REPRESENTATIONS OF THE CATEGORY OF MODULES
OVER POINTED HOPF ALGEBRAS OVER S; AND Sy

AGUSTIN GARCIA IGLESIAS AND MARTIN MOMBELLI

ABSTRACT. We classify exact indecomposable module categories over
the representation category of all non-trivial Hopf algebras with coradi-
cal S and S4. As a byproduct, we compute all its Hopf-Galois extensions
and we show that these Hopf algebras are cocycle deformations of their
graded versions.

1. INTRODUCTION

Given a tensor category C, an exact module category [EO1] over C is an
Abelian category M equipped with a biexact functor ® : C x M — M sub-
ject to natural associativity and unity axioms, such that for any projective
object P € C and any M € M the object P ® M is again projective.

Exact module categories, or representations of C, are very interesting ob-
jects to consider. They are implicitly present in many areas of mathematics
and mathematical physics such as subfactor theory [BEK], affine Hecke alge-
bras [BO], extensions of vertex algebras [KO], [HuKo|, Calabi-Yau algebras
[Gi] and conformal field theory, see for example [BFRS], [F'S], [CS1], [CS2].

Module categories have been used in the study of fusion categories [ENO1],
[ENO1], and in the theory of (weak) Hopf algebras [O1], [M1], [N].

The classification of exact module categories over a fixed finite tensor
category C has been undertaken by several authors:

1. When C is the semisimple quotient of Uy(sly) [KO], [EO2],

2. over the tensor categories of representations of finite supergroups

[EO1,

over Rep(D(G)), D(G) the Drinfeld double of a finite group G [02],

4. over the tensor category of representations of the Lusztig’s small
quantum group u,(sly) [M1],

5. and more generally over Rep(H), where H is a lifting of a quantum
linear space [M2].
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The main goal of this paper is the classification of exact module categories
over the representation category of any non-trivial (i.e. different from the
group algebra) finite-dimensional Hopf algebra with coradical kS or kSy.

Finite-dimensional Hopf algebras with coradical kS3 or kS, were classified
in [AHS], [GG], respectively. For all these Hopf algebras the associated
graded Hopf algebras gr H are of the form B(X, q)#kS,,, n = 3,4 where X
is a finite set equipped with a map > : X x X — X satisfying certain axioms
that makes it into a rack and ¢ : X x X — k* is a 2-cocycle. We have the
following result:

Let n = 3,4 and let M be an exact indecomposable module category over
Rep(B(X, q)#kS,,), then there exist

e a subgroup F < 'S, and a 2-cocycle ¢ € Z2(F,k*),
e a subset Y C X invariant under the action of F,
e a family of scalars {{¢'} compatible (Definition 7.1) with (F,,Y),

such that M =~ gy gy M, where B(Y, F,9,§) is a left B(X, q)#kS,-
comodule algebra constructed from data (Y, F,,£). We also show that
if H is a finite-dimensional Hopf algebra with coradical kS5 or kS4 then H
and gr H are cocycle deformations of each other. This implies that there
is a bijective correspondence between module categories over Rep(H) and

Rep(gr H).

The content of the paper is as follows. In Section 3 we recall the basic
results on module categories over finite-dimensional Hopf algebras. We recall
the main result of [M2] that gives an isomorphism between Loewy-graded
comodule algebras and a semidirect product of a twisted group algebra and
a homogeneous coideal subalgebra inside the Nichols algebra. In Section 4
we show how to distinguish Morita equivariant classes of comodule algebras
over pointed Hopf algebras.

In Section 5 we recall the definition of a rack X and a ql-datum O, and
how to construct (quadratic approximations to) Nichols algebras %\Q(X ,q)
and pointed Hopf algebras H(Q) out of them. In particular, we recall a
presentation of all finite-dimensional Hopf algebras with coradical kSg, kSy.
In Section 6, we give a classification of connected homogeneous left coideal
subalgebras of B2(X, q) and also a presentation by generators an relations.

In Section 7 we introduce a family of comodule algebras large enough
to cla/sgify module categories. We give an explicit Hopf-biGalois extension
over Bo(X, q)#kS,,, n € N, and a lifting H(Q), proving that there is a bi-
jective correspondence between module categories over Rep(gg(X , Q) #KkS,,)
and Rep(H(Q)), n = 3,4. In particular we obtain that any pointed Hopf
algebra over S3 or Sy is a cocycle deformation of its associated graded al-
gebra, a result analogous to a theorem of Masuoka for abelian groups [Ma].

Finally, the classification of module categories over Rep(%\g(X ,Q)#kS,) is
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presented in this section and as a consequence all Hopf-Galois objects over
PBo (X, q)#kS,, are described.

Acknowledgments. We thank N. Andruskiewitsch for suggesting us this
project and for his comments that improved the presentation of the paper.

2. PRELIMINARIES AND NOTATION

We shall denote by k an algebraically closed field of characteristic zero.
The tensor product over the field k will be denoted by ®. All vector spaces,
algebras and categories will be considered over k. For any algebra A, 4 M
will denote the category of finite-dimensional left A-modules.

The symmetric group on n letters is denoted by S, and by (’);‘ we shall
denote the conjugacy class of all j-cycles in S,,. For any group G, a 2-cocycle
Y € Z2(G,k*) and any h € G we shall denote ¥"(z,y) = ¥ (h~txh, h~tyh)
for all x,y € G.

If H is a Hopf algebra, a 2-cocycle o in H is a convolution invertible linear
map o : H x H — k such that

(2.1) o(x1),¥1))o(T(2)¥2), 2) = oYy, 21))o (T, y2)2(2))

and o(x,1) = o(1,x) = e(x), for every x,y,z € H. The set of 2-cocycles in
H is denoted by Z2(H).

If A is an H-comodule algebra via A : A — H®A, we shall say that a
(right) ideal J is H-costable if A\(J) C H®J. We shall say that A is (right)
H-simple if there is no nontrivial (right) ideal H-costable in A.

If H =& H(i) is a coradically graded Hopf algebra we shall say that a left
coideal subalgebra K C H is homogeneous if K = @ K (i) is graded as an
algebra and, for any n, K(n) C H(n) and A(K(n)) C @, H(i)®K (n—1).
K is said to be connected it KN H(0) = k.

If H = B(V)#kG, where V is a Yetter-Drinfeld module over G and
K C H is a coideal subalgebra, we shall denote by Stab K the biggest
subgroup of GG such that the adjoint action of Stab K leaves K invariant.

If H is a finite-dimensional Hopf algebra then Hy C H{ C--- C H,, = H
will denote the coradical filtration. When Hy C H is a Hopf subalgebra then
the associated graded algebra gr H is a coradically graded Hopf algebra. If
(A, ) is a left H-comodule algebra, the coradical filtration on H induces
a filtration on A, given by A, = A"'(H,®A). This filtration is called the
Loewy series on A.

The associated graded algebra gr A is a left gr H-comodule algebra. The
algebra A is right H-simple if and only if gr A is right gr H-simple, see [M1,
Section 4].
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3. REPRESENTATIONS OF TENSOR CATEGORIES

Given C = (C,®,a,1) a tensor category, a module category over C or
a representation of C is an Abelian category M equipped with an exact
bifunctor ® : C x M — M and natural associativity and unit isomorphisms
mxym: (XQY)oM - XY M), {y : 1@ M — M satisfying
natural associativity and unit axioms, see [EO1], [O1]. We shall assume, as
in [EO1], that all module categories have only finitely many isomorphism
classes of simple objects.

A module category is indecomposable if it is not equivalent to a direct
sum of two non trivial module categories. A module category M over a
finite tensor category C is exact [EO1] if for any projective P € C and any
M € M, the object P®QM is again projective in M.

If M is an exact module category over C then the dual category Cj,,
see [EO1], is a finite tensor category. There is a bijective correspondence
between the set of equivalence classes of exact module categories over C
and over C},, see [EO1, Theorem 3.33]. This implies that for any finite-
dimensional Hopf algebra there is a bijective correspondence between the set
of equivalence classes of exact module categories over Rep(H ) and Rep(H™).

3.1. Module categories over pointed Hopf algebras. We are interested
in exact indecomposable module categories over the representation category
of finite-dimensional Hopf algebras. If H is a Hopf algebra and A : A —
H®A is a left H-comodule algebra the category M 4 is the category of
finite-dimensional right A-modules left H-comodules where the comodule
structure is a A-module morphism. If A’ is another left H-comodule algebra
the category i{ M 4 is defined analogously.

The category of finite-dimensional left A-modules 4 M is a representation
of Rep(H). The action ® : Rep(H) X oM — g M is given by VM = VM
for all V- € Rep(H), M € 4M. The left A-module structure on VM is
given by the coaction .

If M is an exact indecomposable module over Rep(H) then there exists
a left H-comodule algebra A right H-simple with trivial coinvariants such
that M ~ 4 M as modules over Rep(H) see [AM, Theorem 3.3].

If A, A" are two right H-simple left H-comodule algebras such that the
categories 4 M, oM are equivalent as representations over Rep(H). Then
there exists an equivariant Morita context (P, @, f,g), that is P € 5{,/\/1 A,
Qe i\IMA’ and f: Po4Q — A, g: Q® 4 P — A such that they are bimod-
ule isomorphisms. Moreover, it holds that A" ~ End 4(P) as comodule alge-
bras. The comodule structure on End 4(P) is given by \M(T') = T'_y®T (),
where

31) (o, T1) Toy(p) = (. T(p) (-8~ (p-1)) T(P0)) 0
for any a € H*, T' € End 4(P), p € P. See [AM] for more details.
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By the previous paragraph, we can see that the categories M 4 play a
central role in the theory. The following theorem will be of great use in the
next section.

Theorem 3.1. Let H be a Hopf algebra and A a left H-comodule algebra,
both finite dimensional.

e [Sk, Theorem 3.5] If A is H-simple and M € T My, then there
exists t € N such that M!, the direct sum of t copies of M, is a free
A-module.

e [Sk, Theorem 4.2] M € "My is free as A-module if and only if
there exists a mazimal ideal J C A such that M/M - J is free as
A/ J-module. O

The first statement of this theorem is actually present in the proof of [Sk,
Theorem 3.5]. The second one will be particularly useful when the ideal J
is such that A/J =k, since in this case M /M - J is automatically free.

Theorem 3.2. [M2, Theorem 3.3] Let G be a finite group and let H be a
finite-dimensional pointed Hopf algebra with coradical kG. Assume there is
V € GYD such that gr H = U = B(V)#kG. Let A be a left H-comodule
algebra right H-simple with trivial coinvariants. There exists

1. a subgroup F C G,

2. a 2-cocycle 1 € Z?(F,k*),

3. a homogeneous left coideal subalgebra K = &' (K(i) € B(V) such
that (1) C V is a kG-subcomodule invariant under the action of F,

such that gr A ~ K#kyF as left U-comodule algebras. ([l
The algebra structure and the left U-comodule structure of K# ky [ is
given as follows. If z,y € K, f,g € F then
(x#g)(y#[) = x(g - y)#¥ (9, f) 9,
Mz#tg) = (v(1)#9)2(7(2)#9),

where the action of F' on K is the restriction of the action of G on B(V) as
an object in g)}D. Observe that F' is necessarily a subgroup of Stab K.

4. EQUIVARIANT EQUIVALENCE CLASSES OF COMODULE ALGEBRAS

In this section we shall present how to distinguish equivalence classes of
some comodule algebras over pointed Hopf algebras and then we will apply
this result to our cases. Much of the ideas here are already contained in
[M1], [M2] although with less generality.

Let I' be a finite group and H be a finite-dimensional pointed Hopf algebra
with coradical kI' and with coradical filtration Hy C H; € --- C H,,, = H.
Assume there is V € LYD such that gr H = U = B(V)#k[ .

We begin with the following lemma.
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Lemma 4.1. Let I',U as above. Let o € Z*(I',k*) be a 2-cocycle. Then
there exists a 2-cocycle ¢ € Z*>(U) such that SIrxr = 0

Proof. Let us consider the linear map ¢ : UxU — k defined, on homogeneous
elements x,y € U by

C(x,y) = {U(x,y), ifz,y e U(O)7

0, otherwise.

Notice that ¢(x,1) = ¢(1,z) = €(z) by definition. We have to check that, for
xeU(m),yeUn), ze U(k), mn,k €N, (2.1) holds. Now, if & > 0, the
LHS of (2.1) is zero. Set A(z) = Zf:o Zi®2k 1 with 2° € U(s), s =0,..., k.
Analogously, set A(y) = Z?:o Y@y, with y' € U(t), t=0,...,n. Then,
the RHS is

k n

S 6w,y sy, 21) = (w5 =0,

i=0 j=0

and thus (2.1) holds. Both sides of this equation are similarly seen to be
zero if m > 0 or n > 0, while the case m = n = k£ = 0 holds by definition
of ¢. This map is convolution invertible and its inverse ¢~ ! is defined in an
analogous manner, using o~ . [l

Let A, A" be two right H-simple left H-comodule algebras. Let F, F' C T
be subgroups and let ¢ € Z2(F,k*), o' € Z%(F',k*) be two cocycles such
that Ap = kyF and A = ky F’'. Let K, K’ € B(V) be two homogeneous
coideal subalgebras such that gr A = K#k,F and gr A" = K'#ky F'.

The main result of this section is the following.

Theorem 4.2. The categories 4M, 4 M are equivalent as modules over
Rep(H) if and only if there exists an element g € T such that A’ ~ gAg—1
as comodule algebras.

Proof. Let us assume that 4M = 4M as Rep(H)-modules. By [AM,
Proposition 1.24] there exists an equivariant Morita context (P, Q, f,h).
That is P € T M4, Q € TIMy and f: PoaQ — A, h: QuaP — A
are bimodule isomorphisms and A" ~ End4(P) as comodule algebras. The
comodule structure on End 4(P) is given by A : End 4(P) — H® End 4(P),
)\(T) = T(_1)®T(0) where

41) (e, T1) Tioy(p) = (@, T(p0) —yS " (p(=1))) T(P(0)) 0);
for any a € H*, T' € End 4(P), p € P.

For any ¢ = 0,...,m define P(i) = P;/P;_1, where P_; = 0. The graded
vector space gr P = @[ P(i) has an obvious structure that makes it into
an object in the category UMK#HWF. We shall denote 6 : gr P — U®gr P

the coaction. In particular gr P € Y M, thus by Theorem 3.1 (ii) we have
that gr P ~ M®K, where M = gr P/(gr P- K"), since K/K*+ =k.
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We have that d(gr P - KT) C (Ugr P)(Kt®1 + URK™T), since K =
k @ KT and thus the map § induces a new map 5 M — U'®@M, where
U' = U/UK'U. Notice that U’ is a pointed Hopf algebra with coradical
kT, since U is coradically graded and the ideal U KU is homogeneous and
does not intersect Uy. M is also a kyF-module with m - f = m - f, for
f € F,me M. This action is easily seen to be well defined and, moreover,

!
MGUMka.

Let ¥ € Z?(T',k*) be a 2-cocycle such that U |pxr = ¥ see [Br, Proposi-
tion III (9.5)]. Let ¢ € Z*(U’) be such that (pxr = ¥, as in Lemma 4.1.
By [M1, Lemma 2.1] there exists and equivalence of categories U Myp ~
U/M(kp)w. By Theorem 3.1 (ii) any object in U My is a free kF-module.
Thus there is an object N in U/UKF)T AL such that grP ~ NOK®kyF.

Whence dim P = (dim N)(dim.A). Similarly we can assume that there is
s € N such that dim Q = sdim A’.

Using Theorem 3.1 (i) there exists ¢ € N such that P’ is a free right
A-module, that is, there is a vector space T such that P! ~ T®.A, hence

(4.2) t dim N = dim 7.

Since PR4Q ~ A’ then P/@4Q ~ T®Q ~ A", then sdimT dim A" =
tdim A" and using (4.2) we obtain that s dim N = 1 whence dim N =1 and
thus dim P = dim A.

Claim 4.1. Let n € Py, then P =n - A.

Notice that Py # 0. In fact, if Py =0 and k£ € N is minimal with P # 0,
then A\(Py) C Z?:o Hj,_j®P; = Hy® Py, which is a contradiction. Let g € I'
be such that A\(n) = g®n. Now, if J = {a € A : n-a = 0}, then J
is a right ideal of A. We shall prove that J = 0. Let a € J and write
AMa) = Y, a'®a;, in such a way that the set {a' : i = 1,...,n} C H
is linearly independent. Now, {ga’ : i = 1,...,n} C H is also linearly
independent and we have 0 = A(n-a) = > | ga’®n - a;. Thus n-a; = 0,
Vi =1,...,n, that is, AM(a) € H®J and J is H-costable. As A is right
H-simple, J = 0. Therefore, the action - : N®A — P is injective and since
dim P = dim N dim A, the claim follows.

It is not difficult to prove that the linear map ¢ : gAg~' — End4(P)
given by ¢(gag!)(n-b) = n-ab is an isomorphism of H-comodule algebras.

Conversely, if A" ~ gAg~' as comodule algebras and M € 4M, then

the set gMg~! has a natural structure of A’-module in such a way that
the functor F' : yM — g4 M, M + gMg~! is an equivalence of Rep(H)-
modules. O
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5. POINTED HOPF ALGEBRAS OVER S3 AND Sy

In this section we describe all pointed Hopf algebras whose coradical is
the group algebra of the groups Sz and S;. These were classified in [AHS]
and [GG], respectively.

Recall that a rack is a pair (X,>), where X is a non-empty set and
>: X x X — X is a function, such that ¢; =i (1) : X — X is a bijection
for all ¢ € X satisfying: i> (j> k) = (i>j)> (i > k), for all 4,5,k € X. See
[AG2] for detailed information on racks.

Let (X,>) be a rack. A 2-cocycle ¢ : X x X — k*, (i,j) — ¢ is a
function such that for all 4,5,k € X

Qi gk Ak = Qisj,ik Qi k-
In this case it is possible to generate a braiding ¢? in the vector space kX

with basis {z;}icx by ¢?(2; ® xj) = gijxinj @ x;, for all 4,7 € X. We denote
by B(X, q) the Nichols algebra of this braided vector space.

5.1. Quadratic approximations to Nichols algebras. Let 7 = ©,>2J"
be the defining ideal of the Nichols algebra B (X, ¢). Next, we give a descrip-
tion of the space J? of quadratic relations. Let R be the set of equivalence
classes in X x X for the relation generated by (i,75) ~ (it>j,i). Let C € R,
(i,j) € C. Take i1 = j, ia = i and, recursively, ip1o = ipr1 > 0. Set
n(C) = #C and

R ={CeR| ] @i = (-1)"}.
h

Let T be the free associative algebra in the variables {T}}cx. If C € R/,
consider the quadratic polynomial

(©)

1

n(C)
(5'1) bc = Z Uh(C) Tih+1Tih €T,
h=1

where 71(C) = 1 and 7,(C) = (=1)" " qipi,Gigin - - - Gipi,_,, b > 2. Then, a
basis of the space J2 is given by

(5.2) pc({zitiex), CeR.

We denote by %\Q(X ,q) the quadratic approximation of B(X, q), that is the
algebra defined by relations {7?2). For more details see [GG, Lemma 2.2].

Let G be a finite group. A principal YD-realization over G of (X,q),
[AG2, Def. 3.2], is a way to realize this braided vector space (kX,c?) as a
Yetter-Drinfeld module over G. Explicitly, it is a collection (-, g, (x:)icx)
where

e - is an action of G on X,
e g: X — G is a function such that gy.; = hg;h™' and ¢; - j =i > 7,



MODULE CATEGORIES OVER POINTED HOPF ALGEBRAS OVER S3 AND S; 9

e the family (x;)iex, where x; : G — k* is a 1-cocycle, that is
xi(ht) = xi(t) xt.i(h),
for all i € X, h,t € G, satisfying xi(g;) = gji-

If (-, 9, (xi)icx) is a principal YD-realization of (X, q) over G then kX €
gyD as follows. The action and coaction of G are determined by:

d(x;) = gi®x;i, h-x;=xi(h)xp; 1€ X, heQG.

Lemma 5.1. Assume that for any pairi,j € X, (it>j)>1=j, then
(5.3) Xi(f) apisfipi = Xi(f) @isji  forany f€ G, i,j € X. O
5.2. Nichols algebras over S,. Let X = O} or X = Of considered as
racks with the map > given by conjugation. Consider the applications:
sgn:S, x X = k*, (0,i) — sgn(o),

vk e = {1y T <o
We will deal with the cocycles:

—1: X x X — k¥, (j,1) — sgn(j) = —1, 1,] € X;
x: 05 x Oy =k, (J,4) = xi(j) i,j €05,
The quadratic approximations of the corresponding Nichols algebras are
%\2((’)3, —1) = kK(zgm), 1 <l <m < n| :C%ab), T(ab)T(ef) T T(ef)T(ab)s

Z(ab) T (be) T T(be)T(ac) T T(ac)T(ab)>
I1<a<b<c<n,l<e<f<n,{a,b}n{e, [} =0),

B (03, x) = k(@) 1 <1< m < n |,y Tah)Tef) = T(ef)T(ab)s
L(ab)T(be) — L(be)T(ac) — L(ac)T(ab)>
L(be)L(ab) — L(ac)L(be) — L(ab)L(ac)>
1<a<b<c<nl<e<f<n,{a,b}Nn{e f}=0),
%\Q(Oi, —1) = k(zy,i € O} |22, zw;—1 + o114,
xixj + Tpw; + xjag,if ij = kiand j #£i £k € O3).
Example 5.2. A principal YD-realization of (O, —1) or (O%, x), respec-
tively (X,q) = (O}, —1), over S,,, respectively Sy, is given by the inclusion
X < S, and the action - is the conjugation. The family {x;} is determined

by the cocycle. In any case g is injective. For n = 3,4,5, this is in fact the
only possible realization over S,,.

Remark 5.3. Notice that all (0%, —1), (0%, x), for any n and (O}, —1) satisfy
that R = R'. R

When n = 3,4,5, we have from [AG1, GG| B2(0%,—-1) = B(0OF, —1),
B(0F, x) = B(OL, x) and dim B(OF, —1), dim B(OF, y) < 0.
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5.3. Pointed Hopf algebras constructed from racks. A quadratic lift-
ing datum Q = (X7Q7G7 ('agv (Xl)lEX)> (VC)CER’)v or gl-datum, [va Def-
inition 3.5], is a collection consisting of a rack X, a 2-cocycle ¢, a finite
group G, a principal YD-realization (-, g, (x1)iex) of (X, q) over G such that
9i # gjgk, for all 4,5,k € X, and a collection (yc)cer’ € k satisfying that
for each C = {(i2,41),..., (in,in-1)} € R, k € X,

(54) ¢ =0, if g9, =1,
(5.5) Y0 = Qris@ki Voo, kD> C ={k> (i2,i1),..., k> (in,in-1)}

To each gl-datum Q there is attached a pointed Hopf algebra H(Q) gener-
ated as an algebra by {a;, H; : | € X, t € G} subject to relations:

(56) He = ]., HtHS = Hts: t,S S G,
. Hia; = xi(t) apg Hy, tedG,leX;
(5.8) dc({artiex) = vo(1 — Hy,y, ), CeR, (i,j) eC.

Here ¢¢ is as in (5.1) above. The algebra 7(Q) has a structure of pointed
Hopf algebra setting

A(Hy) = HioH;, A(a;) = ¢i®a; + a;®1, te€ G,ie X.

See [GG] for further details.

5.4. Pointed Hopf algebras over S,,. The following ql-data provide ex-
amples of (possibly infinite-dimensional) pointed Hopf algebras over S,,.

L. le[t] = (Sna037_1>'757{07a7/8})7
2. Q%[)\] = (Sm @3, X5 b {07 O> a}) and
3. D[t] = (S4,04,—1,-,1,{a,0,8}),

for a,8,\ € k, t = (a,3). We will present explicitly the algebras H(Q)
associated to these data. It follows that relations (5.8) for each C' € R’
with the same cardinality are S,-conjugated. Thus it is enough to consider
a single relation for each C' with a given number of elements.

1. H(Q;1[t]) is the algebra presented by generators {a;, H, : i € O, 1 €
S, } and relations:
H, = 1, H.Hs = Hr37 s € Sna
Hjal- = —ajinj 1,] € 03,
a%lz) = 0;
a12)a34) + a(zaya2) = (1 — HioyHsg));
a(12)a(23) + a(23)a(13) + a(13)a(12) = B(1 — H12)H 23)).
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2. H(Qx[N]) is the algebra presented by generators {a;, H, : i € OF, 1 €
S, } and relations:

He = 17 HrHs = HTSa r,s € Sm

Hja; = xi(j) ajij H; i,j € O3,

a%m) =0;

a(12)0(34) — A(34)0(12) = 0;

a(12)0(23) — A(23)a(13) — G(13)a(12) = (1 — H19)H (23))-

3. H(D[t]) is the algebra generated by generators {a;, H, : i € O}, 1 €
S4} and relations:

H. =1, H.H;,= H,;, r,s €S,,
Hja; = —aji;Hj i€0;, jeoy
a%1234) =a(l - H(13)H(24))7
(1234)4(1432) T @(1432)@(1234) = 0,
(1234)4(1243) T G(1243)@(1423) T @(1423)@(1234) = B(1 — H(12)H(13))-
These Hopf algebras have been defined in [AG1, Def. 3.7], [GG, Def.
3.9], [GG, Def. 3.10] respectively. Each of these algebras H(Q) satisfy

gr’H(Q) = Ba(X, q)#kG, for G = S,,, n as appropriate [GG, Propositions
5.4, 5.5, 5.6].

Remark 5.4. Classification results:

(a) [AHS] H(Q3'[t]), t = (0,0) or t = (0, 1) are all the non-trivial finite-
dimensional pointed Hopf algebras over Ss.

(b) [GG] H(Qy'[1]), H(QY[C)), H(DI), t € PLU{(0,0)}, ¢ € {0,1}
is a complete list of the non-trivial finite-dimensional pointed Hopf
algebras over Sy.

We will classify module categories over the category of representations of
any pointed Hopf algebra over Ss or Sy, that is, of the algebras listed in
Remark 5.4.

6. COIDEAL SUBALGEBRAS OF QUADRATIC NICHOLS ALGEBRAS

A fundamental piece of information to determine simple comodule al-
gebras is the computation of homogeneous coideal subalgebras inside the
Nichols algebra. This is part of Theorem 3.2. The study of coideal subalge-
bras is an active field of research in the theory of Hopf algebras and quantum
groups, see for example [HK], [HS], [K] and [KL].

In this section we present a description of all homogeneous left coideal
subalgebras in the quadratic approximations of the Nichols algebras con-
structed from racks.
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Fix n € N, X = {i1,...,i,} arack of n elements and ¢ : X x X — k* a
2-cocycle. Let R be as in 5.1. Assume that, for any equivalence class C' in
R and 7,5,k € X,

6.1)  (i,5),(,k)eC=j=Fk and (i,j), (ki) €C=k=i>].

Let G be a finite group and let (-, g, (x;)icx) be a principal YD-realization
of (X, q) over G. We shall further assume that

(6.2) g is injective and R = R/.
For each subset Y C X, Y = {i;,,...,7;.} C X, denote by Ky the subal-
gebra of Bo (X, ¢)#kl generated by zj,,...,x;,.. Set H = Ba(X, q)#kG.

Proposition 6.1. For each set Y = {ij,,...,i;.} C X the algebra Ky is
an homogeneous coideal subalgebra of H. For each such selection, if S =

{9i;, 5+ 9i;, } then
StabKy = S¥ = {h € G : hSyh™! = Sy}.

Moreover, if K is a homogeneous coideal subalgebra of H generated in
degree one, then there erists a unique Y C X such that

K =Ky.

In particular, the set of homogeneous coideal subalgebras of H generated in

degree one inside Bo(X, q)#k1 is in bijective correspondence with the set
2X of parts of X.

Proof. 1t is clear that KL = Ky is a homogeneous coideal subalgebra. Now,
to describe Stab/C it is enough to compute the stabilizer of the vector

space k{xj,,...,z;}. But h-xj = xj.(h)zhj, k =1,...,7 and xp., €
{zj,...,x;.} if and only if h - ji € {j1,...,Jr}, if and only if gn;, = g;
for some [ = 1,...,r. And the first part of the proposition follows since

Ghji, = hgjkh_l.

Now, let K be a homogeneous coideal subalgebra of H generated in degree
one. If K =k the result is trivial, so let us assume that K # k. Since K is
homogeneous then IC(1) # 0. Let 0 # y = >, \iz; € K(1), then

Let Zl )\ngi(g)I‘i = ZtEG Hi®k, K = ZjeX N Tj € K(l), URS k,Vt,j.

As Hy = Hy, if and only if t = g; and g; = g; if and only if i = j, for
every i,j € X, t € G, (6.2), then ny, = 0 if t # g for some k € X. Let us
denote n;; = 1g,;, thus,

D NiHg®ri =) nijHy ®;.
i irj

Therefore, A; # 0 implies 7;; = 6; j\; and so k; = x;. Thus, {z; | \; # 0} C
K, K1) = @ k{z;} and therefore if Y = {i € X : x; € K(1)} then
x,€K(1)
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K = Ky. Finally, if Y # Y’ then it follows from the injectivity of g that
Ky 2 Ky as coideal subalgebras. O

The next general lemma will be useful in 6.1 to prove that certain subal-
gebras are generated in degree one. Given a rack X, let us recall the notion
of derivations d; associated to every element of the canonical basis {e;}icx.
If {¢'};cx denotes the dual basis of this basis, then §; = (id ®e?)A. If i € X
we denote by X; the set X \ {i} and thus kX; = k{z;|j € X;}. Let us
assume, furthermore, that

(6.3) gi =—1, forall ie X.

This condition is satisfied, for example, if dim ‘§2(X ,q) < oo or X is such
that i >4 =1 for all 4, by (6.2).

Lemma 6.2. Let K C %\Q(X, q)#k1 be a homogeneous coideal subalgebra of
H. Leti € X and let us assume that there is w € K such that 6;(w) # 0.
Then x; € K(1).

Proof. Let K=, K(s), we T'(kX) and i € X. In H,
W= ai(w) + Bi(w>$iv ai(“)?ﬁi(w) € Kx,-

It suffices to see this for a homogeneous monomial w. We see it by induction
in £ = ¢(w) € N such that w € T/(kX). If £ = 0, or £ = 1 this is clear.
Let us assume it holds for £ = n — 1, for some n € N. If /(w) = n and
w = Tj ...Tj;,, two possibilities hold, that is j; # ¢ or j; = 4. In the
first case, let w' = zj,...2;,. Thus, {(w') < n — 1 and therefore there
exist a; (W), Bi(w') € Kx, such that ' = (W) + Bi(w)z;. As xjai(w),
zj, Bi(wW') € Kx, the claim follows in this case.

In the second case, let j = jo and let us note that j # i, by (6.3). By
(6.2), we can consider the relation

TiTj = QijTi>jTi — QijGis5 iTjLir>j -
Thus, if "’ = zj, ... 2j,, w = ¢ijTis;Tiw” — ¢ij¢is;iT;Tis>jw” and both mem-
bers of this sum belong to Kx, + Kx,z; because of the previous case and
thus the claim follows.

Let m : @ H(s)@K(m — s) — H(m — 1)®K(1) be the canonical linear
s=0
projection. Let w € T'(kX), ¢ € X and «;(w), fi(w) as above. Then,
TA(w) € Bi(w)®z; + @H@xj.

JF#i
Notice that §;(w) = B;(w), and therefore if d;(w) # 0 it follows that z; € K(1)
using (6.2) as in the proof of Proposition 6.1. O

In this part we shall assume that X is one of the racks O%, n € N, or Of, q
one of the cocycles in 5.2. Notice that (6.1) is satisfied in these cases. Using
the previous results we shall describe explicitly all connected homogeneous
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coideal subalgebras of the bosonization of the quadratic approximations to
Nichols algebras described in 5.2.

We first introduce the following notation. Let ¥ C X be a subset and
define

R ={CeR:CCY xY},
RY ={CeR:|CNY xY |=1}, and
RY ={CeR:CNY xY =0}
Remark 6.3. For the ql-data in 5.4, R = R{ UR%/ UR?, for any subset Y.

Moreover, if f € StabKy then f-RY C RY for any s = 1,2,3. Also, (6.3)
holds.

Definition 6.4. Take the free associative algebra 7 in the variables {71} };cy .
According to this, we set Ocy ({T;}iey) in T as

(6.4)
pc({Titiex), if C e RY;

doy{Tihey) = { TTT; — qinji TTTy,  if C € Ry, (3,5) e CNY xY;
0, if C e RY.

We define the algebra Ly as follows

(6.5) Ly =k{yitiev)/Wey{ytey) : C € R).

Notice that, if Y = X then Lx = B(X,q). For simplicity we shall
sometimes denote ¥o = V¢ y.

We now take B one of the quadratic (Nichols) algebras %\2(03,—1),
@(O;,X), or B(OF, —1). Accordingly, let X = OF, ¢ = —1,x or (X,q) =
(0%, —1). Consider a YD-realization for (X,q) such that (6.2) is satisfied
(for instance, the ones in Example 5.2). Set H = BH#kG.

Theorem 6.5. Let Y C X. Ly is an H-comodule algebra with coaction
Myi) = 9i®y; + ;®1, €Y.
The application y; — x;, © € Y defines an epimorphism of H-comodule

algebras Ly — Ky . Moreover, if n = 3, it is an isomorphism and Ly = Ky .

Proof. The relations that define Ly are satisfied in B. In fact, it suffices to
check this in the case C' € R%/ since in the other ones ¥¢c = 0 or Yo = ¢¢,
and ¢c = 0 in B, see (5.2). Now, if C € RY and (i,j) € CNY x Y, let
k =ir>j. By the definition of R, we have that necessarily k # 4,5. Then,
if we multiply the relation x;x; — ¢;jTis ;i + ¢ijqi-;i7;Ti>; = 0 by x; on the
right and apply this relations to the outcome, we get

0 = 2%5T; + ijQinji TjTiojTi = Tili% + Gicji%; (Tilj + QijGisji TjTioj)

= XiTjT; + Qisji TjTT5.
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Thus, we have an algebra projection 7 : Ly — Ky. It is straightforward to
see that, for every C € R,

d(Wey{wmtiey)) = Yoy {zihiey)®1 + goy®@Iey {yihiey),
where
gig; if CeRY, (i,j)€C,
gey =S 9igigi if CeRY,(i,j) e CNY xY,
0, if CemRy.

Therefore, ¢ provides Ly with a structure of H-comodule in such a way that
7 becomes a homomorphism.

We analyze now the particular case n = 3. If |Y| = 1, the result is
clear. Let us suppose then that Y = {i,j} C O3. Notice that the map m
is homogeneous. Then, if v € ker(r), 7(y) = 0 in B(O3, —1). By (5.2), we
have that necessarily deg~y > 3. Now, if deg~y = 3,

v = owiy;yi + BYyiy; = (o + B)Y;viy;-

for a, 8 € k. Then, w(y) = 0 implies that « = —f and v = 0. Finally,
we can see that there are no elements v € Ly with degy > 4. In fact, an
element v with degy = 4 would be of the form

Y = ayiy;yiys + BYYiyiyi = oyiviyivi + BY;y;viy; = 0.
This also shows that there are no elements of greater degree. Therefore,
Ly = Ky. O

Remark 6.6. If n #~ 3, then in general Ly # Ky. In fact, if n =4, ¢ = —1
and we take Y = {(13), (23), (34)} C O3, then we have

Ly 2k(z,y,z : 22,92 2%, zyr — yry, yzy — 2yz, w20 — 222).

Now, in the subalgebra of B(03, —1) generated by x = T(23), Y = T(34)s
z = x(13) we have the relation

(CC?JZ)Z = L (23)L(34)L(13)T(23)%(34)L(13)
= —2(23)Z(34) (T(23)T(12) T T(12)T(13)) T (34) T (13)
= T(23)7(34)T(23) L (34) T (12) T(13)
T Z(23) % (12)T(34) T (13) 7 (34) L (13)
= T(23)7(23) T (34) T (23) L(
T Z(23)(12)T(34) T (34) T (13) L (34)
= 0.

23)L(12)L(13)

But (zyz)? # 0 in Ly. We prove this by using the computer program [GAP]
together with the package [GBNP]. See Proposition 6.9 (6), for a description
of Ky in this case.
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6.1. Coideal subalgebras of Hopf algebras over S,,. Set n = 3,4, %6
a finite-dimensional Nichols algebra over S,, H = B#kS,. Recall that
these Nichols algebras coincide with their quadratic approximations. We
will describe all the coideal subalgebras of H. We will also calculate their
stabilizer subgroups.

We start out by proving that in this case these coideal subalgebras are
generated in degree one.

Theorem 6.7. Let K be a homogeneous left coideal subalgebra of H. Then
K is generated in degree one. In particular, KK = Ky for a unique Y C X.

Proof. We will se that, given w € K, w € (x; : d;w # 0). Then, by Lemma
6.2, it will follow that w € (K(1)). Let I = {i € X : dw = 0} and let us
assume I has m elements. We will see this case by case, for m =0, ... 6.

Cases m = 0 (that is, for all i € X z; € K£(1)) and m = 6, or m = n
in general, (since in this case w = 0, see [AG1, Section 6]) are clear. Case
m = 1 is Lemma 6.2, which also holds for any n € N.

Let us see case m = 2, for any n € N. Let I = {i,p}. We know that
there is an expression of w without, v.g., ;. Let us see that we can write
w without x; nor x,. Let j € X such that p> j = 4. Using the relations as
in Lemma 6.2, and using that x;z,z; = —qsrx-x12, and that z,.zx,.2; =0
for all I,r € X, we can assume that w can be written as

w=+"+ ’ylxp + ’yzxpxj

with 70, 41, 42, such that they do not contain factors x;, z, in their ex-
pressions. Let us see this in detail. We can assume that w € T/(kX) is a
homogeneous monomial. For each appearance of a factor x,x;, with [ # j
we change it by qu T1Zps1 + @pidpsip Tps17p. That is, we change for an ex-
pression in which z,, is located more to the right and an expression that does
not contain x; nor x, (in the place where we had an z). If we have a factor
of the form x,z; we move it to the right, until we get to x,x;x,, but we can
change this expression by —gpsjp T;Tp;.

Now, 0 = d,w =Yg, + Y2 gpzj = (¥* + qpj¥v*2i)gp, and therefore we have

w ="+ 72y + gy Ty + apigipy e = 0+ dpiaipn e

But then 0 = d,w = qm-qip’nyjg,; and therefore w = 7° can be written
without x;, ;.

This finishes the case n = 3, since in this case | X| = 3. We now fix n = 4,
to deal with the cases m = 3,4, 5.

Let us see case m = 3. Fix I = {iy,1i2,p}. There are three possibilities
(66)  I={iji>jk
(6.7) I={ij,k}, such that ik =kor j> k = k;
(6.8) I=ijl}, the remaining case.
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Set ji,j2 € X be such that p> js = i5, s = 1,2. We can assume that w
is written without z;,, s = 1,2. Notice that not always ji,j2 exist. For
instance, in (6.6) there are no j; nor js and in (6.7) j; or jo does not exist.
We analyze the three cases separately.

In (6.6), as there are no ji, j2, we can write w in the form w = % + 'ylxp
with 79,41 without factors x;, 7 € I. But from d,w = 0 it follows that
w =1 and therefore we can write w without factors z;, j € I.

Case (6.7) is similar. Assume, for example, that io > p = p. Thus, we
have no j. Accordingly, we can assume that w is of the form

W= 70 + 71% + '725510333’1 = 70 + 'lep + qu1’725Ui1xp + qﬁj1‘1j1i172$j1$i1

with 1,42,y without factors z;, j € I. Now, 0 = Spw = (V'p+qpjs V2T, ) gp
and thus w = 7° + g, 45,0, V225,25, but as 5w = 0, it follows w = 4 and
therefore w is written without factors z;, j € I.

It remains to see (6.8). The existence of ji, jo makes this case more subtle
than the previous ones. Let us analyze the set I = {i1,i2,p}. We have that
k =i1>19 = ig>i1 ¢ I, but, moreover, we have that X = {i1,i2,p, k, jo, j1}-
In fact, we cannot have i1 > is = j; since this implies i3 = p and neither
11 D>t = jo because this implies ¢; = p. Moreover, we have that io > j1 = j1,
and therefore x;,7;, = Giyj, j, Ti,. Set

a = Tp, b=uxj, €= Tj,,
d =, €= Tiy, [ =z

Now we analyze which are the longest words we can write with the “con-
flictive” factors a, b and ¢, starting with a. Recall that aba = +bab, and
abb = 0. Starting with ab, we can preliminary form the words abca and abcb.
Now, abcac = tbabca, and thus we discard it. Consider abcb. abcabc = 0,
so we are left with abcaba. As abcabab = 0, we reach to abcabac. As
abcabaca = abcabacb = 0, we keep this word. In the case of abch, arguing
similarly, we reach to abcbacb. If we start with acb, as acbc = +abch, we
consider those words starting with acba. The longest one is acbacab, but
this is £abcbach. So the longest word we can form not considered before is
acbac.

In consequence, we can assume there exist 4* € K, i = 0,..., 15 without
factors xj, j € I, such that w is of the form

w =7+ yla + v2ab + y3abe + v*abca + P abeab + vCabcaba + 7 abcabac
+ ~Babeb + y2abeba + yPabebac + v abebach + v ac + v Pach
+ vy acba + yPacbac.

Using the relations and the fact that dsw = 0, s = p, i1, 32 we will show that
we can write w without factors x5, s = p,i1,72. When using the relations,
by abuse of notation, we will omit the scalars ¢ that may appear, including
them in the (new) factors 4. We will denote by 7%, %", """ € K to some
of these scalar multiple of the factors 7%, i = 0, ..., 15, when needed.
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As dpw = 0, we can re-write w as
w =7 + v2bd 4+ v3bde + ’ygldce + ~45bdebd + 75/dcebd + v abcabce
+ ~v8bdcb + ’ySIdceb + 'ygudebd + ~v'9abebee + v abebebd + Wulabcbceb

+ y2ce + y13ebd + 713/0617 + yPacbea + ’ywacbce.

Now, using that d;,w = 0, and the relations dc = *cd, be = %eb, bcb = fcbc
and abcabc = bebe = 0, we see that

w =4 + ~+2bd + v?bed + v ede + v bdcbd + ' deebd
+ v abedeae + v8bdeb + ysldcbe + vgudbed + v abebeda
+ ~v2ce + y13bed + 713/cbe + v achee + 715,edaea.
Using that §;,w = 0 together with the relations, we get to
w =7 + 42bd 4 v3bed + 7Pbebad + 75/cba fe+ 75”cbaed
+ 48bcad + ’yglbcba + ’ySI,baed + ’ysmbafe + vy abebebd
+ ’yn/abcbeab + ’yll”abcbfea + ’yll///abcbfac + y13bed + 713/bfe.
Using now that d;,w = 0,
w =7" +ycbafe + v2beba + ’yglbafe
+ v abebach + 'yulabcbfce + ’ynﬂabcbfac +~3bfe.
Using again that d;,w = 0,
w ="+ ~+8beba + yHabebach + 'yulabcbafc
= 8% + Ba + B2abcbach + B3abcbab f
for B € K, i=0,...,3 without factors z;, j € I. Using that d,w = 0,
w = B° + B2dedaeda + B3dedadaf = S°,
since edaeda = dada = 0. That is, we can write w without factors x;, j € 1.

In the case m = 4, we look at the different subsets of three elements of I.
If we have a subset of three elements that corresponds to the case (6.8) it
follows that w can be written without the factors x; with j in that subset,
and then w is in an algebra isomorphic to B(03, —1), for which we have
already proved the result. If we have a subset as in the case (6.6) when we
add to this subset a fourth element we obtain another subset as in the case
(6.8). If our subset corresponds to the case (6.7), in order to get to a case
different from (6.8), we necessarily have to add a fourth element such that
Iis

I={ijk,l}, withi>k=kand j>1=1

We analyze this case. If p € I is fixed and w is written without factors z;,
j € I\ {p} = {i1,i2,13}, notice that if p >> i3 = i3 there is no other js such
that p > j3 and, moreover, if ji, jo are such that p > js = is, s = 1,2, then
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zj,zj, = *xj,zj,. Therefore, we can assume that there are v, i = 0,...,4
such that they do not contain factors x;, j € I and such that w can be
written as

_ -0 1 2 3 4
W=7 +7Tp+ 7V TpTj + YV TpTj Tj, + 7V TpTj TjpTp

opw=0 o | 2 3 3/ 4
= 7 FYTHTi VT XXy, F VT Tiy Ty Ty Y T Ty Tp
5pw:0 0 2 3 3/
= 7 VT Tiy VX Ty Ty TV Ty Ty Tiy
biow=0
W=Y o 2 3
= 7 YT T Y X Ty Ty
§;, w=0
0=t o 3
= 7 +VTTHTh
Jipw=0 0
Then, we can write w without x;, for j € I. In the case m = 5, w necessarily
belongs to an algebra isomorphic to B(03, —1). O

Now we apply Theorems 6.5 and 6.7 to calculate the coideal subalgebras
and stabilizer subgroups of H = B(03)#kS;.

Corollary 6.8. The following are all the proper homogeneous left coideal
subalgebras of B(O3, —1)#kS3:

(1) K = (zs) = K[z]/(2?), i € OF;

(2) Kij = (zi,25) 2 k{z,y) /{22, y?, xyx — yay), 1,7 € OF.
The non trivial stabilizer subgroups of S are, on each case

(1) Stab IC; = Zo = <l> C S3;

(2) StablCi7j:ZQg<k>C83, k#£i,7. [l

Next, we use the computer program [GAP], together with the pack-
age [GBNP], to compute the coideal subalgebras of the finite-dimensional
Nichols algebras over Sy associated to the rack of transpositions O3. In the
same way, the coideal subalgebras of the Nichols algebra B(Of, —1) asso-
ciated to the rack of 4-cycles can be computed. The presentation of these
algebras may not be minimal, in the sense that there may be redundant re-
lations. Moreover, in the general case, non-redundant relations in a coideal
subalgebra I may become redundant when computing the bosonization with
a subgroup F' < Stab KC.

First, we need to establish some notation and conventions. Let k(z,y, z)
be the free algebra in the variables x,y, z. We set the ideals

Set B = B(01,-1), B, = B(O3,%). Recall that Y stands for a subset of
04,
Proposition 6.9. Let ¢ = +.Any homogeneous proper coideal subalgebra

K¢ of Bi#Kk1 is isomorphic to one of the algebras in the following list:
dimKe(1) =1
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(1) Y = {3}, K¢ =Kk[z]/(z?), and dim K¢ = 2.
dim K2(1) = 2,
K& =k(z,2)/(x? 2%, vz + ezx), and dim K¢ = 4.
(3) Y ={i,j},i>j #J,
K& =k(z,y) /{22, 42, zyxr — eyxy), and dim K¢ = 6.
dim K5 (1) = 3:
(4) Y = {i7j7k'}f i>j =k,
Ke =k(z,y,2)/(R(x,y,2)), and dim K¢ = 12.
(5) Y = {ihj?k'}f i>j# gk i>k=k
Kf,j,k = k{z,y, 2)/ (2%, 9%, 2%, xyx — eyxy, 2yz — eyzy, vz + ezx),
and dim K¢ = 24.
6) Y ={i,j,k},i>j,i>ki> k¢ {i74,k},

€ L2 20 2
Y:k<x7yaz'x7y)z)

YTY — ETYT, ZXZ — ETZT, ZYZ — EYZY,
ZTYZ + YzZXY + TYZT, ZYrz + YTy + r2Yx
ZXYTZX + EYZTYTZ, ZLYTZY + ETZTYTZ),

and dim K¢ = 48.
dim K£¢(1) = 4:
(MY ={i,j,k,1},ij=k ixl=1;
S =k(z,y,z,w 22,y 22 w2,
2T + €Yz + exy, 2y + yr + €xz, wz + €zw,
YTY — EXYT, WTW — EXWT, WYW — EYWY,
WYT + EWTZ — E2WY, WYZ + WTY — ZWT
WILYZ — ZWTZ, WLZW + TWTZ,
WIYW + Yywry + LYWL, WYLz — EZWIYLT,
WTYTWT + EYWTYTW, WTYTWY + ETWTYTW),
and dim K¢ = 96.
®)Y ={i,j,k, 1}, i>j#4k idk=k j>l=I,

2, w2, 2Y + Yz, wr + exW,

S =k(z,y,z,w 22 Y% 2
YTY — ETYT, ZTZ — ETZT, WYW — EYWY, WZW — EZWZ,
ZTYT + Yzay, 2ryYyz + exzay,
WYL — EZWY — YTZ + ETZW, WZT — EEZTY — YWZ + ETYW,
WYLZTY — EYWYZT — TYZWY + TYT2ZW,
WYLZTW + ZTYWZ — YTZWY — TWYRLT,
WYZW — EZTWZ — YZTW + YTwy + exwyz — ETYzT),

and dim K¢ = 144.
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dim K¢(1) = 5:
9 Y = {i,j,k,l,m},ij=k il=m,j>l#1, k>m # m,
j>m=m, k>l=I,
K =k(z,y, z,w,u 22,92, 2%, w? u?, wz + ezw, uy + eyu,
2T + Yz + exy, 2y +yxr + €x2,
ur + ewu + exw, uw + wr + xu,
YTY — ETYT, WTW — ETWT, WYW — EYWY, UZU — EZUZ,
WYL + EWTZ — E2WY, WYZ + WTY — 2WT,
UZW — EWTZ — TUZ, WTYZ — ZWTZ,
WITYW + ywry + ryYywe,
WITYTZ — EZWTYT, WTZW + TWIZ,
WTYTWET + EYWTYTW, WTYTWY + ETWITYTW),
and dim ¢ = 288.
The stabilizers subgroups of Sy are, in each case, the following:
1) Zy x 7o = (gi, 95) C Sy with i > j = j;
) D4 = (gi,0) C Sy (if, e.g., gi = (12), 0 = (1324));
) Zo = (gr) C Sy, k=iDj.
) S3— (90,95, 9k) C Sa, i j = k;
; =(giq), JFLi>l=1;

SS = <gl>jag]>k’gk‘l>l> C S47
) If K¢ belongs to items (7) to (8) then Stab ¢ = 1. O

Examples 6.10. We give, as an illustration, an example of a subset Y C O3
for each case in the previous proposition. Note that any comodule algebra
Ky such that Y’ is not in the next list, is S4-conjugated to another, Ky,
with Y a set in the list.

(1) Y ={(12)},

(2) Y = {(12), (34)},

(3) ¥ ={(12), (13)},

(4) Y ={(12),(13),(23)},

(5) Y ={(12),(13), (34)},

(6) Y ={(12),(13), (14)},

(7) Y ={(12), (13),(23), (14)},

(8) Y ={(12), (13), (24), (34)},

(9) Y ={(12),(13), (23), (14), (24)}. -

Remark 6.11. Let Y C O3 and let Z C O3 be such that O3 = YU Z, as sets.

Denote by Y one of the subsets of item j of Proposition 6.9, and by Z; the

corresponding complement. Notice that we have the following bijections
Zy =Yy, Zy =Yg, Z3=Yr, Zy =Yg, Z5 =Ys.

Therefore, we have that dim Ky dim Kz = dim B¢, for every Y. An analo-
gous statement holds for the case X = Of.
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7. REPRESENTATIONS OF Rep(’gg(X , Q) #kG)

In this Section, we take Q = (X,q, G, (-, 9, (x1)iex), (Ac)cer’) as one of
ql-data from Section 5.4. Note that in this case, the set C; = {(i,7)} belongs
toR = R and (i>j)>i = j, for any 4, j € X. Let H(Q) be the corresponding
Hopf algebra defined in Section 5.3 and set H = ‘gg(X ,q)#kG. We will
assume dimgg(X, q) < oo (and thus dim#H(Q) < oo, [GG, Proposition
4.2]). In particular, this holds for n = 3,4, 5.

7.1. ‘gg(X ,q)#kG-Comodule algebras. We shall construct families of co-
module algebras over quadratic approximations of Nichols algebras. These
families are large enough to classify module categories in all of our examples.

Definition 7.1. Let F < G be a subgroup and ¢ € Z?(F,kX). If Y C X
is a subset such that F'-Y C Y, that is I’ < Stab Ky, we shall say that a
family of scalars £ = {{c}oer, {o € k is compatible with the triple (Y, F, 1)
if for any f € Stab Ky,

Eroxi(H)xi(f) = e (f, gig) ¥(Faigs, £, if C e Ry, (i,j) € C;
Er.o X2 (X (f) = Ec ([, 9i959:) V(fgigiai, £ 1), £ CeRY,(i,5) € C
£o, =&c; =0, if C e RY,(i,7) € C.

We will assume that the family £ is normalized by £ = 0 if either C' € R%/,
(i,7) € C, and g;g; ¢ F or if C € RY, (4,5) € C, and g;g;9; & F.

We now introduce the comodule algebras we shall work with.

Definition 7.2. Let ' < G be a subgroup, ¢ € Z2(F,k*), and let Y C X
be a subset such that F'-Y C Y and let £ = {{c}cer’ be compatible with
(Y, F,%). Define A(Y,F,4,£) to be the algebra generated by {y;,ef : | €
Y, f € F} and relations

(7.1) e1 =1, eres=1(rs)ers, r,s € F,
(72) efyl:Xl(f)yf'lef7 fEF,lEY,
¢cec ifec e F
7.3 9 = CeR.
(7.3) C7Y({yl}leX) {0 if ec ¢ F

Here ¥y was defined in (6.4) and the element ec is defined as
€qg, i CERY,(i,j) €C,
(7.4) ec =1 €g,9,9. i CERY, (i,j) €eCNY xY,
0, if CeRy.
If Z C X is a subset invariant under the action of F' we define B(Z, F, v, §)

as the subalgebra of A(X, F, 1, &) generated by elements {y;,ef:l € Z, f €

Remark 7.3. (a) Applying ad(f), f € StabKy to equation (7.3) and
using (5.3) one can deduce the equations in Definition 7.1.
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(b) It may happen that B(Z, F, ¢, &) # A(Z, F,¢,§).
Let A : A(Y, F,¢,&) - HRA(Y, F,¢,£) be the map defined by
(7.5) Aey) = f®ep, My) = 2i®1 + g®u,
forall fe F,leY.

Lemma 7.4. A(Y, F,,€) is a left H-comodule algebra with coaction A as
in (7.5) and B(Z, F,,§) is a subcomodule algebra of A(X, F,1,§).

Proof. Let us prove first that the map A is well-defined. It is easy to see
that AMeryr) = xi(f) AMyyr.ieg) for any f e F,l € X.

Let C € RY and (i,4) € C. In this case ¢ = ¢¢. We shall prove that
Moc({yitiex)) = Méc eg,q;)- Using the definition of the polynomial ¢c we
obtain that

n(C)
)‘(gbC({yl}lEX)) = Z nh(c) xih+1xih®1 + xih+1gih®yih + gih+1xih ®Z/ih+1+
h=1

+ Gip 1 9in OYip 1 Vi, = dc({1}1ex)®1 4 9i9;@0c {yi}iex)
=& 9i9jX€q,g9; = AMéc egigj)‘

The second equality follows since 4,y = 41 and

Giner Tip, = Qipsrin TingoTinis  M(C)ippyin = —Mnp1(C).

Now, let C € RY, (i,5) € C andi1>j ¢ Y. In this case relation (7.3) is
YiYiYi + Gis5iYiYiYj = §C €gig;9:- Note that assumption {¢; = {¢; = 0 implies
that y? = 0 = ng The proof that A(yiy;vi + qi-ji¥viy;) = §cM€gig;g:) 15 @
straightforward computation. O

Theorem 7.5. Let Y C X be an F-invariant subset and assume that
A(X, F ¢, £) # 0, then the following statements hold:

1. The algebras A(X,G,,€) are left H-Galois extensions.
2. If € satisfies

_>‘C Zf )‘C 7é Oa
(7.6) ¢o = 0 if Ao =0 and g;g; # 1,
arbitrary  if Ao =0 and gjg; = 1.

then A(X,G,1,¢) is a (H,H(Q))-biGalois object.

3. B(Y,F,¢,&)0 = kyF and thus B(Y, F,1,€) is a right H-simple left
H-comodule algebra.

4. There is an isomorphism of comodule algebras gr B(Y, F,¢,§) ~
Ky #k,F.

5. There is an isomorphism B(Y, F,1,&) ~ B(Y', F' 4’ &) of comodule
algebras if and only if Y =Y/, F=F', ¢ =1 and £ =¢ .
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Proof. 1. To prove that A(X, G, v, &) is a Galois observe that the canonical
map

can : A(X,G, ¢, )@ A(X,G,¢,§) - HR A(X,G,9,8),
can(r®y) = x(_1)@T ()Y, is surjective. Indeed for any f € G, | € X
can(ef®ep-1) = f®1, can(y; @1 — egl®egl_1yl) = r®1.

2. Define the map p: A(X,G,1,§) — A(X,G,1,§)Q@H(Q), by
pleg) = ey@Hy, p(y) = yi®1 +eq@a, le X, feq.
The map p is well-defined. Indeed, if C' € R and (i,j) € C then

p(dc({yihiex)) = dc({yitiex)@1 + eg9,@0c({aibiex)
=¢&co 69i9j®1 + Ac egigj®(1 - Hgigj)'

Clearly if ¢ satisfies (7.6) then p(¢c({y1}iex)) = &c p(eg,qg;)- The proof that
A(X,G,1,¢) is a (H,H(Q))-bicomodule and a right H(Q)-Galois object is
done by a straightforward computation.

3. If A(X,F,,¢) # 0 then there is a group F with a projection F' — F
such that A(Y, F,¢,§) = kEF’ The map A(Y, F,1,&)o@A(Y, F,1,&)o —
kFQA(Y, F,1,€)o defined by er®e, — f@1(f,g)esq is surjective. Hence
F = F. This implies that B(Z, F,¢,£)o = kyF and by [M1, Prop. 4.4]
follows that B(Z, F,1,€) is a right H-simple left H-comodule algebra.

4. Follows from Theorem 3.2 (3) that gr B(Y, F, v, §) ~ K#ky F for some

homogeneous left coideal subalgebra K C %\Q(X ,q). Recall that K is identi-
fied with the subalgebra of gr B(Y, F, 1, &) given by

{a € gr A(Y,F,¢,¢&): (id @ m)\(a) € H®1}.

See [M1, Proposition 7.3 (3)]. In loc. cit. it is also proved that the compo-
sition

(0@m)A Iz
gI’B(K F7w7£) — K#ka — grB(Y, Fawag)v

is the identity map, where 6 : H — Z/B\Q(X, q), m:grB(Y, F,9,§) — ky F are
the canonical projections and g is the multiplication map. Both maps are
bijections and since for any [ € Y, (0@7)A(y;) = x;, then K = Ky-.

5. Let 8 : B(Y,F,¢,&§) — B(Y',F',¢/ &) be a comodule algebra iso-
morphism. The restriction of g to B(Y, F,¢,{)o induces an isomorphism
between kyF' and ky F', thus F' = F' and ¢ = ¢’. Since 8 is a comodule
morphism it is clear that Y =Y’ and {¢ = &, for any C' € R. O

Corollary 7.6. If A(X,G,1,£) # 0 for some £ satisfying (7.6), then

1. The Hopf algebras H = %\Q(X, q)#kG and H(Q) are cocycle defor-
mations of each other.

2. There is a bijective correspondence between equivalence classes of
exact module categories over Rep(H) and Rep(H(Q)). O
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Remark 7.7. Under the assumptions in Corollary 7.8, we obtain, in par-
ticular, that gr H(Q) = Bo(X, q)#kG, since the latter is a quotient of the
first.

The following corollary uses Propositions 8.1 and 8.5, where certain al-
gebras are shown to be not null. These propositions will be proven in the
Appendix and their proofs are independent of the results in the article.

Corollary 7.8. Let H be a non-trivial pointed Hopf algebra over S or Sy.
Then H is a cocycle deformation of gr H.

Proof. Finite-dimensional Nichols algebras over S3 and S4 coincide with their
quadratic approximations. That is, if H is a /finite—dimensional pointed Hopf
algebra over S,, n = 3,4, then gr H = By(X, q)#kS,. By [GG, Main
Theorem| we know that H = H(Q). Therefore, the theorem follows from
Corollary 7.6, since in Propositions 8.1, 8.5 we show the existence of non-zero
(gr H(Q), H(Q))-biGalois objects in these cases.

When dealing with Q) '[t] or D[t], notice that condition & = 2¢; in
Proposition 8.5 does not interfere with the proof, since, by equation (7.6),
&1, resp. &9, can be chosen arbitrarily. O

Remark 7.9. In [Ma, Theorem Al] Masuoka proved that the Hopf algebras
u(D, A\, p) associated to a datum of finite Cartan type D appearing in the
classification of Andruskiewitsch and Schneider [AS] are cocycle deforma-
tions to the associated graded Hopf algebras u(D,0,0).

Corollaries 7.6 (1) and 7.8 provide a similar result for some families of
Hopf algebras constructed from Nichols algebras not of diagonal type. It
would be interesting to generalize this kind of result for larger classes of
Nichols algebras.

7.2. Module categories over Rep(H(Q)).

Let A be a H-comodule algebra with gr A = Ky #k, F, for F' < Stab Ky,
Y € Z2(F,k*). Let Z be such that X = Y U Z as sets. Notice that F' <
Stab ]Cz.

Lemma 7.10. Under the above assumptions there exists a family of scalars
& compatible with (X, F, 1) such that A ~ B(Y, F,1,£) as comodule algebras.

Proof. The canonical projection m : A; — Aj;/Ap ~ Ky(1) = kY is a
morphism of Agp-bimodules. Let ¢ : kY — Ay be a section of Ap-bimodules
of w. Since elements {x; : [ € Y} are in the image of m we can choose
elements {y; : | € Y} in A; such that «(x;) = y; for any [ € Y. It is
straightforward to verify that

Muy) =zl + gy, ey = xi(f) yrier, fer leY.

Since gr A is generated by elements {z;,ef : 1l € Y, f € F'} then A is gener-
ated as an algebra by elements {y;,ef: 1 €Y, f € F}.
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Now, let B = A®Kz. Then B has an comodule algebra structure for
which the canonical inclusion A < A®1 C B is a homomorphism. The
algebra structure is given as follows. Fori e Y, je€ Z, f € F,

(y:i®1)(1®y;) = (¥i®y;);

45iyi®y; + Ecec®l, ifij=j
©iYisi®Y; — QGiljsijYiYisi®1 + Ecec®1, i i> j # j,
(1®y;) (yi®1) = i>jevY;
4il®YjeiYj — QjiGisi jYi®Yjsi + cec®1, i i>j # j,
i>j¢Y;

(ef®@1)(1®y;) = ef®yj;
(1&y;)(es@1) = x; ' (fles@ys-1.;.

Here C stands for the class C' € R’ such that (j,7) € C. Recall that by
definition £ = 0 if go ¢ F. Then the map

(7.7) m:B— AX,F,¢,§), a®zx+— ax
is an algebra epimorphism. Now, if
A3 ar a_®ag € HR®A and
Kz>zw— T(—1)®T () € HRIIK 7

denote the corresponding coactions, define A : B — H®B by AMa®z) =
a(—1)T(~1)®a(0)®z (). It is straightforward to check that A is well defined.
We do this case by case in the definition of the multiplication of B above.
For instance, if i > j # j and i > j € Y, then we have

A1y A(yio1) = (9;0(10y;) + z;0(101))(9:2(yi®1) + ri@(191))
= (9;9(10y;))(9:®(yi®1)) + (2;0(101))(9:® (y:®1))
+ (9;9(10y;)) (z:@(1®1)) + (2;0(181))(z;0(181))
= 9;9i®(1®y;)(y;i®1) + 2;9:®(y;®1)
+ ¢jizjri9;R(1Qy;) + z;2;0(1®1)
= 9j9i®(qji¥j>i®Yj — @jidjei jYiYi-i®1 + ogo®1)
+ 290 (yi®1) + qjizjeig; @ (19y;)
+ (@jiTjmiTj — @jigjsi jTiTj=i®1)@(131),
which coincides with A(g;iyj0i®Vj — ¢jiqjsi j¥iVisi®1 + Ecge®1).
Thus, B is an H-comodule algebra with
dim B = dim Adim Kz = dim Ky dim Kz|F| = dim A(X, F, v, &),
by Remark 6.11 and then the map m from (7.7) is an isomorphism. O
We can now formulate the main result of the paper. For any h € G, we

denote fg = §;,-1.c. Recall that we denote by B(Y, F, 1, £) the sub-comodule
algebra of A(X, F, v, &) generated by {y; }icy-
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Theorem 7.11. 1. Let M be an exact indecomposable module category
over Rep(H(Q)), then there exists
(i) a subgroup F < G, and a 2-cocycle v € Z*(F,k*),
(ii) a subset Y C X such that F-Y CY,
(iii) a family of scalars {{c}cer: compatible with (X, F, 1)),
such that there is a module equivalence M ~ B(Y,F,w,g)M-
2. Let (Y,F,¢,&), (Y, F' ¢ &) be two families as before. Then there
is an equivalence of module categories g(y,pp )M = gy’ Fr ey M
if and only if there exists an element h € G such that F' = hFh™1,
=", Y =h-Y and & = €N,

Proof. 1. By Corollary 7.8 we can assume that M is an exact indecom-
posable module category over gr H(Q) = H. It follows by [AM, Theorem
3.3] that there is a right H-simple left H-comodule algebra A such that
M ~ gM. Theorem 3.2 implies that there is a subgroup F' < G, a 2-
cocycle ¢ € Z?(F,k*) and a subset Y C X with FF-Y C Y such that
gr A = Ky#kyF. Here Ag = kyF. Then the result follows from Lemma
7.10.

2. Assume that the module categories gy, r )M, By’ Fr e M are
equivalent, then Theorem 4.2 implies that there exists an element h € G
such that B(Y', F',¢',¢") ~ hB(Y, F,1,£)h~! as H-comodule algebras.

The algebra map o : hB(Y, F,,&)h~! — B(h - Y, hFh™1 " £") defined
by

alhesh™) = eppp1,  alhyh™) = xa(h) yn,
for any f € F, [l € Y, is a well-defined comodule algebra isomorphism.
Whence B(Y',F', ¢/, &) ~ B(h-Y,hFh~! 4" ") and using Theorem 7.5
(3) we get the result. O

As a consequence of Theorem 7.11 we have the following result.
Corollary 7.12. Any H-Galois object is of the form A(X,G,¢,§).

Proof. Let A be a H-Galois object. Then 4M is an exact module cat-
egory over RepH. Moreover, 4 M is indecomposable. In fact, otherwise
there would exist a proper bilateral ideal J C A H-stable [AM, Proposition
1.18]. Thus, can(A®J) = can(J®A), what contradicts the bijectivity of
can. Then, by Theorem 7.11 there exists a datum (X, G, %,§) such that
A= AX, G, €). O

7.3. Modules categories over B(03, —1)#kS3. We apply Theorem 7.11
to exhibit explicitly all module categories in this particular case. In this
case the rack is
03 = {(12),(13), (23)}.

For each i € O3 we shall denote by g; the element i thought as an element
in the group S3. We will show in the Appendix that the algebras in the
following result are not null. Then the next corollary follows from Theorem
7.11.



28

GARCIA IGLESIAS AND MOMBELLI

Corollary 7.13. Let M be an indecomposable exact module category over
Rep(B(O3, —1)#kS3). Then there is a module equivalence M ~ 4 M where
A is one (and only one) of the comodule algebras in following list. In the
following i, 7,k denote elements in O3 and &, i, € k.

1.

2.

For any subgroup F C Sz, 1 € Z?(F,k*), the twisted group algebra
kyF.
The algebra A({i},&,1) =< y; : y2

7 = &1 >, with coaction determined
by AMyi) = 2:®1 + g;Qy;.

. The algebra A({i},&,Z2) =< yi,h : y? = €1,h* = 1, hy; = —yih >

with coaction determined by A(y;) = ;@1 + ¢;Qy;, A(h) = ¢;®h.
The algebra A({i,j},1) =< yi,y5 : v; = y; = 0, viyjyi = Yjviyj >
with coaction determined by \(y;) = ;@01 + ¢;Qy;, My;) = x;Q1 +
9;QY;-

The algebm A({Z,]},Zz) =< ylvijh : y7,2 = y]2 = 07 h2 = 17hy2 =
—yih, Yiy;yi = yjyiy; > with coaction determined by A(y;) = z;®@1 +
Gi®Vi, AMyj) = ;01 + g;®y;, A(h) = gr®h, where k # 1, j.

The algebra A(O3,€,1), generated by {va2),¥a3)s Y3y} subject to
relations

N

(212) (13) = y 23) = €1,

Y12)Y(13) T Y(13)¥Y23) + Y23)Y(12) = 0,

Y3)Y12) T Y23)Y13) + Y(12)¥(23) = 0

The coaction is determined by \(ys) = s®14 gsQys for any s € O3.

The algebra A(O3,&,Zs), generated by {va2): ¥13), Y23), h} subject
to relations

y(212) = y(213) = 9(223) =1, =1,
hy(12) = —y(12)h, h?/(lg) = —y(23)h7
Y12)Y(13) T Y(13)¥Y23) + Y23)Y(12) = 0.

The coaction is determined by A(h) = g12)®h, A(ys) = 1s01+gs®ys
for any s € O.

. The algebra A(O3, &, i, Z3), generated by {y(12), Y(13)» Y(23)> h} sub-

ject to relations

9(212) = y(13) = y 23) = &1, h’ =1,

hya2) = yasyh, hyas) = yes)h, hyes) = ya)h,
Ya2)¥a3) + Y3)¥(23) + Y@3)Yaz) = 1h,

Ya3)¥a2) T Y@3)¥as) T ¥a2)¥es) =N h?.

The coaction is determined by A(h) = g(132)®h, Ays) = 7s®1 +
gsQys, for any s € Og’



MODULE CATEGORIES OVER POINTED HOPF ALGEBRAS OVER S3 AND S; 29

9. The algebras A(O3,€, 11,S3,1), for each ¢ € Z?(S3,k*), generated
by {y(12) Y(13)> Y(23)> €n : h € Sz} subject to relations
ener = P(h,t) ent, enys = —Ynsen h,t €Sz, s € O3,
Yao) = Yz = Y = €L
Ya2)¥13) T Ya3)¥Y(23) T Y(23)¥Y(12) = H €(123)-

The coaction is determined by \(ep) = h®ep, A(ys) = 201 + gsQys
for any s € O3. O

8. APPENDIX: A(Y,F,¢,&) #0

In this part, we will complete the proofs of Corollaries 7.8 and 7.13, by
showing that the algebras involved in their statements are not null.

Proposition 8.1. Let A(Y, F,1, &) be one of the algebras in Corollary 7.13.
Then A(Y, F,1,§) # 0.

Proof. The case Y # O3 is clear. Set Y = 3. Note that each one
of these algebras is naturally a right kF-module via a <~ ¢t = ae;, a €

AY,F,¢,§), t € F. Thus, we can consider the induced representation
W = A(Y, F, ¢, &)Q@kpW,, where W, = k{z} is the trivial kF-module. Let

B = {1721(12)7 Y(13)> Y(23)> Y(13)Y(12)> Y(12)Y(13)> Y(12)Y(23) > Y(13)Y(23)>
Y12)¥Y(13)Y(23), Y(13)Y(12)Y(23) Y(12)Y(13)Y(12)» y(12)y(13)y(12)y(23)}

and consider the linear subspace V' of W generated by BRz. We show that
this is a non-trivial submodule in the four cases left, namely F = 1,7, 75
or Sg. In all of the cases, the action of y(19) is determined by the matrix

0600000000 00
100000 000 000
00000¢ 0000 00
00000 0€£000 00
000000 0000 €0

— |0010000000 00
Yaz2) 0001000000 00
000000 000 00
000000 0100 00
0000000000 0 ¢

00 00100000 00
L000000 0001 00

Now, take F' = S3, 9 = 1. The action of e(13) and e(y3) is determined,

respectively, by the matrices:

10 0 0 pOOp 0 0O 0 07 10 0 00p p0OO O 0 07
0-10 0 0000 —p 0 —p O 00 0-100 00pu 0 £ 0
00 0-100000 p £ 0 00-1000 000 —pu—po0
00 -10 0000 & —pu 0 O 0-10 000 00—p & 0 O
00 0 0 000-10 0 0 O 00 0 00-1010 0 0 —p
00 0 0-1010 0 0 0 —px|land|00 0 000 —-100 0 0 0
00 0 0 010-10 0 0 pu 00 0 00-1000 0 0 O
00 0 0-1000 0 0 0 O 00 0 010 -100 0 0 pu
00 00 0000 O 0 1 0 00 0 000 00-10 0 O
00 0 0 0000 0 -10 0 000 000 000 0 1 0
00 0 0 0000 1 0 0 O 00 0 000 000 1 0 O
L0000 0 00000 0 0 0 1 L0000 0 000 000 0 0 1
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The action of e(y3) is given by e(12)€(13)€(12). Finally, we use computer
program Mathematica(C) to check that these matrices satisfy the relations
defining the algebra on each case.

We deal now with a generic 2-cocycle ¢ € Z2(S3,k*). Let us fix A =
A(Y,F,1,€), A = A(Y, F,¢,§). Also, set U = Ky#kF, U = Ky#kyF. If
1 € Z2(U) is the 2-cocycle such that 1y, = 1, see Lemma 4.1, it follows

that U’ = UY. Now, as A is an U-comodule algebra, isomorphic to U as
U-comodules, it follows that there exists a 2-cocycle v € Z2(U) such that
A= U, see [Mo, Sections 7 & 8]. It is easy to check then that A" = U,
by computing the multiplication on the generators, and thus A’ # 0. O

To finish the proof of Corollary 7.8, we present three families of non trivial
algebras A(X, G, 1,¢), for X = (9‘21, G =S4 and certain collections of scalars
{&c}oer satistying (7.6). We show A(X, G, 1,£) # 0 in Proposition 8.5.

Definition 8.2. Let ¢ € Z2(Sy,k*), a, B € k.
1. A;l(a,ﬁ) is the algebra generated by {y;,e, : i € O3,g € S} with
relations
€1 = 17 €r€s = 7/)(7”7 5) €rs, r,Ss S S47
egy1 = sgn(9) Yg.1 €, g €8y, 1€ 0,
9(212) =al,
Y12)Y(34) T Y(34)Y(12) = 20 €(12)(34)>
Ya2)¥23) T Y@3)¥13) T Ya3)¥az) = Bease)-
2. Ai(a,ﬂ) is the algebra generated by {y;,e, : i € O, g € Sq} with
relations
€1 = 17 €rs = ¢(T7 8) Ers, r,s S 847
eqy1 = sgn(9) Yg €9, 9 €S, 1€ 0],
9(21234) = @ €(13)(24)>
Y(1234)Y(1432) T Y(1432)Y(1234) = 2a1,
Y(1234)Y(1243) T Y(1243)Y(1423) t Y(1423)Y(1234) = 56’(132)-
3. Aﬁ(a,ﬁ) is the algebra generated by {y;,e, : i € O3,9 € Sy} with
relations
€1 = ]-a €rEs = ¢(Ta 5) €rs, T,8€ 847
€g Y1 = Xl(g) Yg-1 €g, gE S47 le 037
2
Yag) = al,
Ya2)¥(34) — Y30)Y12) = 0,
Ya2)¥Y(23) — Y(23)Ya3) — Ya3)¥a2) = B €(132)-
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Remark 8.3. Let Q = Q7 [t]. It is clear A;l(a,ﬁ) >~ A(O3,S4, 1, €) for the
family & = {{c}cer where {¢ = &, if i = 1,2,3, is constant in the classes
C with the same cardinality |C| = ¢ and where in this case £ = a, & = 2a,
§3 = 0.

Analogously, if @ = OX[t], Ai(a,ﬂ) is the algebra A(03,Sy,%,€) for
certain family & subject to similar conditions as in the previous paragraph.
The same holds for Q = DJt], Ai(a,ﬁ) and A(O%,S4,9,€).

Recall that there is a group epimorphism 7 : Sy — S3 with kernel H =
((12)(34), (13)(24), (23)(14)). Moreover, m(O3) = O3. Let Q be one of the
gl-data from Subsection 5.4, for n = 4.

Lemma 8.4. Let Q as above. Take v =0 if Q = QZl. Then there is an
epimorphism of algebras H(Q) — H(Qz [\]).

Proof. Consider the ideal I in H(Q) generated by the element H 9y H(34)—1,
and let £ =H(Q)/I. We have

H4)Ho3) = ad (H24)) (H(12)H(zg))  so  HagHpsy=1 in L,
agzq) = ad (H(14)H23))(a12) SO (34 = (12 in L.
Analogously, H(13) = H(24), A(14) = Q(23) and QA(24) = QA(13) in L. Since,
for this gl-data, the action - : S4 x X — X is given by conjugation and
g : X — Sy is the inclusion, relations (5.6) and (5.7) in the definition of
H(Q) are satisfied in the quotient. It is now easy to check that the quadratic

relations (5.8) defining H(Q) become in the quotient the corresponding ones
defining the algebra H(Q3'[\]). O

Proposition 8.5. Assume that (Y, F,1,§) satisfies

(i) &, =&c;, Vi, j €Y.
If Q # fo(/\) assume in addition that

(ii) ifi,j€Y,i>j=7 and (i,j) € C then {& = 2§;.
Then the algebra A(Y, F,,§) is not null.

Proof. Assume first that ¢» = 1. Now, given a datum (Y, F, ¢, &), m(F) < S3
and it is easy to see that 7(Y) is a subrack of O3. Moreover, it follows that
¢ is compatible with the triple (7(Y),n(F'),%¢). Then we have the algebra
A(m(Y),n(F),¥,€). As in Lemma 8.4, it is easy to see that if we quotient
out by the ideal generated by (esey : f g~! € N), then we have an algebra
epimorphism A(Y, F,¢,&) — A(n(Y),n(F),v,€). As these algebras are
non-zero by Proposition 8.1, so is A(Y, F, 9, §).

Notice that in the case in which (Y, F, v, £) is associated with the gl-datum
QX (X), assumption (ii) is not needed, since the first equation in Definition
7.1 implies that, if 7,57 € Y are such that i > j = i and C € R’ is the
corresponding class, then £~ = 0 and this relation is contained in the ideal
by which we make the quotient.

The case ¥ # 1 follows now as in the proof of Proposition 8.1. U
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