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ABSTRACT. We study actions of discrete groups on 2-categories. The moti-
vating examples are actions on the 2-category of representations of finite ten-
sor categories and their relation with the extension theory of tensor categories
by groups. Associated to a group action on a 2-category, we construct the 2-
category of equivariant objects. We also introduce the G-equivariant notions of
pseudofunctor, pseudonatural transformation and modification. Our first main
result is a coherence theorem for 2-categories with an action of a group. For
a 2-category B with an action of a group G, we construct a braided G-crossed
monoidal category ZG(B) with trivial component the Drinfeld center of B. We
prove that, in the case of a G-action on the 2-category of representation of a ten-
sor category C, the 2-category of equivariant objects is biequivalent to the module
categories over an associated G-extension of C. Finally, we prove that the center
of the equivariant 2-category is monoidally equivalent to the equivariantization
of a relative center, generalizing results obtained in [8].

INTRODUCTION

The theory of 2-categories appears in a natural way in diverse contexts. For
example, it was used by Rouquier to “categorify” certain algebraic objects [23]
and appears in topological field theories [6], [20]. The theory of representations of
2-categories has been initiated in a series of papers [15, 16, 17].

Our motivation for the study of 2-categories comes from the theory of tensor
categories. For a tensor category C, a representation of C, or C-module category, is
a categoryM equipped with an associative action C ×M→M satisfying certain
conditions. Given two C-module categoriesM,N , the category FunC(M,N ) is
the category whose objects are C-module functor between M and N , and mor-
phisms are C-module natural transformations. The 2-category of (left) C-modules
CMod has as 0-cells C-module categories, 1-cells C-module functors between them
and 2-cells are C-module natural transformations. This 2-category is a strong in-
variant of the tensor category C.

Given a 2-category B and a 2-monad T : B → B on B, in [18], the notion of
the equivariantization 2-category BT was presented. The equivariantization of a
2-category by a group was studied later in [13].

One of the purposes of the paper is to explicitly describe an action of a group G
on a 2-category B, and describe all ingredients of the resulting equivariantization
2-category BG. An action of a group G on a 2-category B consists of
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• a family of pseudofunctors Fg : B → B, g ∈ G,
• pseudonatural equivalences χg,h : Fg ◦ Fh → Fgh,
• invertible modifications

ωg,h,f : χgh,f ◦ (χg,h⊗id Ff )⇒ χg,hf ◦ (id Fg⊗χh,f ),

for any g, h, f ∈ G, satisfying certain axioms. We also prove a coherence theorem
for group action, stating that there exists another equivalent action of G on B, such
that all pseudofunctors Fg involved in the group action are 2-functors, Fg ◦ Fh =
Fgh, and χg,h, ωg,h,f are all the identity. As an application of the coherent theorem
we prove that associated to every action of group G on a 2-category B there is
a braided G-crossed monoidal category ZG(B) such that the trivial component is
Z(B), the Drinfeld center of B.

An important example comes from the theory of tensor categories. We show
that, ifD = ⊕g∈GDg is a G-graded tensor category, andD1 = C, there is an action
of the group G acts on CMod , the 2-category of representations of C, and there is
a biequivalence

(CMod op)G ' DMod .

The coherence theorem for group actions allows us to construct an associated strict
braided crossed monoidal category and to prove that there is a monoidal equiva-
lence between the center Z(BG) of the equivariantization and the monoidal cate-
gory of pseudonatural transformations of the forgetful pseudofunctor Φ : BG → B.
When applied this result to the 2-category (CMod )G, we recover the results from
[8], on the center of graded tensor categories.

The contents of the paper are organized as follows. In Section 1 we recall the
basics of 2-categories. For any pseudofunctorH : B → B′ we define the monoidal
category Z(H) of pseudonatural transformations η : H → H. When H is the
identity pseudofunctor, Z(Id ) is a braided monoidal category called the center of
the 2-category.

In Section 2 we explicitly describe the notion of a group action on a 2-category.
Given two 2-categories B,B′ equipped with an action of a group G, we define the
notion of G-pseudofunctor between them. When a G-pseudofunctor is a biequiv-
alence, we say that B,B′ are G-biequivalent. Also, we define the notions of G-
pseudonatural transformation and G-modifications. All these data, turns out to
be a 2-category, denoted by 2CatG(B,B′). The equivariant 2-category is BG =
2CatG(I,B), where I is the unit 2-category, where G acts trivially.

In Section 3 we prove that any 2-category with a group action is G-biequivalent
to another one where the action is strict. Section 4 is devoted to explicitly describe
all ingredients in the equivariant 2-category BG.

In Section 5 we show an example coming from graded tensor categories. IfD =
⊕g∈GDg is a G-graded tensor category, then the group G acts on the 2-category
D1Mod of left D1-modules. The resulting equivariant 2-category (D1Mod )G is
biequivalent to DMod . In Section 6 we define theG-braided center of a 2-category
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with an action of a groupG. In Section 7, we show that there is a monoidal equiva-
lence Z(BG) ' Z(Φ)G, where Φ : BG → B is the forgetful pseudofunctor. When
applied to the example (CMod )G, we recover results from [8].
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1. 2-CATEGORIES

Let us briefly recall the notion of a 2-category. For more details, the reader is
referred to [14, 21]. For any 2-category B, the set of objects, also called 0-cells,
will be denoted by Obj(B). The composition in each hom-category B(A,B), that
is, the vertical composition of 2-cells, is denoted by juxtaposition fg, while the
symbol ◦ is used to denote the horizontal composition functors

◦ : B(B,C)× B(A,B)→ B(A,C).

The identity of a 0-cell A is written as IA : A → A. For any 1-cell X the identity
will be denoted idX or sometimes simply as 1X , when space saving is needed. For
any 2-category B, we shall denote by Bop the 2-category that is obtained from B
by reversing 1-cells.

Example 1.1. The unit 2-category I has a single 0-cell, named ?. The monoidal
category I(?, ?) is the unit monoidal category.

A pseudofunctor (F, α) : B → B′, consists of a function F : Obj(B) →
Obj(B′), a family of functors F : B(A,B) → B′(F (A), F (B)), for each A,B ∈
Obj(B), a collection of isomorphisms φA : IF (A) → F (IA), and a family of
natural isomorphisms

B(B,C)× B(A,B)

F×F
��

◦ //

⇑α

B(A,C)

F
��

B′(F (B), F (C))× B′(F (A), F (B))
◦ // B′(F (A), F (C)),

for 0-cells A,B,C, subject to the usual axioms. A pseudofunctor is called unital
if F (IA) = IF (A), for any 0-cell A, and the isomorphisms φA are the identities.
A pseudofunctor is called a 2-functor if the associativity isomorphisms α are the
identities.

IfF ,G are pseudofunctors, a pseudonatural transformation B ↓χ

F
$$

G

==B′ consists

of a family of 1-cells χ0
A : F (A)→ G(A), A ∈ Obj(B) and isomorphisms
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F (A)
F (X) //

χ0
A
��

F (B)

χ0
B
��

G(A)
G(X)

//

⇓χX

G(B)

natural in X ∈ B(A,B), subject to the usual axioms. If χ, θ are pseudonatu-

ral transformations, a modification from B ↓χ

F
$$

G

==B′ to B ↓θ

F
$$

G

==B′ , consists of a

family of 2-cells ωA : χ0
A → θ0

A, such that the diagrams

χ0
B ◦ F (X)

ωB◦idF (X)

��

χX // G(X) ◦ χ0
A

idG(X) ◦ωA
��

θ0
B ◦ F (X)

θX // G(X) ◦ θ0
A

commute for all X ∈ B(A,B). This modification will be denoted as ω : χ ⇒
θ. Given pseudofunctors F,G : B → B, we shall denote Pseu-Nat(F,G) the
category where objects are pseudonatural transformations from F to G and arrows
are modifications.

A 1-cell X ∈ B(A,B) is called an equivalence if there exists a 1-cell Y ∈
B(B,A) such that X ◦ Y ∼= IB and Y ◦ X ∼= IA. We will say that an invertible
1-cell X is an isomorphism if there is X∗ ∈ B(B,A) such that X ◦X∗ = IB and
X∗ ◦X = IA. The next result will be useful later to simplify some proofs.

Proposition 1.2. Every 2-category (or bicategory) is biequivalent to a 2-category
where every equivalence 1-cell is an isomorphism.

Proof. The proof goes along the lines of [9, Theorem 1.4]. Since every category
is equivalent to a skeletal one. Every bicategory B is biequivalent to a locally
skeletal one B′, that is, each of its hom-category is skeletal. Then in B′, every
1-cell equivalence is an isomorphism. By Street’s Yoneda lemma for bicategories
[22, p.117 ], the Yoneda embedding

B′ → Bicat(B′,Cat) : A 7→ B′op(A,−),

is locally an equivalence. Therefore, B′ is biequivalent toB′′; the full sub-2category
of Bicat(B′ op,Cat) determined by the contravariant representables. Since every
equivalence in B′ is an isomorphism, every equivalence in B′′ is an isomorphism
and B is biequivalent to B′′. �

1.1. The tricategory of 2-categories. Given a pair of 2-categories B and B′, we
can define the functor 2-category, 2Cat(B,B′), whose 0-cells are pseudofunctors
B → B′, whose 1-cells are pseudonatural transformations, and whose 2-cells are
modifications. Given 2-categories B,B′ and B′′, we define a pseudofunctor

⊗ : 2Cat(B′,B′′)× 2Cat(B,B′)→ 2Cat(B,B′′),



GROUP ACTIONS ON 2-CATEGORIES 5

called the tensor product. The tensor product at the level of pseudofunctors is the
composition. The tensor product of pseudonatural transformations is

(1.1) ( B′
G ))
↓β

G′
55 B′′

)(
B

F
((

↓α

F ′
66 B′
)

=
(
B

GF
((

↓β⊗α

G′F ′
66 B′′

)
,

where

(β ⊗ α)A = βF ′(A) ◦G(αA)

(β ⊗ α)X = (βF ′(X) ◦ idG(α0
A))(idβ0

F ′(B)
◦G(αX)).

Here, the isomorphisms constraints of the pseudofunctors have been omitted as a
space-saving measure. If β′ : G→ G′ and α′ : F → F ′ are another pseudonatural
transformations and ω : β → β′ and ω′ : α → α′ are modifications, their tensor
product is defined as ω ⊗ ω′ : β⊗α→ β′⊗α′, (ω ⊗ ω′)A := ωF ′(A) ◦G(ω′A), for
any 0-cell A.

If α : F → F ′ and β : H → H ′ are pseudonatural transformations between
pseudofunctors F, F ′ ∈ 2Cat(B′,B′′), H,H ′ ∈ 2Cat(B,B′), then there is a modi-
fication

F ′H
id F ′⊗β

##H
HH

HH
HH

HH

FH ⇓cα,β

id H⊗β ##F
FF

FF
FF

F

α⊗id H

;;xxxxxxxxx
F ′H ′

FH ′
α⊗id H′

;;vvvvvvvvv

given by

(1.2) (cα,β)A := α−1
βA

: F ′(βA) ◦ αH(A) → αH′(A) ◦ F (βA).

This modification is called the comparison constraint.
The tensor product is associative only at the level of pseudofunctors, but not for

pseudonatural transformations. There exists an associativity constraint

KHG ⇓aα,β,γ

(α⊗β)⊗γ

""

α⊗(β⊗γ)

==K ′H ′G′

for pseudonatural transformations α : K → K ′, β : H → H ′ and γ : G → G′.
The modification

(aα,β,γ)A : αF ′H′(A) ◦G(βH′(A)) ◦GF (γA)→ αF ′H′(A) ◦G(β′H(A) ◦ F (γA))

is defined by (aα,β,γ)A = idαF ′H′(A)
◦G2(βH′(A), F (γA)). It is easy to see that a

satisfies the pentagonal identity.
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1.2. Finite tensor categories. A (strict) monoidal category is a 2-category with
one single 0-cell. A finite tensor category over k is a finite k-linear abelian rigid
monoidal category C such that the tensor product functor⊗ : C×C → C is k-linear
in each variable. The reader is referred to [5].

Suppose C and D are strict tensor categories. A monoidal functor (F, ξ, φ) :
C → D is a pseudofunctor between the corresponding 2-categories. Explicitly, it
consists of a functor F : C → D, natural isomorphisms ξX,Y : F (X)⊗F (Y ) →
F (X⊗Y ), X, Y ∈ C, and isomorphism φ : 1 → F (1), satisfying certain axioms.
If (F, ξ, φ), (F ′, ξ′, φ′) are monoidal functors , a natural monoidal transformation
θ : (F, ξ, φ) → (F ′, ξ′, φ′) is a natural transformation θ : F → F ′, such that for
any pair of objects X,Y

(1.3) θ1φ = φ′, θX⊗Y ξX,Y = ξ′X,Y (θX⊗θY ).

1.3. The endomorphism category of a pseudofunctor. If B is a 2-category, the
monoidal category

Z(B) = 2Cat(B,B)(Id B, Id B)

is exactly the center of B, i.e., the obvious generalization of the center construction
of a monoidal category. See [19].

Let B,B′ be two 2-categories and (H, α) : B → B′ be a unital pseudofunctor.
Denote Z(H) = 2Cat(B,B′)(H,H); the category of pseudonatural transforma-
tions of the pseudofunctor H. This is a monoidal category with tensor product
described in the previous section. Explicitly, objects in Z(H) are pairs (V, σ),
where

V = {VA ∈ B′(H(A),H(A))1-cells, for anyA ∈ B},

σ = {σX : VB ◦ HA,B(X)→ HA,B(X) ◦ VA},
where, for any X ∈ B(A,B), σX is a natural isomorphism 2-cell such that
(1.4)
σIA = id VA , (αX,Y ◦ id VA)σX◦Y = (idH(X) ◦ σY )(σX ◦ idH(Y ))(id VB ◦ αX,Y ),

for any 0-cells A,B,C ∈ B, and any pair of 1-cells X ∈ B(C,B), Y ∈ B(A,C).
If (V, σ), (W, τ) are two objects in Z(H), a morphism f : (V, σ) → (W, τ) in

Z(H) is a collection of 2-cells fA : VA ⇒WA, A ∈ B such that

(1.5) (idH(X) ◦ fA)σX = τX(fB ◦ idH(X)),

for any 1-cell X ∈ B(A,B). The category Z(H) has a monoidal product defined
as follows. Let (V, σ), (W, τ) ∈ Z(H) be two objects. Then (V, σ)⊗(W, τ) =
(V⊗W,σ⊗τ), where for any 0-cells A,B ∈ B, and X ∈ B(A,B)

(1.6) (V⊗W )A = VA ◦WA, (σ⊗τ)X = (σX ◦ idWA
)(id VB ◦ τX).

If (V, σ), (V ′, σ′), (W, τ), (W ′, τ ′) ∈ Z(H) are objects, and f : (V, σ)→ (V ′, σ′),
f ′ : (W, τ), (W ′, τ ′) are morphisms in Z(H), then f⊗f ′ : (V, σ)⊗(V ′, σ′) →
(W, τ)⊗(W ′, τ ′) is defined by

(f⊗f ′)A = fA ◦ f ′A,
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for any 0-cell A. The unit (1, ι) ∈ Z(H) is the object

1A = IA, ιX = idX ,

for any 0-cells A,B and any 1-cell X ∈ B(A,B). The center Z(Id B) of the iden-
tity pseudofunctor Id B : B → B is denoted as Z(B), and it coincides with the
definition presented in [19].

2. GROUP ACTIONS ON 2-CATEGORIES

AssumeG is a group and B is a 2-category. We shall denote byG the 2-category
that has 0-cells the elements of the group G. For any pair g, h ∈ G

G(g, h) =

{
the unit category, if g = h

∅ if g 6= h.

Moreover,G is a monoidal 2-category, see [9]. Since 2Cat(B,B) is also a monoidal
2-category, we define an action of G on B as a weak monoidal homomorphism
(F , χ, ω, ι, κ, ζ) : G→ 2Cat(B,B). See for example [9].

Explicitly, an action of G on a 2-category B consists of the following data:

• A family of pseudofunctors Fg : B → B, g ∈ G,
• pseudonatural equivalences (χg,h, χ

0
g,h) : Fg ◦ Fh → Fgh, g, h ∈ G,

• a pseudonatural equivalence ι : Id B → F1,
• for any g, h, f ∈ G invertible modifications

ωg,h,f : χgh,f ◦ (χg,h⊗id Ff )⇒ χg,hf ◦ (id Fg⊗χh,f ),

κg : χ1,g ◦ (ι⊗id Fg)⇒ id Fg , ζg : χg,1 ◦ (id Fg⊗ι)⇒ id Fg ,

such that for any 0-cell A

1(χ0
g,f )A

◦ Fg(κf )A(ωg,1,f )A = 1(χ0
g,f )A

◦ (ζg)Ff (A),(2.1)

(
id 3 ◦ (Fg(ωh,f,k)A)

)(
ωg,hf,k ◦ id 2

)(
id (χ0

ghf,k)A
◦ (ωg,h,f )Fk(A)

)
=

=
(
(ωg,h,fk)A ◦ id 4)

)(
id 5 ◦ (χg,h)χ0

f,k

)(
(ωgh,f,k)A ◦ id 6

)
,

(2.2)

for any g, h, f, k ∈ G. Where,

id 2 = 1Fg(χ0
h,f )Fk(A)

, id 3 = 1(χ0
g,hfk)A

, id 4 = 1FgFf (χ0
h,k)A

,

id 5 = 1(χ0
gh,fk)A

, id 6 = 1(χ0
g,h)FfFk(A)

.

In equation (2.2), we are omitting the associativity isomorphisms of the pseudo-
functors Fg. In the following diagrams we shall denote by g the pseudofunctor Fg,
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the composition of functors as juxtaposition and the tensor product of pseudonat-
ural transformations also by juxtaposition. Diagrammatically, we have modifica-
tions

g h f

1g⊗χh,f

��

χg,h⊗1f // gh f

χgh,f

��
g hf χg,hf

// ghf,

⇓ωg,h,f

such that the next diagrams are equal for all g, h, f, k ∈ G,

(2.3) gh f k
χgh,f⊗1k //

⇓ωg,h,f⊗1k

ghf k

χghf,k

""F
FF

FF
FF

FF
FF

F

g h f k

χg,h⊗1f⊗1k

;;wwwwwwwwwwwww

1g⊗1h⊗χf,k ##H
HH

HH
HH

HH
HH

H

1g⊗χh,f⊗1k // g hf k

χg,hf⊗1k

;;wwwwwwwwwwww

1g⊗χhf,k

##G
GG

GG
GG

GG
GG

G
ghfk⇓ωg,hf,k

g h fk

⇓1g⊗ωh,f,k

1g⊗χh,fk
// g hfk

χg,hfk

<<xxxxxxxxxxxx

=

gh f k

1gh⊗χf,k

##G
GG

GG
GG

GG
GG

G

χgh,f⊗1k // ghf k

χghf,k

""F
FF

FF
FF

FF
FF

F

⇓ωgh,f,k

g h f k

χg,h⊗1f⊗1k

;;wwwwwwwwwwwww

1g⊗1h⊗χf,k ##H
HH

HH
HH

HH
HH

H
⇓cχg,h,χf,k gh fk χgh,fk

// ghfk

g h fk

χg,h⊗1fk

;;wwwwwwwwwwww

1g⊗χh,fk
// g hfk

χg,hfk

<<xxxxxxxxxxxx

⇓ωg,h,fk

We say that a group G acts trivially on B if the weak monoidal homomorphism
(F , χ, ω, ι, κ, ζ) : G → 2Cat(B,B) is the trivial one. This means that for any
g, h ∈ G, the pseudofunctors Fg are the identity, χg,h are the identity pseudonatural
transformations and all the modifications are identities.

Remark 2.1. A definition of action over a topological group was given in [13]. S

Definition 2.2. An action (F , χ, ω, ι, κ, ζ) : G → 2Cat(B,B) is called unital if
Fg is a unital pseudofunctor, F1 = Id B, and χg,1 = id Fg = χ1,g, κg = id = ζg
for any g ∈ G. A unital G-action will be denoted simply by (F , χ, ω).
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Definition 2.3. An action (F , χ, ω, ι, κ, ζ) : G → 2Cat(B,B) is called strict if
each pseudofunctor Fg is a 2-functor, and Fg ◦ Fh = Fgh, and the pseudonatural
transformations χg,h and the modifications ωg,h,f are the identities for any g, h, f ∈
G.

A similar argument as in [7, Proposition 3.1] applied in this case, allows us to
consider only unital actions. Assume that B,B′ are 2-categories equipped with
unital actions of a group G via

(F , χ, ω) : G→ 2Cat(B,B), (F̃ , χ̃, ω̃) : G→ 2Cat(B̃, B̃).

Definition 2.4. A G-pseudofunctor between B and B̃ is a triple (H, γ,Π), where

• H : B → B̃ is a unital pseudofunctor,
• for any g ∈ G, pseudonatural equivalences γg : H ◦ Fg → F̃g ◦ H,
• invertible modifications

f̃Hg
1
f̃
⊗γg

// f̃ g̃H
χ̃f,g⊗1H

""D
DD

DD
DD

D

Hf g

γf⊗1g
<<yyyyyyyy

1H⊗χf,g
((RR

RRR
RRR

RRR
RRR

RRR
f̃gH

Hfg
γfg

66lllllllllllllllll

⇓Πf,g

such that for all f, g, h ∈ G

γ1 = idH, Πg,1 = id γg = Π1,g,(2.4)

(2.5)

f̃ g̃Hh
1
f̃

1g̃γh

))TTT
TTTT

TTTT
TTT

⇓1
f̃
⊗Πg,hf̃Hgh

1
f̃
γg1h

44jjjjjjjjjjjjjj

1
f̃Hχg,h

$$II
III

I
f̃ g̃h̃H

1
f̃
χ̃g,h1H

zzuu
uu
u χ̃f,g1

h̃H
$$I

II
II

Hfgh cγf ,χg,h

γf1g h
::uuuuuu

1Hfχg,h
$$II

III
I

f̃Hgh
1
f̃
γgh

// f̃ g̃hH

˜χf,gh1H
$$II

III
I

f̃gh̃H

χ̃fg,h1H
zzuuu
uuu

Hf gh
γf1gh

::uuuuuu

χf,gh **TTT
TTTT

TTTT
TTT

f̃ghH

ω̃f,g,h⇐

Hfgh
γfgh

55jjjjjjjjjjjjjj

⇓Πf,gh

=
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f̃ g̃Hh

χ̃f,g1Hh

��6
66

66
66

66
66

6 1
f̃

1g̃γh

))TTT
TTTT

TTTT
TTT

f̃Hgh ⇓Πf,g⊗1h

1
f̃
γg1h

44jjjjjjjjjjjjjjj
f̃ g̃h̃H

χ̃f,g1
h̃H
$$I

II
II

cχ̃f,g,γh

Hfgh
1Hχf,g1h //

γf1gh
::uuuuuu

1Hfχg,h
$$II

III
I

Hfg h
γfg1h //

1Hχfg,h

��7
77

77
77

77
77

77
f̃gHh

⇓Πfg,h

1
f̃g
γh

// f̃gh̃H

χ̃fg,h1H
zzuuu
uuu

Hf gh

1H⊗ωf,g,h⇐

1Hχf,gh **TTT
TTTT

TTTT
TTT

f̃ghH

Hfgh
γfgh

55jjjjjjjjjjjjjj

holds in 2Cat(B,B). In the above diagrams, we are using the comparison con-
straints c defined in (1.2).

Remark 2.5. A more general definition of G-functor, in the case G is a topological
group, was given in [12].

Definition 2.6. Assume that (H, γ,Π), (H′, γ′,Π′) are G-pseudofunctors. A G-
pseudonatural transformation is a pair (θ, {θg}g∈G), where θ : H → H′ is a
pseudonatural transformation, and θg are invertible modifications

Hg
γg //

θ⊗1g

��

g̃H

1g̃⊗θ

��
H′g

γ′g // g̃H′

⇓θg

such that for all g, f ∈ G, the equation

Hg f

⇓θg1f

γg1f //

θ1g1f
��

g̃Hf

⇓1g̃θf1g̃θ1f
��

1g̃γf // g̃f̃H
⇓cθ,χ̃g,f1g̃1

f̃
θ
��

χ̃g,f1H // g̃fH
1
g̃f
θ

��

H′g f

1H′χg,f ,,

γ′g1f

// g̃H′f
1g̃γ
′
f // g̃f̃H′

χ̃g,f1H′
// g̃fH′

H′gf
γ′gf

66
⇓Π′g,f

=
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Hg f

θ1g1f
�� 1Hχg,f ,,

γg1f

// g̃Hf
1g̃γf // g̃f̃H′

χ̃g,f1H

// g̃fH
1
g̃f
θ

��

H′g f
⇓c−1
θ,χg,f

1H′χg,f ,,

Hgf
θ1gf

��

γgf

66
⇓Πg,f

g̃fH′
⇓θgf

H′gf
γ′gf

66

holds in 2Cat(B,B).

Definition 2.7. Assume that (θ, {θg}g∈G), (σ, {σg}g∈G) : (H, γ,Π) → (H̃, γ̃, Π̃)
are G-pseudonatural transformations. A G-modification α : (θ, {θg}g∈G) ⇒
(σ, {σg}g∈G) is a modification α : θ ⇒ σ such that

Hg
γg //

α⊗1g⇐σ⊗1g

))

θ⊗1g

uu

g̃H

1g̃θg

��
H′g

γ′g

// g̃H′

⇓θg

=

Hg
γg //

σg⊗1g

�� ⇓σg

g̃H
1g̃⊗α⇐1g̃⊗σ

))

1g̃⊗θ

uuH′g
γ′g

// g̃H′

Assume that (H1, γ1,Π1), (H2, γ2,Π2), (H3, γ3,Π3) areG-pseudofunctors, and
(θ, {θg}g∈G) : (H1, γ1,Π1) → (H2, γ2,Π2), (σ, {σg}g∈G) : (H2, γ2,Π2) →
(H3, γ3,Π3) are G-pseudonatural transformations. The composition

(σ, {σg}g∈G) ◦ (θ, {θg}g∈G) = (ρ, {ρg}g∈G)

is defined as follows. The pseudonatural transformation ρ = σ ◦ θ. For any 0-cell
A ∈ B and any g ∈ G

(ρg)A =
(
(σg)A ◦ id θ0

Fg(A)

)(
id
F̃g(σ0

A)
◦ (θg)A)

)
.

Here, we are also ommiting the associativity constraints of the pseudofunctor Fg.
The composition of modifications of G-categories is the usual composition of
modifications.

Definition 2.8. 2CatG(B, B̃) is the 2-category in which 0-cells are pseudofunctors
of G-categories, 1-cells are pseudonatural transformations of G-categories and 2-
cells are modifications of G-categories.
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The next result is a consequence of [9, Corollary 8.3].

Proposition 2.9. 2CatG(B, B̃) is a 2-category. �

Definition 2.10. We say that the 2-categories B and B̃ are G-biequivalent if there
exists a G-pseudofunctorH : B → B̃ that is also a biequivalence.

Lemma 2.11 (Transport of structure). Let B be a 2-category with an action of G
given by (F , χ, ω). LetH : B → B′ be a biequivalence,

Lg : B′ → B′, γg : H ◦ Fg → Lg ◦ H

a G-indexed family of pseudofunctors and pseudonatural equivalences, respec-
tively. Then, there is a way to endowed B′ with a G-action (L, χ′, ω′) such that
(H, γ,Π) : B → B′ is a G-biequivalence .

Proof. Since γg and χf,g are psedonatural equivalences, we can simultaneously
provide the datum Πf,g and the pseudonatural equivalences χ′f,g : Lf ◦ Lg →
Lfg, f, g ∈ G. Now, axiom 2.5 uniquely determines the modifications ω′f,g,h.
Axiom 2.3 follows from the corresponding axioms of G-action via (F , χ, ω). The
pseudofunctor (H, γ,Π) : B → B′ is a G-biequivalence by construction. �

Corollary 2.12. Every 2-category with aG-action isG-biequivalent to a 2-category
where G acts by 2-functors, that is, all Fg are 2-functors.

Proof. By the coherence of theorem for pseudofunctor, see [11, Section 2.3], every
bicategory B is biequivalent to a 2-category st(B) such that every pseudo-functor
F : st(B) → st(B) is pseudo-natural equivalent to a 2-functor. Then applying
Lemma 2.11 we can transport the action of B to a G-biequivalent action on st(B)
where G acts by 2-functors. �

3. COHERENCE FOR GROUP ACTIONS ON 2-CATEGORIES

The main result of this section is to prove the following coherence theorem for
a group action on a 2-category.

Theorem 3.1 (Coherence for group actions on 2-categories). Let G be a group.
Every 2-category with an action of G is G-biequivalent to a 2-category with a
strict action of G. �

Assume B is a 2-category equipped with a unital action of G, (F , χ, ω) : G →
2Cat(B,B). By Corollary 2.12 we can assume that Fg is a 2-functor for any g ∈ G.
We shall first construct a 2-category B[G] with a strict action of G.

Objects of B[G] are triples (A, θ, α), where A = {Ag}g is a G-indexed family
of objects, θ = {θg,h : Fg(Ah)→ Agh}g,h∈G is a G×G-indexed family of 1-cell
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equivalences and

FgFh(Af )

Fg(θh,f )

��

(χ0
g,h)Af // Fgh(Af )

θgh,f

��
Fg(Ahf )

θg,hf

// Aghf ,

⇓αg,h,f

a G×G×G-index family of isomorphism 2-cells, such

θ1,g = IAg , α1,h,f = id, αg,1,f = id

that for all g, h, f, k, and equation
(3.1)

gh f Ak
χ0
gh,f //

⇓ωg,h,f

ghf Ak

θghf,k

##G
GG

GG
GG

GG
GG

GG

g h f Ak

χ0
g,h⊗1f

::uuuuuuuuuuuuu

1g⊗1h⊗θf,k
$$II

II
III

III
II

II

1g⊗χ0
h,f // g hf Ak

χ0
g,hf

::uuuuuuuuuuuuu

1g⊗θhf,k

$$H
HH

HH
HH

HH
HH

HH
H

Aghfk⇓αg,hf,k

g h Afk

⇓1g⊗αh,f,k

1g⊗θh,fk
// g Ahfk

θg,hfk

;;wwwwwwwwwwwww

=

gh f Ak

1gh⊗θf,k

$$H
HH

HH
HH

HH
HH

HH

χ0
gh,f // ghf Ak

θghf,k

##G
GG

GG
GG

GG
GG

GG

⇓αgh,f,k

g h f Ak

χ0
g,h⊗1f

::uuuuuuuuuuuuu

1g⊗1h⊗θf,k
$$II

II
II

II
II

III
I

⇓(χg,h)θf,k gh Afk
θgh,fk

// Aghfk

g h Afk

χ0
g,h

::vvvvvvvvvvvvv

1g⊗θh,fk
// g Ahfk

θg,hfk

;;wwwwwwwwwwwww

⇓αg,h,fk

holds in B(Fg(Fh(Ff (Ak)), Aghfk). If (A, θ, α) is a 0-cell, the identity 1-cell
I(A,θ,α) is defined as follows. I(A,θ,α) = (IAg , l), where lg,h = id θg,h , for any
g, h ∈ G.
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If (A, θ, α) and (B, ρ, β) are objects in B[G], a 1-cell is a pair (X, l), where
X = {Xg : Ag → Bg} is a G-indexed family of 1-cells and

Fg(Ah)

θg,h

��

Fg(Xh) // Fg(Bh)

ρg,h

��
Agh

Xgh

// Bgh,

⇓lg,h

is a G × G-indexed family of isomorphism 2-cells, such that for all f, g, h ∈ G,
l1,g = idXg and equation

(3.2) f g(Ah)

f(θg,h)

��

f g(Xh) // f g(Bh)

fρg,h)

��

χ0
f,g // fg(Bh)

ρfg,h

��
f(Agh)

θf,gh
((QQ

QQQ
QQQ

QQQ
QQQ

QQQ f(Xgh)

// f(Bgh)

⇓lf,gh

⇓f(lg,h)

ρf,gh
// Bfgh

⇓βf,g,h

Afgh

Xfgh

66mmmmmmmmmmmmmmmmm

=

f g(Ah)

f(θg,h)

�� χ0
f,g ((QQ

QQQ
QQQ

QQQ
QQQ

Q

f g(Xh) // f g(Bh)

⇓(χf,g)Xh

χ0
f,g // fg(Bh)

ρfg,h

��f(Agh)

θf,gh
((QQ

QQQ
QQQ

QQQ
QQQ

QQQ
⇓αf,g,h fg(Ah)

fg(Xh)

66nnnnnnnnnnnnnnn

θfg,h

��

⇓lfg,h

Afgh

Xfgh

66mmmmmmmmmmmmmmmmmmmm

holds in B(Ff (Fg(Ah)), Bfgh). If (X, l), (Y, s) are 1-cells, a 2-cell m : (X, l)⇒
(Y, s) is a G-indexed family of 2-cells m = {mg : Xg → Yg} such that for all
g, f ∈ G, equation
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(3.3) Fg(Ah)

θg,h

��

Fg(Xh)

%%
Fg(Bh)

ρg,h

��

⇓lg,h

Agh

Xgh
%%

Ygh

99
Bgh⇓mgh

=
Fg(Ah) ⇓Fg(mh)

θg,h

��

Fg(Xh)

%%

Fg(Yh)
99
Fg(Bh)

ρg,h

��
Agh

Ygh

99
Bgh⇓sg,h

holds in B(Fg(Ah), Bgh).
The (vertical) composition in each categoryB[G]((A, θ, α), (B, ρ, β)) is defined

pointwise.
Now, let us define the horizontal composition ◦ : B[G]((A, θ, α), (B, ρ, β)) ×

B[G]((C, κ, γ), (A, θ, α))→ B[G]((C, κ, γ), (B, ρ, β)). If (A, θ, α) and (B, ρ, β)
are 0-cells, and

(X, l) ∈ B[G]((A, θ, α), (B, ρ, β)), (Y, s) ∈ B[G]((C, κ, γ), (A, θ, α))

are 1-cells, define
(X, l) ◦ (Y, s) = (Z, t),

where Zg = Xg ◦ Yg, and tg,h =
(
1Xgh ◦ sg,h

)(
lg,h ◦ 1Fg(Yh)

)
, for any g, h ∈ G.

The horizontal composition of 2-cells in B[G] is just the horizontal composition of
2-cells in B.

Lemma 3.2. B[G] is a 2-category endowed with a strict action of G.

Proof. The proof that B[G] is indeed a 2-category follows by a straightforward
calculation. Let us define now a canonical strict action of G on the 2-category
B[G]. For any g ∈ G define the 2-functors Lg : B[G] → B[G] as follows. If
(A, θ, α) is a 0-cell, g, x ∈ G, then

Lg(A)x = Axg, Lg(θ)x,y = θx,yg, Lg(α)x,y,z = αx,y,zg.
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If (X, l) : (A, θ, α)→ (B, ρ, β) is a 1-cell,

Lg(X)x = Xxg, Lg(l)x,y = lxyg.

If m : (X, l) ⇒ (Y, s) is a 2-cell, then Lg(m)x = mxg, for any x ∈ G. Since the
Lg are 2-functors such that Lg ◦ Lh = Lgh for all g, h ∈ G and Le = IdB[G], L
defines a strict action of G on B[G]. �

There is a pseudofunctor H : B → B[G] defined as follows. If A is a 0-cell in
B, then

H(A) = ({Fg(A)}, (χ0
g,h)A, ωg,h,f )f,g,h∈G,

if X : A → B is a 1-cell, then H(X) = (Fg(X), (χg,h)X) and for 2-cells m :
X → Y , H(m)g = Fg(m), where f, g, h ∈ G. The fact that ω are modifications
implies that H(X) is indeed a 1-cell in B[G]. The following proposition implies
immediately Theorem 3.1

Proposition 3.3. H : B → B[G] is a G-biequivalence.

Proof. If (A, θ, α) is an object in B[G], then the 1-equivalences θg,e : H(Ae)g →
Ag and the 2-cells

FgH(Ae)h

Fg(θh,e)

��

χ0
g,h // H(Ae)gh

θgh,e

��
Fg(Ah)

θ0
g,h

// Aghf ,

⇓αg,h,e

defines a 1-equivalence fromH(A1) to A, that is,H is bi-essentially surjective.
Let A and B be objects in B, and (X, l) : H(A) → H(B) be a 1-cell in B[G].

The invertible 2-cells lg,1 : H(X1)g → Xg define an invertible 2-cell fromH(X1)
to X . ThenH is locally essentially surjective.

If X,Y,∈ B(A,B) and f, f ′ : X → Y such that H(f) = H(f ′). Thus,
H(f)1 = H(f ′)1, but since we are considering a unital action, f = H(f)1 =
H(f ′)1 = f ′, that is,H is locally faithful. Suppose w : H(X)→ H(Y ) is a 2-cell
in B[G], condition (3.3) implies that wg = Fg(m1), then w = H(w1). Since, H is
bi-essentially surjective and locally fully faithful,H is a biequivalence.

To see thatH has a canonical structure of G-pseudofunctor, we note that

(H ◦ Fg)x = Fx ◦ Fg, (Lg ◦ H)x = Fxg,

for any x, g ∈ G. Then, using the pseudonatural transformations χx,g : Fx ◦Fg →
Fxg, we define a pseusonatural transformation

γg : H ◦ Fg → Lg ◦ H,

as follows. For any 0-cell A ∈ Obj (B) we have to define an equivalence 1-cell
γ0
A : H◦Fg(A)→ Lg◦H(A) in B[G]. Set γ0

A = (X, l), where, for any x, f, h ∈ G

Xx = (χ0
x,g)A, lf,h = (ω−1

f,h,g)A.
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Axiom (2.3) implies that morphisms lf,h fulfill condition (3.2). Thus, γ0
A is indeed

a 1-cell in B[G]. To complete the definition of of the pseudonatural equivalence
γg, we have to define, 2-cells in B[G]

(γg)X : γ0
B ◦ HFg(X)→ LgH(X) ◦ γ0

A,

for any 1-cell X ∈ B(A,B). Set
(
(γg)X

)
x

= (χx,g)X , for any x ∈ G. The fact
that ω are modifications, imply that 2-cells

(
(γg)X

)
x

satisfy (3.3). To define the
modifications

LfHFg
1Lf⊗γg // LfLgH

id

$$I
II

II
II

II

HFf Fg

γf⊗1Fg
99ssssssssss

1H⊗χf,g
**UUU

UUUU
UUUU

UUUU
UUUU

LfgH

HFfg
γfg

44jjjjjjjjjjjjjjjjjjj

⇓Πf,g

we note that

[(1Lf⊗γg) ◦ (γf ⊗ 1Fg)]x = χxf,g ◦ (χx,f ⊗ 1Fg), x, f, g ∈ G,

and
[(1H ⊗ χf,g) ◦ (γfg)]x = χx,fg ◦ (1Fx ⊗ χf,g), x, f, g ∈ G.

Then we define (Πf,g)x = ωx,f,g for all x, g, f ∈ G.
Since ωx,f,g are modifications, Πg,h turns out to be modifications for any g, h ∈

G. Condition described in diagram (2.5) is exactly diagram (2.3). �

4. THE EQUIVARIANT 2-CATEGORY

Let G be a group. Denote by I the unit 2-category endowed with the trivial
action of G, and assume that B is a 2-category with an action of G.

Definition 4.1. The equivariant 2-category is BG = 2CatG(I,B). 0-cells, 1-cells
and 2-cells in BG will be called equivariant 0-cells, 1-cells and 2-cells, respec-
tively.

Proposition 4.2. Assume B and B̃ are G-biequivalent. Then the 2-categories BG,
B̃G are biequivalent.

Proof. Straightforward. �

Lemma 4.3. There exists a forgetfull 2-functor Φ : BG → B. �

Proof. If (H,Π, γ) is an equivariant 0-cell in BG , then Φ(H,Π, γ) = H(?). If
(θ, {θg}g∈G) is an equivariant 1-cell, then Φ(θ, {θg}g∈G) = θ. On 2-cells the
functor Φ is the identity. �
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4.1. Unpacking definition of equivariantization. We shall explicitly describe
the 2-category BG. This would allows us to show concrete examples and obtain
some results in Section 7.

We shall assume that there is a unital action of G on the 2-category B such that
all pseudofunctors Fg are 2-functors. This is possible using Corollary 2.12. The
2-category BG has 0-cells triples (A, {Ug}g∈G, {Πg,h}g,h∈G), where

• A is a 0-cell in B;
• Ug are invertible 1-cells in B(A,Fg(A));
• Πg,h : (χ0

g,h)A ◦ Fg(Uh) ◦ Ug → Ugh are isomorphisms 2-cells in the
category B(A,Fgh(A)) such that

U1 = IA, Πg,1 = id Ug = Π1,g,

Πf,gh

(
id (χ0

f,gh)A
◦ Ff (Πg,h) ◦ id Uf

)(
(ωf,g,h)A ◦ id FfFg(Uh)Ff (Ug)Uf

)
=

= Πfg,h

(
id (χ0

fg,h)AFfg(Uh) ◦Πf,g

)(
id (χ0

fg,h)A
◦ (χf,g)Uh ◦ id Ff (Ug)Uf

)(4.1)

for all g, h, f ∈ G. For short, the collection (A, {Ug}g∈G, {Πg,h}g,h∈G) will be
denoted simply as (A,U,Π).

Given two equivariant 0-cells (A,U,Π), (Ã, Ũ , Π̃), an equivariant 1-cell is a
pair (θ, {θg}g∈G) ∈ BG((A,U,Π), (Ã, Ũ , Π̃)) where

• θ : B(A, Ã) is a 1-cell,
• and for any g ∈ G, θg : Fg(θ) ◦ Ug ⇒ Ũg ◦ θ, are invertible 2-cells such

that θ1 = id θ, and such that for any g, f ∈ G(
Π̃g,f ◦ id θ

)(
id

(χ0
g,f )AFg(Ũf )

◦ θg
)(

id (χ0
g,f )A

◦ Fg(θf ) ◦ id Ug
)

=

= θgf
(
id Fgf (θ) ◦Πg,f

)(
(χg,f )θ ◦ id Fg(Uf )Ug

)
.

(4.2)

If (θ, {θg}g∈G), (σ, {σg}g∈G) : (A,U, µ) → (Ã, Ũ , µ̃) are equivariant 1-cells, an
equivariant 2-cell α : (θ, {θg}g∈G) → (σ, {σg}g∈G) is a 2-cell α : θ → σ such
that for all g ∈ G

(id
Ũg
◦ α)θg = σg(Fg(α) ◦ id Ug).(4.3)

Suppose that (A,U, µ), (Ã, Ũ , µ̃), (A′, U ′, µ′) are equivariant 0-cells, and

(θ, θg) : (A′, U ′, µ′)→ (Ã, Ũ , µ̃), (σ, σg) : (A,U, µ)→ (A′, U ′, µ′)

are equivariant 1-cells, then the composition (θ, θg)◦(σ, σg) : (A,U, µ)→ (Ã, Ũ , µ̃)
is defined as (θ, θg) ◦ (σ, σg) = (θ ◦ σ, (θ ◦ σ)g), where for any g ∈ G

(4.4) (θ ◦ σ)g = (θg ◦ id σ)(id Fg(θ) ◦ σg).

5. GROUP ACTIONS FROM GRADED TENSOR CATEGORIES

Starting with aG-graded tensor category⊕g∈GCg, we shall construct aG-action
on the 2-category of C1-representations.
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5.1. Group actions on tensor categories. LetG be a finite group and C be a finite
tensor category. An action of G on C consists of the following data:

• tensor autoequivalences (g∗, ξ
g) : C → C for any g ∈ G,

• a natural isomorphism ζ : Id C → (1)∗,
• and monoidal natural isomorphisms νg,h : g∗ ◦ h∗ → (gh)∗,

such that for all X ∈ C, g, h, f ∈ G
(νgh,f )X(νg,h)f∗(X) = (νg,hf )Xg∗((νh,f )X),(5.1)

(νg,1)Xg∗(ζX) = idX = (ν1,g)Xζg∗(X).(5.2)

For simplicity, we shall assumed that (1)∗ = Id C , ζ = id and µg,1 = id = ν1,g for
all g ∈ G.

If a finite group G acts on a finite tensor category C, there is associated a new
finite tensor category CG called the equivariantization of C by G. An object in
CG is a pair (X, s), where X ∈ C is an object together with isomorphisms sg :
g∗(X)→ X satisfying

(5.3) s1 = idX , sgh ◦ (νg,h)X = sg ◦ g∗(sh),

for all g, h ∈ G. A G-equivariant morphism f : (V, s) → (W, t) between G-
equivariant objects (V, s) and (W, t), is a morphism f : V → W in C such that
f ◦ sg = tg ◦ g∗(f) for all g ∈ G. The category CG has a monoidal product as
follows. If (V, s), (W, t) ∈ CG, then (V, s)⊗(W, t) = (V⊗W, r), where for any
g ∈ G

rg = (sg⊗tg)(ξgV,W )−1.

For more details we refer the reader to [1], [2], [3].

There is also associated the graded tensor category C[G], with underlying abelian
category C[G] = ⊕g∈GCg, where Cg = C for any g ∈ G. If X ∈ C is an object, the
object in Cg is denoted by [X, g]. The tensor product is

[X, g]⊗[Y, h] = [X⊗g∗(Y ), gh], X, Y ∈ C, g, h ∈ G.
The reader is refered to [24] for the complete monoidal structure of this tensor
category.

5.2. Representations of tensor categories. A left C-module category over a ten-
sor category C is a finite k-linear abelian categoryM equipped with

• a k-bilinear bi-exact bifunctor ⊗ : C ×M→M;
• natural associativity and unit isomorphisms mX,Y,M : (X ⊗ Y )⊗M →
X⊗(Y⊗M), `M : 1⊗M →M , such that

(5.4) mX,Y,Z⊗M mX⊗Y,Z,M = (idX⊗mY,Z,M ) mX,Y⊗Z,M (aX,Y,Z⊗idM ),

(5.5) (idX⊗lM )mX,1,M = idX⊗M .

A module functor between module categoriesM and N over a tensor category
C is a pair (F, c), where

• F :M→N is a left exact functor;
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• natural isomorphism: cX,M : F (X⊗M)→ X⊗F (M), X ∈ C, M ∈ M,
such that for any X,Y ∈ C, M ∈M:

(idX⊗cY,M )cX,Y⊗MF (mX,Y,M ) = mX,Y,F (M) cX⊗Y,M(5.6)

`F (M) c1,M = F (`M ).(5.7)

LetM andN be C-module categories. We denote by FunC(M,N ) the category
whose objects are module functors (F, c) from M to N . A morphism between
(F, c) and (G, d) ∈ FunC(M,N ) is a natural transformation α : F → G such that
for any X ∈ C, M ∈M:

dX,MαX⊗M = (idX⊗αM )cX,M .(5.8)

We shall also say that α : F → G is a C-module transformation.

Let (F, ξ, φ) : C → C be a tensor functor and let (M,⊗,m) be a C-module
category. We shall denote by MF the C-module category with the same under-
lying abelian category M and action, associativity and unit morphisms defined,
respectively, by

X⊗FM = F (X)⊗M,(5.9)

mF
X,Y,M = mF (X),F (Y ),M (ξ−1

X,Y⊗ idM ), lFM = lM (φ⊗idM ),

for allX,Y ∈ C, M ∈M. Right C-module and C-bimodule categories are defined
in a similar way. For the complete definition see [10].

A C-module category M is exact [5] if, for any projective object P ∈ C, the
object P⊗M is projective in M for all M ∈ M. If M is a left C-module then
Mop is the right C-module over the opposite Abelian category with action

(5.10) Mop × C →Mop, (M,X) 7→ X∗⊗M,

associativity isomorphisms mop
M,X,Y = mY ∗,X∗,M for all X,Y ∈ C,M ∈ M.

Analogously, if M is a right C-module category, then Mop is a left C-module
category. If M is a C-bimodule category, we denote M the opposite Abelian
category, with left and right C-module structure given as in (5.10).

5.3. 2-categories of representations of tensor categories. Suppouse that C is a
tensor category. The 2-category CMod has as 0-cells, left C-module categories, if
M,N are C-module categories, then the category CMod(M,N ) = FunC(M,N ).
Analogously we define the 2-category Mod C of right C-module categories.

If C is a finite tensor category, the 2-category CMode of exact left C-module
categories is defined in a similar way as CMod, with 0-cells being exact left C-
module categories. It is known that CMode is 2-equivalent to DMod e if and only
if C is Morita equivalent to D.

5.4. G-Graded tensor categories. LetG be a finite group. A (faithful)G-grading
on a finite tensor category D is a decomposition D = ⊕g∈GCg, where Cg are full
abelian subcategories of D such that

• Cg 6= 0;
• ⊗ : Cg × Ch → Cgh for all g, h ∈ G.
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In this case C = C1 is a tensor subcategory ofD and each Cg is an exact C-bimodule
category. We shall assume that Cg 6= 0 for any g ∈ G. The tensor category D is
called a G-graded extension of C.

In [4] Etingof, Nikshych, and Ostrik studied fusion categories graded by a fi-
nite group. They reduce the classification problem of fusion categories graded by
a group G to the classification (up to homotopy) of maps from BG to BPic(C),
the classifying spaces of the monoidal bicategory where objects are invertible bi-
modules, 1-arrows are bimodule equivalences and 2-arrows are bimodule natural
isomorphisms, see [4] for details. Since tricategories are algebraic models of ho-
motopy 3-types, extension of a fusion categories are classified by monoidal pseud-
ofunctors from G to Pic(C), where G is the discrete monoidal 2-category with
objects G, see [4, Section 8]. Now, since the monoidal bicategory Pic(C) can be
interpreted as the monoidal bicategory of biequivalences of Mod C , then it is natural
to expect that every G-extension of C induces an action of G on Mod C .

In this section, we explicitly present the action associated with a G-extension of
any finite tensor category as well as some consequence of this fact.

IfM is a left C-module category, X ∈ Cg, M ∈ M, the functor GX,M : Cg →
M defined by

GX,M (Y ) = (∗Y⊗X)⊗M,

for any Y ∈ Cg, is a C-module functor. Moreover, the functor

Φ : Cg �CM→ FunC(Cg,M), Φ(X �M) = GX,M ,

is an equivalence of C-module categories.This is a particular case of [10, Thm.
3.20].

5.5. The relative center of a bimodule category. The next definition appeared
in [8].

Definition 5.1. Let C be a tensor category and M a C-bimodule category. The
relative center ofM is the category ZC(M) of C-bimodule functors from C toM.

Explicitly, objects of ZC(M) are pairs (M,γ), whereM is an objects ofM and

γ = {γX : X⊗M ∼−→M⊗X}X∈C

is a natural family of isomorphisms such that

(5.11) γX ◦ α−1
X,M,Y ◦ γY = α−1

M,X,Y ◦ γX⊗Y ◦ α
−1
X,Y,M ,

where αX,M,Y : (X⊗M)⊗Y ∼−→ X⊗(M⊗Y ) are the associativity constraints
inM.

Let D = ⊕g∈GCg be a G-graded tensor category, with C = C1. The inclusion
functor C ↪→ D induces the forgetful pseudofunctorH : DMod → CMod .

Proposition 5.2. There is a monoidal equivalence Z(H) w ZC(D).
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Proof. Let us define the functorF : ZC(D)→ Z(H), as follows. For any (V, γ) ∈
ZC(D) set F(V, γ) = (W V , τ). Here, for eachM ∈ DMod , W V

M : M→M is
the C-module functor given by

W V
M(M) = V⊗M.

The isomorphisms endowing the functor W V
M structure of C-module functor are

cX,M : W V
M(X⊗M)→ X⊗W V

M(M),

given by the following composition:

W V
M(X⊗M) = V⊗(X⊗M)

m−1
V,X,M−−−−−→ (V ⊗X)⊗M

γ−1
X ⊗idM−−−−−−→ (X ⊗ V )⊗M

mX,V,M−−−−−→ X⊗(V⊗M) = X⊗W V
M(M),

for any X ∈ C,M ∈M. It follows that (W V
M, c) is a C-module functor.

Now, we shall explain the definition of τ . TakeM,N ∈ DMod , and (G, d) :
M→N a D-module functor. Define

τ(G,d) : W V
N ◦G→ G ◦W V

M,

(τ(G,d))M : V⊗G(M)→ G(V⊗M), (τ(G,d))M = d−1
V,M ,

for any M ∈M. Then, τ(G,d) is a C-module natural isomorphism.
Now, we shall define the functor F on morphisms. Let (V, γ), (V ′, γ′) be

objects in ZC(D) and f : (V, γ) → (V ′, γ′) be an arrow in ZC(D). Define
F(f) : (W V , τ) → (W V ′ , τ ′), as follows. For any D-module M, define the
C-module natural transformation

F(f)M : W V
M →W V ′

M , (F(f)M)M = f⊗idM ,

for any M ∈M.

Now, we shall define a functor G : Z(H) → ZC(D), that will be the inverse of
F . Any objectX ∈ C induces aD-module functor JX : D → D, JX(V ) = V ⊗X .

Let (W, τ) be an object in Z(H). For any D-module categoryM, WM :M→
M is a C-module functor. We shall denote it by WM = (WM, c

M). In particular,
WD(1) ∈ D. We have natural C-module isomorphisms (τD,D)JX : WD ◦ JX

w−→
JX ◦WD. In particular, we have isomorphisms

((τD,D)JX )1 : WD(X)
w−→WD(1)⊗X.

Using that WD has a C-module structure, there is a natural isomorphism

cDX,1 : X ⊗WD(1)→WD(X).

Let γ be the natural isomorphism defined as

γX : X⊗WD(1)→WD(1)⊗X, γX = ((τD,D)JX )1 ◦ cX,1.
The natural transformation γ satisfies 5.11 since (τD,D)JX is a C-module natu-
ral transformation. Then (WD(1), γ) ∈ ZC(D). Whence, we define G(W, τ) =
(WD(1), γ).



GROUP ACTIONS ON 2-CATEGORIES 23

Let f : (W, τ) → (W ′, τ ′) be a morphism in Z(H), then (fD)1 is a morphism
in ZC(D) since fD is a C-module natural transformation. Set G(f) = (fD)1. It
follows straightforward that G is well-defined and that F and G are inverse of each
other. �

The center of the 2-category of representations of a tensor category C coincides
with the Drinfeld center of C.

Corollary 5.3. Z(CMod ) w Z(C).
Proof. Take D = C andH : CMod → CMod the identity pseudofunctor. �

5.6. Group actions coming from graded tensor categories. Throughout this
section G will denote a finite group. Assume that C is a finite tensor category
and D = ⊕g∈GDg is a G-graded extension of C. Set D1 = C. We shall further
assume that D is a strict monoidal category.

In this section we aim to prove the following result.

Theorem 5.4. There is an action of G on the 2-category CMod op. Moreover, there
are 2-equivalences

(CMod op)G ' DMod , (CMod op
e )G ' DMod e.

Proof. First, let us define an action of G on the 2-category B = CMod op. For
any g ∈ G define the 2-functors Fg : B → B as follows. For any left C-module
categoryM, set Fg(M) = FunC(Dg,M). IfM,N are left C-module categories,
and G :M→N is a C-module functor, then

Fg(G) : FunC(Dg,M)→ FunC(Dg,N ), Fg(G)(H) = G ◦H.
Now, we shall define the pseudonatural equivalences χg,h : Fg ◦ Fh → Fgh, for
any g, h ∈ G. For any left C-module categoryM

(χ0
g,h)M : FunC(Dgh,M)→ FunC(Dg,FunC(Dh,M)),

(χ0
g,h)M(H)(X)(Y ) = H(X⊗Y ),

for any H ∈ FunC(Dgh,M), X ∈ Cg, Y ∈ Ch. It follows that (χ0
g,h)M is a well-

defined C-module functor. For any C-module functor G : M → N we have that
Fg(Fh(G)) ◦ (χ0

g,h)M = (χ0
g,h)N ◦ Fgh(G), whence, we can define

(χg,h)G : Fg(Fh(G)) ◦ (χ0
g,h)M → (χ0

g,h)N ◦ Fgh(G)

to be the identities. Since χgh,f ◦ (χg,h⊗id Ff ) = χg,hf ◦ (id Fg⊗χh,f ), for any
f, g, h ∈ G, then we can choose ωg,h,f to be the identities.

Now, we shall define a biequivalence Φ : BG → DMod . Assume (M, U,Π) is
an equivariant 0-cell. This means that we have C-module functors

Ug : FunC(Dg,M)→M,

together with C-module natural isomorphisms

Πg,h : Ug ◦ Fg(Uh) ◦ (χ0
g,h)M → Ugh,

satisfying the required axioms. Recall the definition of the functors GX,M given in
Section 5.4.
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Claim 5.1. Let be g, h ∈ G. If X ∈ Cg, Y ∈ Ch, then, there exists a family of
C-module natural isomorphisms

βX,Y,M : Fg(Uh)
(
(χ0
g,h)M(GX⊗Y,M )

)
→ GX,Uh(GY,M ).

Proof of Claim. If Z ∈ Cg, then

GX,Uh(GY,M )(Z) = (∗Z⊗X)⊗Uh(GY,M ),

Fg(Uh)
(
(χ0
g,h)M(GX⊗Y,M )

)
(Z) = Uh(GX⊗Y,M (Z⊗−)).

Note that there are module natural isomorphisms

GX,M (Z⊗−) ' ∗Z⊗GX,M , X⊗GY,M ' GX⊗Y,M .

Combining these two isomorphisms we get that

GX⊗Y,M (Z⊗−) ' (∗Z⊗X)⊗GY,M .

Using this isomorphism and the fact that Uh is a C-module functor, we get that

Uh(GX⊗Y,M (Z⊗−)) ' (∗Z⊗X)⊗Uh(GY,M ),

obtaining the desired isomorphisms. �

We define Φ(M, U,Π) = M as Abelian categories. We must endowed the
categoryM with a structure of D-module category. If X ∈ Cg, M ∈M set

X⊗M = Ug(GX,M ).

We have to define associativity isomorphisms

mX,Y,M : (X⊗Y )⊗M → X⊗(Y⊗M).

Suppouse that X ∈ Cg, Y ∈ Ch, M ∈M. Then

(X⊗Y )⊗M = Ugh(GX⊗Y,M ), X⊗(Y⊗M) = Ug(GX,Uh(GY,M )).

Hence, we define

mX,Y,M = Ug(βX,Y,M )(Πg,h)−1
GX⊗Y,M

.

Axiom (5.4) is equivalent, in this case, to axiom (4.1). It is clear that Φ is a biequiv-
alence and restricted to the category of exact modules (CMod op

e ) gives the second
biequivalence. �

6. BRAIDED G-CROSSED TENSOR CATEGORIES FROM G ACTIONS ON
2-CATEGORIES

In this section actions of groups on 2-categories are assumed to be strict. This
does not lead to any loss of generality, since, in view of Theorem 3.1, all definitions
and statements remain valid for non-strict actions after insertion of the suitable
isomorphisms.
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6.1. Strict braided G-crossed tensor categories. Braided G-crossed fusion cat-
egories play the same role in homotopy quantum field theory that braided fusion
categories in the topological quantum field theory, see [25, 26, 27].

Definition 6.1. LetG be a groups and C a strict monoidal category. A strict braided
G-crossed structure on C consist of the following data:

(1) a decomposition C =
∐
g∈G Cg (coproduct of categories) such that

• 1 ∈ Ce,
• Cg ⊗ Ch ⊂ Cgh for all g, h ∈ G,

(2) a G-indexed family of strict monoidal functor g∗ : C → C, such that
• g∗(Ch) ⊂ Cghg−1 , g∗h∗ = (gh)∗, e∗ = IdC ,

(3) a family of natural isomorphisms

C × Cg
g∗×IdC // C × Cg

⊗

��
Cg × C

flip

OO

⊗
// C

⇓c

such that
• g∗(cX,Z) = cg∗(X),g∗(Z)

• cX,Y⊗Z = (id Y⊗cX,Z) ◦ (cX,Y⊗id Z)
• cX⊗Y,Z = (cX,h∗(Z)⊗id Y ) ◦ (idX⊗cY,Z)

for all X ∈ C, Y ∈ Cg, Z ∈ Ch, g, h ∈ G.

Even when the definition of strict braided G-crossed monoidal category is too
restrictive, every weak braided G-crossed category is equivalent to a strict braided
G-crossed category, see [7].

6.2. Center of a G-action. Let G be a group acting strictly on a 2-category B,
where Fg : B → B, denotes the associated 2-functors. We shall introduce a G-
graded monoidal category equipped with an action of G.

6.2.1. The G-graded monoidal category ZG(B). Define the strict monoidal cat-
egory ZG(B) =

∐
g∈GZG(B)g, where ZG(B)g = Pseu-Nat(IdB, Fg) and the

product induced by the tensor product of pseudonatural transformation defined in
(1.1). In other words, if X ∈ ZG(B)g and Y ∈ ZG(B)h, we define X ⊗ Y ∈
ZG(B)gh = Pseu-Nat(IdB, Fgh) as folows: for any object A ∈ B, (X ⊗ B)A =
XFh(A) ◦ YA and for any 1-cell W ∈ B(A,B)
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A

(X⊗Y )A

��

YA

��

W // B

YB

��
(X⊗Y )B

��

Fh(A)
Fh(W ) //

XFh(A)

��

Fh(B)

Fh(B)

��

⇓YW

Fgh(A)
XFh(W ) // Fgh(B)

⇓XFh(X)

The unit object is 1IdB ∈ Pseu-Nat(IdB, IdB).

6.2.2. The action of G on ZG(B). Given X ∈ ZG(B)h and g ∈ G, we define
g∗(X) ∈ ZG(B)ghg−1 as follows: for objects A ∈ B, g∗(X)A = Fg(XFg−1 (A))

and for any 1-arrow W : A→ B

A

Fg(XF
g−1 (A))

��

W // B

Fg(XF
g−1 (B))

��
Fghg−1(A)

Fghg−1 (W )
// Fghg−1(B).

⇓Fg(XF
g−1 (W ))

Analogously, the functor g∗ is defined for morphism in ZG(B).

6.2.3. The G-braiding of ZG(B). Let X ∈ ZG(B)g and Y ∈ ZG(B)h. By the
definition of pseudo-natural transformation we have

A

XA

��

YA // Fh(A)

XFh(A)

��
Fg(A)

Fg(YA) // Fgh(A),

⇓XYA

but (X ⊗ Y )A = XFh(A) ◦ YA and (g∗(Y )⊗X)A = Fg(YA) ◦XA, then the XYA

define natural isomorphism cX,Y := XYA : X ⊗ Y → g∗(Y )⊗X .

Theorem 6.2. Let G be a groups with a strcit action on a 2-categoy B. Then the
monoidal category ZG(B) defined in 6.2.1 is a strict braided G-crossed monoidal
category with action defined in 6.2.2 and G-braiding defined in 6.2.3. Moreover,
the braided category ZG(B)e is exactly the Drinfeld center of B.

Proof. Since the action of G on B is strict, it follows by definition the equations
• g∗(cX,Z) = cg∗(X),g∗(Z)

• cX,Y⊗Z = (id Y⊗cX,Z) ◦ (cX,Y⊗id Z)
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• cX⊗Y,Z = (cX,h∗(Z)⊗id Y ) ◦ (idX⊗cY,Z).
�

6.3. Example. Let D = ⊕g∈GDg be a faithfully G-graded fusion category.
Since every Dg is a De-bimodule category, they define 2-functors

Fg(−) := Dg �De (−) : De −Mod→ De −Mod,

the tensor products ⊗ : Dg × Dh → Dgh induce pseudo-natural equivalences
χg,h : Fg ◦ Fh → Fgh and the associator of D induce invertible modifications
ωg,h,f : χgh,f ◦ (χg,h⊗id Ff ) ⇒ χg,hf ◦ (id Fg⊗χh,f ), that defines an action of G
on De −Mod. See [4] for details.

In this case the category ZG(DeMod )g is just FunDe−De(De,Dg), the category
of De-bimodule functors and natural transformations from De to Dg. The cate-
gory ZG(DeMod )g is canonically equivalent to the category ZDe(Dg) defined in
[8, Definition 2.1] (use that FunDe(De,Dg)→ Dg, F 7→ F (1) is a category equiv-
alence). Then the G-graded category ZG(DeMod ) is equivalent to the monoidal
category ZD(De). The braided G-crossed category ZG(DeMod ) is equivalent to
the G-crossed category ZD(De) defined in [8].

7. THE CENTER OF THE EQUIVARIANT 2-CATEGORY

This section is devoted to prove the following result. Let G be a finite group
acting on a 2-category B. Recall the forgetful 2-functor Φ : BG → B described in
Lemma 4.3.

Theorem 7.1. The groupG acts onZ(Φ) by monoidal autoequivalences, and there
is a monoidal equivalence

Z(BG) ' Z(Φ)G.

As a consequence, we have the following result.

Corollary 7.2. [8, Thm. 3.5] Let D = ⊕g∈GCg be a faithfully graded tensor
category, with C = C1. There is an action of the group G on the relative center
ZC(D) and a monoidal equivalence

Z(D) ' ZC(D)G.

Proof. LetH : DMod → CMod be the forgetful pseudofunctor. Then

Z(D) ' Z(DMod ) ' Z(
(
CMod op

)G
) ' Z(H)G ' ZC(D)G

The first equivalence follow from Corollary 5.3, the second one is Theorem 5.4,
and the last one is Proposition 5.2. �

For the rest of this section we shall use the notation introduced in Section 4.1.
There is no harm in assuming that the action is unital and strict, see definitions
2.2, 2.3. By Proposition 1.2, we can assume that any invertible 1-cell is an isomor-
phism. In particular, if (A,U,Π) is an equivariant 0-cell, for any g ∈ G, the 1-cell
Ug is invertible. Thus, we can choose a 1-cell U∗g such that

Ug ◦ U∗g = IFg(A), U∗g ◦ Ug = IA.
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If X,Y are 1-cells, we shall sometimes denote X ◦ Y = XY , as a space saving
measure.

7.1. A group action on Z(Φ). For any g ∈ G, we shall define tensor autoequiva-
lences Lg : Z(Φ)→ Z(Φ) such that they define an action of G on Z(Φ). First, let
us explicitly describe objects in Z(Φ). An object (X,σ) ∈ Z(Φ) consists of

X = {X(A,U,Π) ∈ B(A,A) a 1-cell, (A,U,Π) ∈ Obj (BG)},

σ = {σ(θ,θg) : X
(Ã,Ũ ,Π̃)

◦ θ ⇒ θ ◦X(A,U,Π) isomorphisms 2-cells inBG},

where (θ, θg) ∈ BG((A,U,Π), (Ã, Ũ , Π̃)) is an equivariant 1-cell. The isomor-
phisms σ(θ,θg) satisfy (1.4). If (X,σ), (Y, τ) ∈ Z(Φ), a morphism f : (X,σ) →
(Y, τ) is a collection of 2-cells in B(A,A)

f(A,U,Π) : X(A,U,Π) ⇒ Y(A,U,Π),

such that for any equivariant 1-cell (θ, θg) ∈ BG((A,U,Π), (Ã, Ũ , Π̃))(
id θ ◦ f(A,U,Π)

)
σ(θ,θg) = τ(θ,θg)

(
f

(Ã,Ũ ,Π̃)
◦ id θ

)
.

Lemma 7.3. Suppose g, h ∈ G and (A,U,Π) is an equivariant 0-cell. There are
isomorphisms 2-cells

εg,h,(A,U,Π) : U∗g ◦ Fg(U∗h)⇒ U∗gh

such that

(7.1) εg,h,(A,U,Π) ◦Πg,h = id IA , Πg,h ◦ εg,h,(A,U,Π) = id IFgh(A)
,

(7.2)
εgh,f,(A,U,Π)

(
εg,h,(A,U,Π) ◦ id Fgh(U∗f )

)
= εg,hf,(A,U,Π)

(
id U∗g ◦ Fg(εh,f,(A,U,Π))

)
,

for any g, h, f ∈ G.

Proof. Take εg,h,(A,U,Π) = id U∗g ◦Fg(U∗h) ◦Π−1
g,h ◦ id U∗gh . Equation (7.2) follow from

(4.1). �

For any g ∈ G, let us define the functors Lg : Z(Φ) → Z(Φ), Lg(X,σ) =
(Xg, σg). Where, for any equivariant 0-cell (A,U,Π)

Xg
(A,U,Π) = U∗g ◦ Fg(X(A,U,Π)) ◦ Ug.

Remark 7.4. As a saving space measure, if (A,U,Π), (Ã, Ũ , Π̃) are equivariant 0-
cells, we are going to denote X = X(A,U,Π), X̃ = X

(Ã,Ũ ,Π̃)
. Also, we shall denote

εg,h = εg,h,(A,U,Π) and ε̃g,h = ε
g,h,(Ã,Ũ ,Π̃)

when no confusion arises.

If (θ, θg) ∈ BG((A,U,Π), (Ã, Ũ , Π̃)) is an equivariant 1-cell, then

σg(θ,θg) =
(
1
Ũ∗g
◦ θg ◦ 1U∗gFg(X)Ug

)(
1
Ũ∗g
◦ Fg(σ(θ,θg)) ◦ 1Ug

)(
1
ŨgFg(X̃)

◦ θ−1
g

)
.

If f : (X,σ)→ (Y, τ) is a morphism in Z(Φ), then

Lg(f)(A,U,Π) = id U∗g ◦ Fg(f(A,U,Π)) ◦ id Ug .

The proof of the next result follows straightforwardly.
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Proposition 7.5. The functors Lg : Z(Φ) → Z(Φ) are well-defined monoidal
functors. �

Now, for any g, h ∈ G, we shall define monoidal natural isomorphisms νg,h :
Lg ◦Lh → Lgh satisfying (5.1) and (5.2). Take (X,σ) ∈ Z(H), so we must define
an arrow

(νg,h)(X,σ) : Lg ◦ Lh(X,σ)→ Lgh(X,σ).

For each equivariant 0-cell (A,U,Π) we define the map(
(νg,h)(X,σ)

)
(A,U,Π)

: U∗gFg(U
∗
h)Fgh(X(A,U,µ))Fg(Uh)Ug → UghFgh(X(A,U,µ))U

∗
gh,

(
(νg,h)(X,σ)

)
(A,U,µ)

= εg,h ◦ id Fgh(X(A,U,µ)) ◦Πg,h.

Proposition 7.6. For any g, h, f ∈ G, the following assertions holds.

(i) νg,h : Lg ◦ Lh → Lgh are well-defined natural isomorphisms in Z(Φ).
(ii) νg,h : Lg ◦ Lh → Lgh are monoidal natural transformations.

(iii) For any g, h, f ∈ G and any (X,σ) ∈ Z(Φ), the following equation holds

(7.3) (νgh,f )(X,σ)(νg,h)Lf (X,σ) = (νg,hf )(X,σ)Lg((νh,f )(X,σ)).

Proof. (i). We must verify that (νg,h)(X,σ) are morphisms in the category Z(Φ),
that is, equation
(7.4)(

id θ ◦
(
(νg,h)(X,σ)

)
(A,U,µ)

)
((σh)g)(θ,θg) = σgh(θ,θg)

((
(νg,h)(X,σ)

)
(Ã,Ũ ,Π̃)

◦ id θ
)

is fulfilled for any equivariant 1-cell (θ, θg) ∈ BG((A,U,Π), (Ã, Ũ , Π̃)). The left
hand side of (7.4) equals to

=
(
id θ ◦ εg,h ◦ id Fgh(X) ◦Πg,h

)(
id
Ũ∗g
◦ θg ◦ id U∗gFg(U∗h)Fgh(X)Fg(Uh)Ug

)
(
id
Ũ∗g
◦ Fg(σh(θ,θg)) ◦ id Ug

)(
id
Ũ∗g
◦ θg ◦ id U∗gFg(U∗h)Fgh(X)Fg(Uh)Ug

)
=
(
id θ ◦ εg,h ◦ id Fgh(X) ◦Πg,h

)(
id ◦ θg ◦ id

)(
id
Ũ∗gFg(Ũ∗h)

◦ Fg(θh) ◦ id
)

(
id
Ũ∗gFg(Ũ∗h)

◦ Fgh(σ(θ,θg)) ◦ id Fg(Uh)Ug

)(
id
Ũ∗gFg(Ũ∗h)

◦ Fg(θ−1
h ) ◦ id Ug

)
(
id
Ũ∗g
◦ θg ◦ id U∗gFg(U∗h)Fgh(X)Fg(Uh)Ug

)
=
(
id ◦ εg,h ◦ id

)(
id
Ũ∗gFg(Ũ∗h)

◦ (id
Fg(Ũh)

◦ θg)(Fg(θh) ◦ id Ug) ◦ id U∗gFg(U∗h)Fgh(X)Ugh

)
(
id
Ũ∗gFg(Ũ∗h)

◦ Fgh(σ(θ,θg)) ◦ id Ugh
)

(
id
Ũ∗gFg(Ũ∗h)Fgh(X̃)

◦ (id Fgh(θ) ◦Πg,h)(Fg(θ
−1
h ) ◦ id Ug)(id

Fgh(Ũh)
◦ θ−1

g )
)

=
(
id ◦ εg,h ◦ id

)(
id
Ũ∗gFg(Ũ∗h)

◦ (id
Fg(Ũh)

◦ θg)(Fg(θh) ◦ id Ug) ◦ id
)

(
id
Ũ∗gFg(Ũ∗h)

◦ Fgh(σ(θ,θg)) ◦ id Ugh
)(

id ◦ θ−1
gh (Π̃g,h ◦ id θ)

)
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The second equation follows from the definition of σh(θ,θg), the fourth equality
follows from (4.2). The right hand side of (7.4) equals to

=
(
id
Ũ∗gh
◦ θgh ◦ id U∗ghFgh(X)Ugh

)(
id
Ũ∗gh
◦ Fgh(σ(θ,θg)) ◦ id Ugh

)
(
id
Ũ∗ghFgh(X̃)

◦ θ−1
gh

)(
ε̃g,h ◦ id

Fgh(X̃)
◦ Π̃g,h ◦ id θ

)
=
(
ε̃g,h ◦ θgh ◦ id U∗ghFgh(X)Ugh

)(
id U∗gFg(U∗h) ◦ Fgh(σ(θ,θg)) ◦ id Ugh

)
(
id
U∗gFg(U∗h)Fgh(X̃)

◦ θ−1
gh (Π̃g,h ◦ id θ)

)
.

It follows from Equation (7.1) that both sides are equal.

(ii). Let (X,σ), (Y, τ) be objects in Z(Φ). Since the functors Lg are strict, this
means that Lg((X,σ)⊗(Y, τ)) = Lg(X,σ)⊗Lg(Y, τ), we must prove that

(7.5) (νg,h)(X,σ)⊗(Y,τ) = (νg,h)(X,σ)⊗(νg,h)(X,σ).

Let (A,U,Π) be an equivariant 0-cell. The left hand side of (7.5) evaluated in
(A,U,Π) equals to

εg,h ◦ id Fgh(X(A,U,Π)) ◦Πg,h ◦ εg,h ◦ id Fgh(Y(A,U,Π)) ◦Πg,h.

The right hand side of (7.5) evaluated in (A,U,Π) equals to

εg,h ◦ id Fgh(X(A,U,Π)◦Y(A,U,Π)) ◦Πg,h.

It follows from (7.1) that both sides are equal.

(iii). Let (A,U,Π) be an equivariant 0-cell. The left hand side of (7.3) evaluated
in (A,U,Π) is equal to

=
(
εgh,f ◦ id Fghf (X) ◦Πgh,f

)(
εg,h ◦ id Fgh(U∗fXUf ) ◦Πg,h

)
= εgh,f (εg,h ◦ id Fgh(U∗f )) ◦ id Fghf (X) ◦Πgh,f (id Fgh(Uf ) ◦Πg,h).

The right hand side of (7.3) evaluated in (A,U,Π) is equal to

=
(
εg,hf ◦ id Fgh(X) ◦Πg,hf

)(
id U∗g ◦ Fg(εh,f ) ◦ id Fghf (X) ◦ Fg(Πh,f ) ◦ id Ug

)
= εg,hf (id U∗g ◦ Fg(εh,f )) ◦ id Fghf (X) ◦Πg,hf (Fg(Πh,f ) ◦ id Ug).

Now, that both expressions are equal follow by (7.2) and (4.1). �

7.1.1. Proof of Theorem 7.1. Let us first describe an object in the equivariantiza-
tion of the category Z(Φ). An object in Z(Φ)G is a collection ((X,σ), s) where
(X,σ) ∈ Z(Φ), and sg : Lg(X,σ) → (X,σ) is a morphism in the category, for
any g ∈ G. This means, that X(A,U,Π) ∈ B(A,A) is a 1-cell, for any equivariant
0-cell (A,U,Π), and for any equivariant 1-cell (τ, τg) ∈ BG((A,U,Π), (Ã, Ũ , Π̃))
there is an isomorphism σ(τ,τg) : X

(Ã,Ũ ,Π̃)
◦ τ → τ ◦X(A,U,Π) such that equation

(1.4) is fulfilled. Also, for any g ∈ G and any equivariant 0-cell (A,U,Π) there
are morphisms

(sg)(A,U,Π) : U∗gFg(X(A,U,Π))Ug → V(A,U,Π),
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such that

(7.6)
(
id τ ◦ (sg)(A,U,Π)

)
σg

(τ,τ1)
= σ(τ,τ1)

(
(sg)(Ã,Ũ ,Π̃)

◦ id τ
)
,

(7.7) (sgh)(A,U,Π)(νg,h)(A,U,Π) = (sg)(A,U,Π)Lg((sh)(A,U,Π)),

for any equivariant 0-cells (A,U,Π), (Ã, Ũ , Π̃), any equivariant 1-cell (τ, τg) ∈
BG((A,U,Π), (Ã, Ũ , Π̃)), and any g, h ∈ G. Equation (7.6) follows from the fact
that sg : Lg(V, σ) → (V, σ) is a morphism in the category Z(Φ), and equation
(7.7) follows from (5.3).

Define the functor Ψ : Z(Φ)G → Z(BG) as follows. Let ((X,σ), s) ∈ Z(Φ)G,
then Φ((X,σ), s) = (V, σ̃). For any equivariant 0-cell (A,U,Π), V(A,U,Π) must be
an equivariant 1-cell in the category BG((A,U,Π), (A,U,Π)). Define V(A,U,Π) =

(X(A,U,Π), θ
(A,U,Π)
g ), where

θ(A,U,Π)
g : Fg(X(A,U,Π)) ◦ Ug ⇒ Ug ◦X(A,U,Π),

θ(A,U,Π)
g = id Ug ◦ (sg)(A,U,Π).

(7.8)

If (τ, τg) ∈ BG((A,U,Π), (Ã, Ũ , Π̃)) is an equivariant 1-cell, then

σ̃(τ,τg) : (X
(Ã,Ũ ,Π̃)

, θ(Ã,Ũ ,Π̃)
g ) ◦ (τ, τg)⇒ (τ, τg) ◦ (X(A,U,Π), θ

(A,U,Π)
g ),

σ̃(τ,τg) = σ(τ,τg).

Claim 7.1. The following statements hold.

(i) V(A,U,Π) = (X(A,U,Π), θ
(A,U,Π)
g ) ∈ BG, for any equivariant 0-cell (A,U,Π).

(ii) The object (V, σ̃) belongs to the categoryZ(BG). In particular, the functor
Ψ is well-defined.

(iii) The functor Ψ : Z(Φ)G → Z(BG) is an equivalence of categories, and it
has a monoidal structure.

Proof of Claim. (i). We must check that the maps θ(A,U,Π)
g ) satisfy (4.2). In this

case, we must prove that for any g, h ∈ G(
Πg,h ◦ idX(A,U,Π)

)(
id Fg(Uh) ◦ θ(A,U,Π)

g

)(
Fg(θ

(A,U,Π)
h ) ◦ id Ug

)
is equal to

θ
(A,U,Π)
gh

(
id Fgh(X(A,U,Π)) ◦Πg,h

)
.

Using the definition of θ(A,U,Π)
g , we get that the first expression is equal to(

Πg,h ◦ idX(A,U,Π)

)(
id Fg(Uh)Ug ◦ (sg)(A,U,Π)

)(
id Fg(Uh) ◦ Fg((sh)(A,U,Π)) ◦ id Ug

)
=
(
Πg,h ◦ idX(A,U,Π)

)(
id Fg(Uh)Ug ◦ (sg)(A,U,Π)(id U∗g ◦Fg((sh)(A,U,Π))) ◦ id Ug

)
=
(
Πg,h ◦ idX(A,U,Π)

)(
id Fg(Uh)Ug ◦ (sgh)(A,U,Π)(νg,h)(A,U,Π)

)
=
(
id Ugh ◦ (sgh)(A,U,Π)

)(
Πg,h ◦ (νg,h)(A,U,Π)

)
= θ

(A,U,Π)
gh

(
id Fgh(X(A,U,Π)) ◦Πg,h

)
.

The second equality follows from (7.7), and the last one follows from (7.1).
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(ii). Since σ̃(τ,τg) = σ(τ,τg) for any equivariant 1-cell (τ, τg), then σ̃ satisfy (1.4).
We must verify only that σ̃(τ,τg) is an equivariant 2-cell, that is (4.3) is satisfied. To

simplify the notation, let us denote θ(A,U,Π)
g = θg, θ

(Ã,Ũ ,Π̃) = θ̃g. In this particular
case, using the composition of equivariant 1-cells given by (4.4), we have to prove
that
(7.9)(
1
Ũg
◦σ(τ,τg)

)(
θ̃g ◦ 1τ

)(
1
Fg(X̃)

◦ τg
)

=
(
τg ◦ 1X

)(
1Fg(τ) ◦ θg

)(
Fg(σ(τ,τg)) ◦ 1Ug

)
.

The left hand side of equation (7.9) is equal to

=
(
1
Ũg
◦ σ(τ,τg)

)(
1
Ũg
◦ (sg)(A,U,Π)

)(
1
Fg(X̃)

◦ τg
)

=
(
1
Ũg
◦ (1τ ◦ (sg)(A,U,Π))σ

g
(τ,τg)

)(
1
Fg(X̃)

◦ τg
)

=
(
1
Ũg
◦ (sg)(A,U,Π)

)(
τg ◦ 1U∗gFg(X)Ug

)(
Fg(σ(τ,τg)) ◦ 1Ug

)
=
(
τg ◦ 1X

)(
1Fg(τ) ◦ θg

)(
Fg(σ(τ,τg)) ◦ 1Ug

)
.

The first equality follows by using the definition of θ(A,U,Π)
g given in (7.8), the

second equality follows from (7.6), and the third one follows from the definition of
σg(τ,τg).

(iii). The fact that Ψ is an equivalence follows easily. A direct computation
shows that

Ψ
(
((X,σ), s)⊗((Y, τ), t)

)
= Ψ((X,σ), s)⊗Ψ((Y, τ), t),

for any pair of objects ((X,σ), s), ((Y, τ), t) ∈ Z(Φ)G. �
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