by {yl, ef : l ∈
Y, f ∈ F} and relations

e1 = 1, eres = ψ(r, s) ers, r, s ∈ F,(7.1)

ef yl = χl(f) yf ·l ef , f ∈ F, l ∈ Y,(7.2)

ϑC,Y ({yl}l∈X) =

{
ξC eC if eC ∈ F

0 if eC /∈ F
C ∈ R.(7.3)

Here ϑC,Y was defined in (6.4) and the element eC is defined as

eC =


egigj if C ∈ RY

1 , (i, j) ∈ C,

egigjgi if C ∈ RY
2 , (i, j) ∈ C ∩ Y × Y,

0, if C ∈ RY
3 .

(7.4)

If Z ⊆ X is a subset invariant under the action of F we define B(Z,F, ψ, ξ)
as the subalgebra of A(X,F, ψ, ξ) generated by elements {yl, ef : l ∈ Z, f ∈
F}.
Remark 7.3. (a) Applying ad(f), f ∈ StabKY to equation (7.3) and

using (5.3) one can deduce the equations in Definition 7.1.
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(b) It may happen that B(Z,F, ψ, ξ) 6= A(Z,F, ψ, ξ).

Let λ : A(Y, F, ψ, ξ) → H⊗A(Y, F, ψ, ξ) be the map defined by

λ(ef ) = f⊗ef , λ(yl) = xl⊗1 + gl⊗yl,(7.5)

for all f ∈ F , l ∈ Y .

Lemma 7.4. A(Y, F, ψ, ξ) is a left H-comodule algebra with coaction λ as
in (7.5) and B(Z,F, ψ, ξ) is a subcomodule algebra of A(X,F, ψ, ξ).

Proof. Let us prove first that the map λ is well-defined. It is easy to see
that λ(efyl) = χl(f)λ(yf ·l eg) for any f ∈ F, l ∈ X.

Let C ∈ RY
1 and (i, j) ∈ C. In this case ϑC = φC . We shall prove that

λ(φC({yl}l∈X)) = λ(ξC egigj ). Using the definition of the polynomial φC we
obtain that

λ(φC({yl}l∈X)) =
n(C)∑
h=1

ηh(C)xih+1
xih⊗1 + xih+1

gih⊗yih + gih+1
xih⊗yih+1

+

+ gih+1
gih⊗yih+1

yih = φC({xl}l∈X)⊗1 + gigj⊗φC({yl}l∈X)
= ξC gigj⊗egigj = λ(ξC egigj ).

The second equality follows since in(C)+1 = i1 and

gih+1
xih = qih+1ih xih+2

gih+1
, ηh(C)qih+1ih = −ηh+1(C).

Now, let C ∈ RY
2 , (i, j) ∈ C and i B j /∈ Y . In this case relation (7.3) is

yiyjyi+qiBjiyjyiyj = ξC egigjgi . Note that assumption ξCi = ξCj = 0 implies

that y2i = 0 = y2j . The proof that λ(yiyjyi + qiBjiyjyiyj) = ξCλ(egigjgi) is a
straightforward computation. �

Theorem 7.5. Let Y ⊆ X be an F -invariant subset and assume that
A(X,F, ψ, ξ) 6= 0, then the following statements hold:

1. The algebras A(X,G,ψ, ξ) are left H-Galois extensions.
2. If ξ satisfies

(7.6) ξC =


−λC if λC 6= 0,

0 if λC = 0 and gjgi 6= 1,

arbitrary if λC = 0 and gjgi = 1.

then A(X,G, 1, ξ) is a (H,H(Q))-biGalois object.
3. B(Y, F, ψ, ξ)0 = kψF and thus B(Y, F, ψ, ξ) is a right H-simple left

H-comodule algebra.
4. There is an isomorphism of comodule algebras grB(Y, F, ψ, ξ) '

KY#kψF .
5. There is an isomorphism B(Y, F, ψ, ξ) ' B(Y ′, F ′, ψ′, ξ′) of comodule

algebras if and only if Y = Y ′, F = F ′, ψ = ψ′ and ξ = ξ′.
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Proof. 1. To prove that A(X,G,ψ, ξ) is a Galois observe that the canonical
map

can : A(X,G,ψ, ξ)⊗A(X,G,ψ, ξ) → H⊗A(X,G,ψ, ξ),

can(x⊗y) = x(−1)⊗x(0)y, is surjective. Indeed for any f ∈ G, l ∈ X
can(ef⊗ef−1) = f⊗1, can(yl⊗1− egl⊗eg−1

l
yl) = xl⊗1.

2. Define the map ρ : A(X,G, 1, ξ) → A(X,G, 1, ξ)⊗H(Q), by

ρ(ef ) = ef⊗Hf , ρ(yl) = yl⊗1 + egl⊗al, l ∈ X, f ∈ G.

The map ρ is well-defined. Indeed, if C ∈ R and (i, j) ∈ C then

ρ(φC({yl}l∈X)) = φC({yl}l∈X)⊗1 + egigj⊗φC({al}l∈X)
= ξC egigj⊗1 + λC egigj⊗

(
1−Hgigj

)
.

Clearly if ξ satisfies (7.6) then ρ(φC({yl}l∈X)) = ξC ρ(egigj ). The proof that
A(X,G, 1, ξ) is a (H,H(Q))-bicomodule and a right H(Q)-Galois object is
done by a straightforward computation.

3. If A(X,F, ψ, ξ) 6= 0 then there is a group F with a projection F � F
such that A(Y, F, ψ, ξ)0 = kψF. The map A(Y, F, ψ, ξ)0⊗A(Y, F, ψ, ξ)0 →
kF⊗A(Y, F, ψ, ξ)0 defined by ef⊗eg 7→ f⊗ψ(f, g) efg is surjective. Hence

F = F . This implies that B(Z,F, ψ, ξ)0 = kψF and by [M1, Prop. 4.4]
follows that B(Z,F, ψ, ξ) is a right H-simple left H-comodule algebra.

4. Follows from Theorem 3.2 (3) that grB(Y, F, ψ, ξ) ' K#kψF for some

homogeneous left coideal subalgebra K ⊆ B̂2(X, q). Recall that K is identi-
fied with the subalgebra of grB(Y, F, ψ, ξ) given by

{a ∈ grA(Y, F, ψ, ξ) : (id ⊗ π)λ(a) ∈ H⊗1}.

See [M1, Proposition 7.3 (3)]. In loc. cit. it is also proved that the compo-
sition

grB(Y, F, ψ, ξ) (θ⊗π)λ−−−−→ K#kψF
µ−→ grB(Y, F, ψ, ξ),

is the identity map, where θ : H → B̂2(X, q), π : grB(Y, F, ψ, ξ) → kψF are
the canonical projections and µ is the multiplication map. Both maps are
bijections and since for any l ∈ Y , (θ⊗π)λ(yl) = xl, then K = KY .

5. Let β : B(Y, F, ψ, ξ) → B(Y ′, F ′, ψ′, ξ′) be a comodule algebra iso-
morphism. The restriction of β to B(Y, F, ψ, ξ)0 induces an isomorphism
between kψF and kψ′F ′, thus F = F ′ and ψ = ψ′. Since β is a comodule
morphism it is clear that Y = Y ′ and ξC = ξ′C for any C ∈ R. �

Corollary 7.6. If A(X,G, 1, ξ) 6= 0 for some ξ satisfying (7.6), then

1. The Hopf algebras H = B̂2(X, q)#kG and H(Q) are cocycle defor-
mations of each other.

2. There is a bijective correspondence between equivalence classes of
exact module categories over Rep(H) and Rep(H(Q)). �
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Remark 7.7. Under the assumptions in Corollary 7.8, we obtain, in par-

ticular, that grH(Q) = B̂2(X, q)#kG, since the latter is a quotient of the
first.

The following corollary uses Propositions 8.1 and 8.5, where certain al-
gebras are shown to be not null. These propositions will be proven in the
Appendix and their proofs are independent of the results in the article.

Corollary 7.8. Let H be a non-trivial pointed Hopf algebra over S3 or S4.
Then H is a cocycle deformation of grH.

Proof. Finite-dimensional Nichols algebras over S3 and S4 coincide with their
quadratic approximations. That is, if H is a finite-dimensional pointed Hopf

algebra over Sn, n = 3, 4, then grH ∼= B̂2(X, q)#kSn. By [GG, Main
Theorem] we know that H ∼= H(Q). Therefore, the theorem follows from
Corollary 7.6, since in Propositions 8.1, 8.5 we show the existence of non-zero
(grH(Q),H(Q))-biGalois objects in these cases.

When dealing with Q−1
4 [t] or D[t], notice that condition ξ2 = 2ξ1 in

Proposition 8.5 does not interfere with the proof, since, by equation (7.6),
ξ1, resp. ξ2, can be chosen arbitrarily. �

Remark 7.9. In [Ma, Theorem A1] Masuoka proved that the Hopf algebras
u(D, λ, µ) associated to a datum of finite Cartan type D appearing in the
classification of Andruskiewitsch and Schneider [AS] are cocycle deforma-
tions to the associated graded Hopf algebras u(D, 0, 0).

Corollaries 7.6 (1) and 7.8 provide a similar result for some families of
Hopf algebras constructed from Nichols algebras not of diagonal type. It
would be interesting to generalize this kind of result for larger classes of
Nichols algebras.

7.2. Module categories over Rep(H(Q)).
Let A be a H-comodule algebra with grA = KY#kψF , for F ≤ StabKY ,

ψ ∈ Z2(F,k∗). Let Z be such that X = Y t Z as sets. Notice that F ≤
StabKZ .

Lemma 7.10. Under the above assumptions there exists a family of scalars
ξ compatible with (X,F, ψ) such that A ' B(Y, F, ψ, ξ) as comodule algebras.

Proof. The canonical projection π : A1 → A1/A0 ' KY (1) = kY is a
morphism of A0-bimodules. Let ι : kY → A1 be a section of A0-bimodules
of π. Since elements {xl : l ∈ Y } are in the image of π we can choose
elements {yl : l ∈ Y } in A1 such that ι(xl) = yl for any l ∈ Y . It is
straightforward to verify that

λ(yl) = xl⊗1 + gl⊗yl, ef yl = χl(f) yf ·l ef , f ∈ F, l ∈ Y.

Since grA is generated by elements {xl, ef : l ∈ Y, f ∈ F} then A is gener-
ated as an algebra by elements {yl, ef : l ∈ Y, f ∈ F}.
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Now, let B = A⊗KZ . Then B has an comodule algebra structure for
which the canonical inclusion A ↪→ A⊗1 ⊂ B is a homomorphism. The
algebra structure is given as follows. For i ∈ Y , j ∈ Z, f ∈ F ,

(yi⊗1)(1⊗yj) = (yi⊗yj);

(1⊗yj)(yi⊗1) =



qjiyi⊗yj + ξCeC⊗1, if iB j = j

qjiyjBi⊗yj − qjiqjBi jyiyjBi⊗1 + ξCeC⊗1, if iB j 6= j,

iB j ∈ Y ;

qji1⊗yjBiyj − qjiqjBi jyi⊗yjBi + ξCeC⊗1, if iB j 6= j,

iB j /∈ Y ;

(ef⊗1)(1⊗yj) = ef⊗yj ;
(1⊗yj)(ef⊗1) = χ−1

j (f)ef⊗yf−1·j .

Here C stands for the class C ∈ R′ such that (j, i) ∈ C. Recall that by
definition ξC = 0 if gC /∈ F . Then the map

(7.7) m : B → A(X,F, ψ, ξ), a⊗x 7→ ax

is an algebra epimorphism. Now, if

A 3 a 7→ a(−1)⊗a(0) ∈ H⊗A and

KZ 3 x 7→ x(−1)⊗x(0) ∈ H⊗KZ

denote the corresponding coactions, define λ : B → H⊗B by λ(a⊗x) =
a(−1)x(−1)⊗a(0)⊗x(0). It is straightforward to check that λ is well defined.
We do this case by case in the definition of the multiplication of B above.
For instance, if iB j 6= j and iB j ∈ Y , then we have

λ(1⊗yj)λ(yi⊗1) = (gj⊗(1⊗yj) + xj⊗(1⊗1))(gi⊗(yi⊗1) + xi⊗(1⊗1))

= (gj⊗(1⊗yj))(gi⊗(yi⊗1)) + (xj⊗(1⊗1))(gi⊗(yi⊗1))

+ (gj⊗(1⊗yj))(xi⊗(1⊗1)) + (xj⊗(1⊗1))(xi⊗(1⊗1))

= gjgi⊗(1⊗yj)(yi⊗1) + xjgi⊗(yi⊗1)

+ qjixjBigj⊗(1⊗yj) + xjxi⊗(1⊗1)

= gjgi⊗(qjiyjBi⊗yj − qjiqjBi jyiyjBi⊗1 + ξCgC⊗1)

+ xjgi⊗(yi⊗1) + qjixjBigj⊗(1⊗yj)
+ (qjixjBixj − qjiqjBi jxixjBi⊗1)⊗(1⊗1),

which coincides with λ(qjiyjBi⊗yj − qjiqjBi jyiyjBi⊗1 + ξCgC⊗1).
Thus, B is an H-comodule algebra with

dimB = dimAdimKZ = dimKY dimKZ |F | = dimA(X,F, ψ, ξ),

by Remark 6.11 and then the map m from (7.7) is an isomorphism. �
We can now formulate the main result of the paper. For any h ∈ G, we

denote ξhC = ξh−1·C . Recall that we denote by B(Y, F, ψ, ξ) the sub-comodule
algebra of A(X,F, ψ, ξ) generated by {yi}i∈Y .



MODULE CATEGORIES OVER POINTED HOPF ALGEBRAS OVER S3 AND S4 27

Theorem 7.11. 1. Let M be an exact indecomposable module category
over Rep(H(Q)), then there exists
(i) a subgroup F < G, and a 2-cocycle ψ ∈ Z2(F,k×),
(ii) a subset Y ⊂ X such that F · Y ⊂ Y ,
(iii) a family of scalars {ξC}C∈R′ compatible with (X,F, ψ),
such that there is a module equivalence M ' B(Y,F,ψ,ξ)M.

2. Let (Y, F, ψ, ξ), (Y ′, F ′, ψ′, ξ′) be two families as before. Then there
is an equivalence of module categories B(Y,F,ψ,ξ)M ' B(Y ′,F ′,ψ′,ξ′)M
if and only if there exists an element h ∈ G such that F ′ = hFh−1,
ψ′ = ψh, Y ′ = h · Y and ξ′ = ξh.

Proof. 1. By Corollary 7.8 we can assume that M is an exact indecom-
posable module category over grH(Q) = H. It follows by [AM, Theorem
3.3] that there is a right H-simple left H-comodule algebra A such that
M ' AM. Theorem 3.2 implies that there is a subgroup F < G, a 2-
cocycle ψ ∈ Z2(F,k×) and a subset Y ⊂ X with F · Y ⊂ Y such that
grA = KY#kψF . Here A0 = kψF . Then the result follows from Lemma
7.10.

2. Assume that the module categories B(Y,F,ψ,ξ)M, B(Y ′,F ′,ψ′,ξ′)M are
equivalent, then Theorem 4.2 implies that there exists an element h ∈ G
such that B(Y ′, F ′, ψ′, ξ′) ' hB(Y, F, ψ, ξ)h−1 as H-comodule algebras.

The algebra map α : hB(Y, F, ψ, ξ)h−1 → B(h · Y, hFh−1, ψh, ξh) defined
by

α(hefh
−1) = ehfh−1 , α(hylh

−1) = χl(h) yh·l,

for any f ∈ F , l ∈ Y , is a well-defined comodule algebra isomorphism.
Whence B(Y ′, F ′, ψ′, ξ′) ' B(h · Y, hFh−1, ψh, ξh) and using Theorem 7.5
(3) we get the result. �

As a consequence of Theorem 7.11 we have the following result.

Corollary 7.12. Any H-Galois object is of the form A(X,G,ψ, ξ).

Proof. Let A be a H-Galois object. Then AM is an exact module cat-
egory over RepH. Moreover, AM is indecomposable. In fact, otherwise
there would exist a proper bilateral ideal J ⊂ A H-stable [AM, Proposition
1.18]. Thus, can(A⊗J) = can(J⊗A), what contradicts the bijectivity of
can. Then, by Theorem 7.11 there exists a datum (X,G,ψ, ξ) such that
A ∼= A(X,G,ψ, ξ). �
7.3. Modules categories over B(O3

2,−1)#kS3. We apply Theorem 7.11
to exhibit explicitly all module categories in this particular case. In this
case the rack is

O3
2 = {(12), (13), (23)}.

For each i ∈ O3
2 we shall denote by gi the element i thought as an element

in the group S3. We will show in the Appendix that the algebras in the
following result are not null. Then the next corollary follows from Theorem
7.11.
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Corollary 7.13. Let M be an indecomposable exact module category over
Rep(B(O3

2,−1)#kS3). Then there is a module equivalence M ' AM where
A is one (and only one) of the comodule algebras in following list. In the
following i, j, k denote elements in O3

2 and ξ, µ, η ∈ k.

1. For any subgroup F ⊆ S3, ψ ∈ Z2(F, k×), the twisted group algebra
kψF .

2. The algebra A({i}, ξ, 1) =< yi : y
2
i = ξ1 >, with coaction determined

by λ(yi) = xi⊗1 + gi⊗yi.
3. The algebra A({i}, ξ,Z2) =< yi, h : y2i = ξ1, h2 = 1, hyi = −yih >

with coaction determined by λ(yi) = xi⊗1 + gi⊗yi, λ(h) = gi⊗h.
4. The algebra A({i, j}, 1) =< yi, yj : y2i = y2j = 0, yiyjyi = yjyiyj >

with coaction determined by λ(yi) = xi⊗1 + gi⊗yi, λ(yj) = xj⊗1 +
gj⊗yj .

5. The algebra A({i, j},Z2) =< yi, yj , h : y2i = y2j = 0, h2 = 1, hyi =

−yjh, yiyjyi = yjyiyj > with coaction determined by λ(yi) = xi⊗1+
gi⊗yi, λ(yj) = xj⊗1 + gj⊗yj , λ(h) = gk⊗h, where k 6= i, j.

6. The algebra A(O3
2, ξ, 1), generated by {y(12), y(13), y(23)} subject to

relations

y2(12) = y2(13) = y2(23) = ξ1,

y(12)y(13) + y(13)y(23) + y(23)y(12) = 0,

y(13)y(12) + y(23)y(13) + y(12)y(23) = 0.

The coaction is determined by λ(ys) = xs⊗1+gs⊗ys for any s ∈ O3
2.

7. The algebra A(O3
2, ξ,Z2), generated by {y(12), y(13), y(23), h} subject

to relations

y2(12) = y2(13) = y2(23) = ξ1, h2 = 1,

hy(12) = −y(12)h, hy(13) = −y(23)h,
y(12)y(13) + y(13)y(23) + y(23)y(12) = 0.

The coaction is determined by λ(h) = g(12)⊗h, λ(ys) = xs⊗1+gs⊗ys
for any s ∈ O3

2.
8. The algebra A(O3

2, ξ, µ, η,Z3), generated by {y(12), y(13), y(23), h} sub-
ject to relations

y2(12) = y2(13) = y2(23) = ξ1, h3 = 1,

hy(12) = y(13)h, hy(13) = y(23)h, hy(23) = y(12)h,

y(12)y(13) + y(13)y(23) + y(23)y(12) = µh,

y(13)y(12) + y(23)y(13) + y(12)y(23) = η h2.

The coaction is determined by λ(h) = g(132)⊗h, λ(ys) = xs⊗1 +

gs⊗ys, for any s ∈ O3
2.
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9. The algebras A(O3
2, ξ, µ,S3, ψ), for each ψ ∈ Z2(S3,k×), generated

by {y(12), y(13), y(23), eh : h ∈ S3} subject to relations

ehet = ψ(h, t) eht, ehys = −yh·seh h, t ∈ S3, s ∈ O3
2,

y2(12) = y2(13) = y2(23) = ξ1,

y(12)y(13) + y(13)y(23) + y(23)y(12) = µ e(123).

The coaction is determined by λ(eh) = h⊗eh, λ(ys) = xs⊗1+ gs⊗ys
for any s ∈ O3

2. �

8. Appendix: A(Y, F, ψ, ξ) 6= 0

In this part, we will complete the proofs of Corollaries 7.8 and 7.13, by
showing that the algebras involved in their statements are not null.

Proposition 8.1. Let A(Y, F, ψ, ξ) be one of the algebras in Corollary 7.13.
Then A(Y, F, ψ, ξ) 6= 0.

Proof. The case Y 6= O3
2 is clear. Set Y = O3

2. Note that each one
of these algebras is naturally a right kF -module via a ↼ t = aet, a ∈
A(Y, F, ψ, ξ), t ∈ F . Thus, we can consider the induced representation
W = A(Y, F, ψ, ξ)⊗kFWε, where Wε = k{z} is the trivial kF -module. Let

B = {1,y(12), y(13), y(23), y(13)y(12), y(12)y(13), y(12)y(23), y(13)y(23),
y(12)y(13)y(23), y(13)y(12)y(23), y(12)y(13)y(12), y(12)y(13)y(12)y(23)}

and consider the linear subspace V of W generated by B⊗z. We show that
this is a non-trivial submodule in the four cases left, namely F = 1,Z2,Z3

or S3. In all of the cases, the action of y(12) is determined by the matrix

y(12) =



0 ξ 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 ξ 0 0 0 0 0 0
0 0 0 0 0 0 ξ 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 ξ 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ξ 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 ξ
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0


.

Now, take F = S3, ψ ≡ 1. The action of e(12) and e(13) is determined,
respectively, by the matrices:

1 0 0 0 µ 0 0 µ 0 0 0 0
0 −1 0 0 0 0 0 0 −µ 0 −µ 0
0 0 0 −1 0 0 0 0 0 µ ξ 0
0 0 −1 0 0 0 0 0 ξ −µ 0 0
0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 1 0 0 0 0 −µ
0 0 0 0 0 1 0 −1 0 0 0 µ
0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1


and



1 0 0 0 0 µ µ 0 0 0 0 0
0 0 0 −1 0 0 0 0 µ 0 ξ 0
0 0 −1 0 0 0 0 0 0 −µ −µ 0
0 −1 0 0 0 0 0 0 −µ ξ 0 0
0 0 0 0 0 −1 0 1 0 0 0 −µ
0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 1 0 −1 0 0 0 0 µ
0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1


.
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The action of e(23) is given by e(12)e(13)e(12). Finally, we use computer
program Mathematica c© to check that these matrices satisfy the relations
defining the algebra on each case.

We deal now with a generic 2-cocycle ψ ∈ Z2(S3,k×). Let us fix A =
A(Y, F, 1, ξ), A′ = A(Y, F, ψ, ξ). Also, set U = KY#kF , U ′ = KY#kψF . If
ψ ∈ Z2(U) is the 2-cocycle such that ψF×F = ψ, see Lemma 4.1, it follows

that U ′ = Uψ. Now, as A is an U -comodule algebra, isomorphic to U as
U -comodules, it follows that there exists a 2-cocycle γ ∈ Z2(U) such that
A ∼= γU , see [Mo, Sections 7 & 8]. It is easy to check then that A′ = γU

′,
by computing the multiplication on the generators, and thus A′ 6= 0. �

To finish the proof of Corollary 7.8, we present three families of non trivial
algebras A(X,G, 1, ξ), for X = O4

2, G = S4 and certain collections of scalars
{ξC}C∈R′ satisfying (7.6). We show A(X,G, 1, ξ) 6= 0 in Proposition 8.5.

Definition 8.2. Let ψ ∈ Z2(S4,k×), α, β ∈ k.
1. A−1

ψ (α, β) is the algebra generated by {yi, eg : i ∈ O4
2, g ∈ S4} with

relations

e1 = 1, eres = ψ(r, s) ers, r, s ∈ S4,
eg yl = sgn(g) yg·l eg, g ∈ S4, l ∈ O4

2,

y2(12) = α 1,

y(12)y(34) + y(34)y(12) = 2α e(12)(34),

y(12)y(23) + y(23)y(13) + y(13)y(12) = β e(132).

2. A4
ψ(α, β) is the algebra generated by {yi, eg : i ∈ O4

4, g ∈ S4} with
relations

e1 = 1, eres = ψ(r, s) ers, r, s ∈ S4,
eg yl = sgn(g) yg·l eg, g ∈ S4, l ∈ O4

4,

y2(1234) = α e(13)(24),

y(1234)y(1432) + y(1432)y(1234) = 2α 1,

y(1234)y(1243) + y(1243)y(1423) + y(1423)y(1234) = β e(132).

3. Aχ
ψ(α, β) is the algebra generated by {yi, eg : i ∈ O4

2, g ∈ S4} with

relations

e1 = 1, eres = ψ(r, s) ers, r, s ∈ S4,
eg yl = χl(g) yg·l eg, g ∈ S4, l ∈ O4

2,

y2(12) = α 1,

y(12)y(34) − y(34)y(12) = 0,

y(12)y(23) − y(23)y(13) − y(13)y(12) = β e(132).
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Remark 8.3. Let Q = Q−1[t]. It is clear A−1
ψ (α, β) ∼= A(O4

2,S4, ψ, ξ) for the
family ξ = {ξC}C∈R where ξC = ξi, if i = 1, 2, 3, is constant in the classes
C with the same cardinality |C| = i and where in this case ξ1 = α, ξ2 = 2α,
ξ3 = β.

Analogously, if Q = Qχ[t], Aχ
ψ(α, β) is the algebra A(O4

2,S4, ψ, ξ) for

certain family ξ subject to similar conditions as in the previous paragraph.
The same holds for Q = D[t], A4

ψ(α, β) and A(O4
4,S4, ψ, ξ).

Recall that there is a group epimorphism π : S4 → S3 with kernel H =
〈(12)(34), (13)(24), (23)(14)〉. Moreover, π(O4

2) = O3
2. Let Q be one of the

ql-data from Subsection 5.4, for n = 4.

Lemma 8.4. Let Q as above. Take γ = 0 if Q = Q−1
4 . Then there is an

epimorphism of algebras H(Q) � H(Q−1
3 [λ]).

Proof. Consider the ideal I inH(Q) generated by the element H(12)H(34)−1,
and let L = H(Q)/I. We have

H(14)H(23) = ad (H(24))(H(12)H(34)) so H(14)H(23) = 1 in L,
a(34) = ad (H(14)H(23))(a12) so a(34) = a(12) in L.

Analogously, H(13) = H(24), a(14) = a(23) and a(24) = a(13) in L. Since,
for this ql-data, the action · : S4 × X → X is given by conjugation and
g : X → S4 is the inclusion, relations (5.6) and (5.7) in the definition of
H(Q) are satisfied in the quotient. It is now easy to check that the quadratic
relations (5.8) defining H(Q) become in the quotient the corresponding ones
defining the algebra H(Q−1

3 [λ]). �
Proposition 8.5. Assume that (Y, F, ψ, ξ) satisfies

(i) ξCi = ξCj , ∀ i, j ∈ Y .

If Q 6= Qχ
4 (λ) assume in addition that

(ii) if i, j ∈ Y , iB j = j and (i, j) ∈ C then ξC = 2ξi.

Then the algebra A(Y, F, ψ, ξ) is not null.

Proof. Assume first that ψ ≡ 1. Now, given a datum (Y, F, ψ, ξ), π(F ) < S3
and it is easy to see that π(Y ) is a subrack of O3

2. Moreover, it follows that
ξ is compatible with the triple (π(Y ), π(F ), ψ). Then we have the algebra
A(π(Y ), π(F ), ψ, ξ). As in Lemma 8.4, it is easy to see that if we quotient
out by the ideal generated by 〈efeg : fg−1 ∈ N〉, then we have an algebra
epimorphism A(Y, F, ψ, ξ) � A(π(Y ), π(F ), ψ, ξ). As these algebras are
non-zero by Proposition 8.1, so is A(Y, F, ψ, ξ).

Notice that in the case in which (Y, F, ψ, ξ) is associated with the ql-datum
Qχ

4 (λ), assumption (ii) is not needed, since the first equation in Definition
7.1 implies that, if i, j ∈ Y are such that i B j = i and C ∈ R′ is the
corresponding class, then ξC = 0 and this relation is contained in the ideal
by which we make the quotient.

The case ψ 6= 1 follows now as in the proof of Proposition 8.1. �
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