GROUP ACTIONS ON 2-CATEGORIES
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ABSTRACT. We study actions of discrete groups on 2-categories. The moti-
vating examples are actions on the 2-category of representations of finite ten-
sor categories and their relation with the extension theory of tensor categories
by groups. Associated to a group action on a 2-category, we construct the 2-
category of equivariant objects. We also introduce the G-equivariant notions of
pseudofunctor, pseudonatural transformation and modification. Our first main
result is a coherence theorem for 2-categories with an action of a group. For
a 2-category BB with an action of a group GG, we construct a braided G-crossed
monoidal category Z¢(B) with trivial component the Drinfeld center of B. We
prove that, in the case of a G-action on the 2-category of representation of a ten-
sor category C, the 2-category of equivariant objects is biequivalent to the module
categories over an associated G-extension of C. Finally, we prove that the center
of the equivariant 2-category is monoidally equivalent to the equivariantization
of a relative center, generalizing results obtained in [8].

INTRODUCTION

The theory of 2-categories appears in a natural way in diverse contexts. For
example, it was used by Rouquier to “categorify” certain algebraic objects [23]
and appears in topological field theories [6], [20]. The theory of representations of
2-categories has been initiated in a series of papers [15, 16, 17].

Our motivation for the study of 2-categories comes from the theory of tensor
categories. For a tensor category C, a representation of C, or C-module category, is
a category M equipped with an associative action C x M — M satisfying certain
conditions. Given two C-module categories M, N, the category Func(M,N) is
the category whose objects are C-module functor between M and N, and mor-
phisms are C-module natural transformations. The 2-category of (left) C-modules
c¢Mod has as O-cells C-module categories, 1-cells C-module functors between them
and 2-cells are C-module natural transformations. This 2-category is a strong in-
variant of the tensor category C.

Given a 2-category B and a 2-monad T : B — B on B, in [18], the notion of
the equivariantization 2-category BT was presented. The equivariantization of a
2-category by a group was studied later in [13].

One of the purposes of the paper is to explicitly describe an action of a group G
on a 2-category 3, and describe all ingredients of the resulting equivariantization
2-category BE. An action of a group G on a 2-category B consists of
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e a family of pseudofunctors Iy, : B — B, g € G,
e pseudonatural equivalences x4 : Fy o Fy, — Fyp,
e invertible modifications

Wy hf * Xgh.f © (Xgn®1d £;) = Xgnf © (id £,®Xn,1),

for any g, h, f € G, satisfying certain axioms. We also prove a coherence theorem
for group action, stating that there exists another equivalent action of G on B, such
that all pseudofunctors £y, involved in the group action are 2-functors, F; o F}, =
Fyn, and x4, wg p, 5 are all the identity. As an application of the coherent theorem
we prove that associated to every action of group GG on a 2-category B there is
a braided G-crossed monoidal category Z¢(B) such that the trivial component is
Z(B), the Drinfeld center of 5.

An important example comes from the theory of tensor categories. We show
that, if D = @©4ce Dy is a G-graded tensor category, and D1 = C, there is an action
of the group G acts on ¢Mod, the 2-category of representations of C, and there is
a biequivalence

(¢Mod °P)¢ ~ pMod.

The coherence theorem for group actions allows us to construct an associated strict
braided crossed monoidal category and to prove that there is a monoidal equiva-
lence between the center Z(B%) of the equivariantization and the monoidal cate-
gory of pseudonatural transformations of the forgetful pseudofunctor ® : B¢ — B.
When applied this result to the 2-category (¢Mod )G, we recover the results from
[8], on the center of graded tensor categories.

The contents of the paper are organized as follows. In Section 1 we recall the
basics of 2-categories. For any pseudofunctor H : B — B’ we define the monoidal
category Z(H) of pseudonatural transformations 7 : H — H. When H is the
identity pseudofunctor, Z(Id ) is a braided monoidal category called the center of
the 2-category.

In Section 2 we explicitly describe the notion of a group action on a 2-category.
Given two 2-categories B, B’ equipped with an action of a group G, we define the
notion of G-pseudofunctor between them. When a G-pseudofunctor is a biequiv-
alence, we say that B, 3’ are G-biequivalent. Also, we define the notions of G-
pseudonatural transformation and G-modifications. All these data, turns out to
be a 2-category, denoted by 2CatG(B, B'). The equivariant 2-category is B¢ =
2Cat“(Z, B), where 7 is the unit 2-category, where G acts trivially.

In Section 3 we prove that any 2-category with a group action is G-biequivalent
to another one where the action is strict. Section 4 is devoted to explicitly describe
all ingredients in the equivariant 2-category B .

In Section 5 we show an example coming from graded tensor categories. If D =
®geaDy is a G-graded tensor category, then the group G acts on the 2-category
p,Mod of left D;-modules. The resulting equivariant 2-category (p,Mod )< is
biequivalent to pMod . In Section 6 we define the G-braided center of a 2-category
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with an action of a group GG. In Section 7, we show that there is a monoidal equiva-
lence Z(BY) ~ Z(®)%, where ® : B — B is the forgetful pseudofunctor. When
applied to the example (cMod )¢, we recover results from [8].
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ICET, Secyt (UNC), Argentina. M.M. is grateful to the department of mathematics
at Universidad de los Andes, Bogotd, where part of this work was done, for the
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Facultad de Ciencias de la Universidad de los Andes, Convocatoria 2018-2019 para
la Financiacién de Programas de Investigacion, programa “Simetria T (inversién
temporal ) en categorias de fusiéon y modulares”.

1. 2-CATEGORIES

Let us briefly recall the notion of a 2-category. For more details, the reader is
referred to [14, 21]. For any 2-category B, the set of objects, also called 0-cells,
will be denoted by Obj(B). The composition in each hom-category B(A, B), that
is, the vertical composition of 2-cells, is denoted by juxtaposition fg, while the
symbol o is used to denote the horizontal composition functors

o: B(B,C) x B(A, B) — B(A,C).

The identity of a O-cell A is written as I4 : A — A. For any 1-cell X the identity
will be denoted id x or sometimes simply as 1x, when space saving is needed. For
any 2-category B, we shall denote by B°P the 2-category that is obtained from B
by reversing 1-cells.

Example 1.1. The unit 2-category Z has a single O-cell, named . The monoidal
category Z (%, x) is the unit monoidal category.

A pseudofunctor (F,a) : B — B, consists of a function F' : Obj(B) —
Obj(B’), a family of functors F' : B(A, B) — B/(F(A), F(B)), for each A, B €
Obj(B), a collection of isomorphisms ¢4 : Ip4)y — F(la), and a family of
natural isomorphisms

B(B,C) x B(A, B) ° B(A,0)

FxFi fa iF

B'(F(B), F(C)) x B'(F(A), F(B)) - B'(F(A), F(C)),

for O-cells A, B, C, subject to the usual axioms. A pseudofunctor is called unital
if F'(I4) = Ip(a), for any O-cell A, and the isomorphisms ¢4 are the identities.
A pseudofunctor is called a 2-functor if the associativity isomorphisms « are the
identities.
F
. ST .
If F, G are pseudofunctors, a pseudonatural transformation 3~ |, B/ consists

A 4
G

of a family of 1-cells X% : F(4) — G(A), A € Obj(B) and isomorphisms
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X%\L Ixx x%
G(A) ?XT (B )

natural in X € B(A, B), subject to the usual axioms. If x, 6 are pseudonatu-

F F
ral transformations, a modification from g~ |, pB'to B |9 B’ ,consists of a
\/ \J
G G

family of 2-cells w4 : X% — 991, such that the diagrams
xh 0 F(X) == G(X) o X

wBoidF(X)l lidw) o
0% o F(X) —2X- G(X) 0 6%

commute for all X € B(A, B). This modification will be denoted as w : x =
6. Given pseudofunctors F,G : B — B, we shall denote Pseu-Nat(F,G) the
category where objects are pseudonatural transformations from F' to G and arrows
are modifications.

A l-cell X € B(A, B) is called an equivalence if there exists a 1-cell Y €
B(B,A) suchthat X oY = Igpand Y o X = 4. We will say that an invertible
1-cell X is an isomorphism if there is X* € B(B, A) such that X o X* = Ip and
X* o X = I4. The next result will be useful later to simplify some proofs.

Proposition 1.2. Every 2-category (or bicategory) is biequivalent to a 2-category
where every equivalence 1-cell is an isomorphism.

Proof. The proof goes along the lines of [9, Theorem 1.4]. Since every category
is equivalent to a skeletal one. Every bicategory B is biequivalent to a locally
skeletal one B, that is, each of its hom-category is skeletal. Then in B’, every
1-cell equivalence is an isomorphism. By Street’s Yoneda lemma for bicategories
[22, p.117 ], the Yoneda embedding

B’ — Bicat(B',Cat) : A+ B°P(A, —),

is locally an equivalence. Therefore, B’ is biequivalent to B”; the full sub-2category
of Bicat(3'°P, Cat) determined by the contravariant representables. Since every
equivalence in B’ is an isomorphism, every equivalence in B” is an isomorphism
and B is biequivalent to B”. O

1.1. The tricategory of 2-categories. Given a pair of 2-categories B and B/, we
can define the functor 2-category, 2Cat(B, B'), whose 0-cells are pseudofunctors
B — B’, whose 1-cells are pseudonatural transformations, and whose 2-cells are
modifications. Given 2-categories 3, B and B”, we define a pseudofunctor

® : 2Cat(B',B") x 2Cat(B, B') — 2Cat(B,B"),
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called the tensor product. The tensor product at the level of pseudofunctors is the
composition. The tensor product of pseudonatural transformations is

GF
(1.1) (B’%B”)(B/%B’):(B@B”)
: ~—— S~ R )
led )2 G'F’

where
(B®a)a = Bria) o Glaa)
(B®a)x = (Br(x) o idgay))(idg o) oG(ax)).

Here, the isomorphisms constraints of the pseudofunctors have been omitted as a
space-saving measure. If 5’ : G — G’ and o/ : F — F’ are another pseudonatural
transformations and w : 8 — (3’ and W’ : @ — o are modifications, their tensor
product is defined as w ® W' : fRa — 'R/, (W @ W')a = wWpr(a) 0 G(W)), for
any O-cell A.

Ifa: F — F' and B : H — H' are pseudonatural transformations between
pseudofunctors F, F’ € 2Cat(B',B"), H, H' € 2Cat(3, B’), then there is a modi-

fication
a®V &/@B
Uea,s F'H'
1d$ /@H/
given by
(1.2) (cap)a = a/gj : F'(Ba) o aga) = apray o F(Ba).

This modification is called the comparison constraint.
The tensor product is associative only at the level of pseudofunctors, but not for
pseudonatural transformations. There exists an associativity constraint

(a®B)®y

N

KHG ‘U'aa,ﬁ,'y K/H/G/

a®(B®7)
for pseudonatural transformations o : K — K, 3 : H — H' andy : G — G'.
The modification
(@a,89) 4+ aprir(ay © G(Brray) © GF(74) = aprpi(ay 0 G(By(A) o F(ya))

is defined by (aq 5,,)a = L P oG2(Brr(a), F(74)). Tt is easy to see that a
satisfies the pentagonal identity.
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1.2. Finite tensor categories. A (strict) monoidal category is a 2-category with
one single O-cell. A finite tensor category over k is a finite k-linear abelian rigid
monoidal category C such that the tensor product functor ® : C x C — C is k-linear
in each variable. The reader is referred to [5].

Suppose C and D are strict tensor categories. A monoidal functor (F,§, ¢) :
C — D is a pseudofunctor between the corresponding 2-categories. Explicitly, it
consists of a functor /' : C — D, natural isomorphisms {xy : F(X)QF(Y) —
F(X®Y), X,Y € C, and isomorphism ¢ : 1 — F(1), satisfying certain axioms.
If (F, &, ), (F', &, ¢') are monoidal functors , a natural monoidal transformation
0:(F,&¢) — (F',¢, ¢) is a natural transformation 6 : F — F”, such that for
any pair of objects X, Y

(1.3) 0160 =¢', Oxevixy = Exy(Ox@0y).

1.3. The endomorphism category of a pseudofunctor. If B is a 2-category, the
monoidal category

Z(B) = ant(B, B) (Id B, Id 3)
is exactly the center of B, i.e., the obvious generalization of the center construction
of a monoidal category. See [19].

Let B, B’ be two 2-categories and (H,«) : B — B’ be a unital pseudofunctor.
Denote Z(H) = 2Cat(B,B')(H, H); the category of pseudonatural transforma-
tions of the pseudofunctor 7. This is a monoidal category with tensor product
described in the previous section. Explicitly, objects in Z(#) are pairs (V,0),
where

V ={V4 € B (H(A),H(A))1-cells, for any A € B},
o={ox:Vpo HAyB(X) — HA,B(X) o Vyu},

where, for any X € B(A, B), ox is a natural isomorphism 2-cell such that
(1.4)
OI, = idVA, (OzX7y @) idVA)O'XOy = (idH(X) o O’y)(UX o idH(y))(ide o OJX7y),
for any 0-cells A, B, C € B, and any pair of 1-cells X € B(C,B),Y € B(A,C).

If (V,o), (W, ) are two objects in Z(*), a morphism f : (V,0) — (W, 7) in
Z(H) is a collection of 2-cells f4 : V4 = W4, A € B such that
(15) (id’;-[(X)ofA)(TX :TX(fBOidH(X))a
for any 1-cell X € B(A, B). The category Z(#) has a monoidal product defined
as follows. Let (V,0), (W, 7) € Z(#) be two objects. Then (V,0)(W,7) =
(VeW, o®t), where for any O-cells A, B € B, and X € B(A, B)

(1.6) (VeoW)a=VioWy, (0®@7)x = (oxoidw,)(idy, oTx).

If(V,o),(V',o"), W, 7),(W',7") € Z(H) are objects, and f : (V,0) — (V',0’),
' (W), (W', 7') are morphisms in Z(H), then fof' : (V,o)@(V',0') —
(W, r)@(W’',7') is defined by

(fef)a= fao fi,
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for any 0-cell A. The unit (1,¢) € Z(H) is the object
1a=14, 1x=1idx,

for any O-cells A, B and any 1-cell X € B(A, B). The center Z(Id g) of the iden-
tity pseudofunctor Id3 : B — B is denoted as Z(B), and it coincides with the
definition presented in [19].

2. GROUP ACTIONS ON 2-CATEGORIES

Assume G is a group and B is a 2-category. We shall denote by G the 2-category
that has 0-cells the elements of the group G. For any pair g, h € G

the unit category, if g =h

Glg,h) = {@ it g+h.

Moreover, G is a monoidal 2-category, see [9]. Since 2Cat(B, B) is also a monoidal
2-category, we define an action of G on B as a weak monoidal homomorphism
(F,x,w, 1, K, Q) : G — 2Cat(B, B). See for example [9].

Explicitly, an action of G on a 2-category B consists of the following data:

A family of pseudofunctors F, : B — B, g € G,

pseudonatural equivalences (X n, Xg,h) :FyoFy — Fyp,g,h € G,
a pseudonatural equivalence ¢ : Id g — F1,

for any g, h, f € G invertible modifications

wgvhvf : Xghaf 0 (ngh®1d Ff) = Xg»hf o <1d Fg ®thf)7

Kg X1, © (L®id Fg> = id Fys Cg 1 Xg,10 (id Fg®b) = id Fy»

such that for any O-cell A

2.1) Lo a0 Folhip)alwgp)a =10 ), 0 (Co)rp(a),

(ids 0 (Fy(wn,rx)a)) (wonsk 0ida) (id o, ), 0 (wonp)m(a) =

(2.2) . : .
= ((Wg,h,fk)A oid 4)) (1d5 o] (Xg,h)x%k) ((wgh,f,k)A oid 6)7

for any g, h, f,k € G. Where,

d2 =1p,00 ypa 93=1n0, Hu a=1pr00 )4

id5 - 1(X2h.fk)f4’ 1d6 — 1(

Xg.h)FpFp(A)°

In equation (2.2), we are omitting the associativity isomorphisms of the pseudo-
functors Fy,. In the following diagrams we shall denote by g the pseudofunctor Fy,
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the composition of functors as juxtaposition and the tensor product of pseudonat-
ural transformations also by juxtaposition. Diagrammatically, we have modifica-
tions

o —— Xg,h®1? JR—

ghf gh f
1g®Xh,f‘/ Ywg n,f ngh,f

ghf Y, ghf,

such that the next diagrams are equal for all g, h, f, k € G,

- Xgh, ®R1+ -
(2.3) gh F R IR ghf k
®R1+R1+ 1+ :
- / Yewg n, @15 ng’y Xontk
__ 7 15®xn, 1% __Z _
GhTE it Ghfk Yeogn ok ghfk
17®
\ Vlg®wn, 1.k y\hﬁk /
15®17®x ¢,k Xg,hfk
ghfk ghfk
9 f 15®Xh, & g f
— = Xgh, f®lg 71
gh [k ghf k
Xg,h®1F®17 15n®X 1k Xghf,k
Ywgn, 1.k
ghfk Yexg poxs gh fk o ghfk
19@% %ﬂc Yok A
ghfk g hfk
f 15®Xnh, fx g f

We say that a group G acts trivially on B if the weak monoidal homomorphism
(F,x,w,t,k,() : G — 2Cat(B, B) is the trivial one. This means that for any
g, h € G, the pseudofunctors F, are the identity, x, 5, are the identity pseudonatural
transformations and all the modifications are identities.

Remark 2.1. A definition of action over a topological group was given in [13]. S

Definition 2.2. An action (F, x,w,,k,¢) : G — 2Cat(B, B) is called unital if
F} is a unital pseudofunctor, 1 = Id 5, and x41 = id Fy = Xl,g0 kg = id = (4
for any g € G. A unital G-action will be denoted simply by (F, x,w).
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Definition 2.3. An action (F, x,w,t,k,¢) : G — 2Cat(B, B) is called strict if
each pseudofunctor F} is a 2-functor, and F; o Fj, = F},, and the pseudonatural
transformations 4 » and the modifications wy, ;, ¢ are the identities for any g, h, f €

G.

A similar argument as in [7, Proposition 3.1] applied in this case, allows us to
consider only unital actions. Assume that B, B’ are 2-categories equipped with
unital actions of a group G via

(F,x,w) : G — 2Cat(B,B), (F,X,®) : G — 2Cat(B, B).

Definition 2.4. A G-pseudofunctor between BB and B is a triple (H,~,II), where

e H : B — Bis a unital pseudofunctor, ~
e for any g € G, pseudonatural equivalences v, : H o F; — F, o H,
e invertible modifications

~ 1f®7g ~
fHg JgH
w@l/ \xlﬂ@m
Hfg vy, foH
M /
Hig
such that for all f,g,h € G
(2.4) Y1 = id'H, Hg71 = id'Yg = Hl,gv
(2.5)
FaHR
lf'yglﬁ fg 1f197h

FHgh V18T, fah

fahH
WlV \:-Lxg h 1#xg, hl?-t/ \f,glfﬁ_t
lf’ygh

Hfgh  Cyxen  [Hgh FghH  Frgn fghH

SN 2

LugXg.n 1 Xfg,h1n
Vg g Xf,gh1H fa,

fgh’H

Hfgh
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foHh
1f’leF 1f~1§’yh
~ = X’T”l _ ~_
fHgh Ly 4@15 Potun fghH
'Yflgﬁ/ - \xi,glm
Xf,9:7h
InXxr,gly - Vraln T

HFgh — 0 Fgh— T R — T FohH

19 Qw 1 /
\ <:f,g, L _

Ly FXg,h o 1 Ulggn — Xfg.hln
f gh HXfg,h g fth g
m L %
Hfgh

holds in 2Cat(B, B). In the above diagrams, we are using the comparison con-
straints ¢ defined in (1.2).

Remark 2.5. A more general definition of G-functor, in the case G is a topological
group, was given in [12].

Definition 2.6. Assume that (#,~,II), (H',~/,1I') are G-pseudofunctors. A G-
pseudonatural transformation is a pair (6,{0y}scc), where 6 : H — H'is a
pseudonatural transformation, and 6, are invertible modifications

Hg gH
0015 18, 100
Vg -
HG ———gH’
such that for all g, f € G, the equation
L Y- 137y 7, Xeslw
Mg f gHf : gIH— 9fH
elglfl 19415 1§91fi Y150 1§1f9i Yeo gy il;}e
1= F ~qI'F 1575 ~Ta Tyl
Hg f gH'f gf/H 9fH

'Vélf Xg.f Loy
Larxg, s ’Y;f

Hygf
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Lgvs

Hg f ——gHf g gf“rl
Xg, fl’H
. Inuxg,f
Hg f Jor " Hyf ng’
9 Xq f U'Ggf
Lyxg,f Hlﬁ 7;f

holds in 2Cat (B, B).

Definition 2.7. Assume that (6, {0y} ,cc), (0, {og}gec) : (H,7, 1) = (H,7,10)
are G-pseudonatural transformations. A G-modification o : (0,{0,}4ec) =
(0,{04}gec) is a modification o : § = o such that

o®ly <a®1> 0021449 1599
H'g

‘79®19L I / 150
lla'g

Assume that (Hl,vl,ﬂl) (’HQ,'yQ,HQ), (H3,~3,113) are G- pseudofunctors and
(‘9’ {HQ}QGG) (H1’7 ) ) — (H2772’H2)’ (Ua {UQ}QEG) . (H25’Y 9 ) -
(H3,~3,113) are G-pseudonatural transformations. The composition

(o, {Ug}gGG) o (8, {eg}gGG) = (p, {pg}geG)

is defined as follows. The pseudonatural transformation p = ¢ o 6. For any 0-cell
A€ Bandanyg e G

(pg)a = ((UQ)A oid 90F9<A)) (id Fy(e9) © (99),4)).

Here, we are also ommiting the associativity constraints of the pseudofunctor F,.
The composition of modifications of G-categories is the usual composition of
modifications.

Definition 2.8. 2Cat“ (B, E) is the 2-category in which O-cells are pseudofunctors
of GG-categories, 1-cells are pseudonatural transformations of (G-categories and 2-
cells are modifications of GG-categories.
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The next result is a consequence of [9, Corollary 8.3].
Proposition 2.9. 2Cat® (B, B) is a 2-category. O

Definition 2.10. We say that the 2-categories /5 and B are G-biequivalent if there
exists a G-pseudofunctor H : B — B that is also a biequivalence.

Lemma 2.11 (Transport of structure). Let B be a 2-category with an action of G
given by (F,x,w). Let H : B — B’ be a biequivalence,

Ly:B =B, vg:HoFy— LgoH

a G-indexed family of pseudofunctors and pseudonatural equivalences, respec-
tively. Then, there is a way to endowed B' with a G-action (L, x',w") such that
(H,~,10) : B — B is a G-biequivalence .

Proof. Since 7, and X, are psedonatural equivalences, we can simultaneously
provide the datum II;, and the pseudonatural equivalences X}, g " LioLy, —
Ly¢g, f,g € G. Now, axiom 2.5 uniquely determines the modifications w% ah
Axiom 2.3 follows from the corresponding axioms of G-action via (F, x,w). The
pseudofunctor (#H,~,1II) : B — B’ is a G-biequivalence by construction. O

Corollary 2.12. Every 2-category with a G-action is G-biequivalent to a 2-category
where G acts by 2-functors, that is, all F, are 2-functors.

Proof. By the coherence of theorem for pseudofunctor, see [11, Section 2.3], every
bicategory B is biequivalent to a 2-category st(53) such that every pseudo-functor
F : st(B) — st(B) is pseudo-natural equivalent to a 2-functor. Then applying
Lemma 2.11 we can transport the action of B to a G-biequivalent action on st(B)
where G acts by 2-functors. O

3. COHERENCE FOR GROUP ACTIONS ON 2-CATEGORIES

The main result of this section is to prove the following coherence theorem for
a group action on a 2-category.

Theorem 3.1 (Coherence for group actions on 2-categories). Let G be a group.
Every 2-category with an action of G is G-biequivalent to a 2-category with a
strict action of G. (]

Assume B is a 2-category equipped with a unital action of G, (F, x,w) : G —
2Cat(B, B). By Corollary 2.12 we can assume that F; is a 2-functor forany g € G.
We shall first construct a 2-category B[G] with a strict action of G.

Objects of B[G] are triples (A, 0, o), where A = {A,}, is a G-indexed family
of objects, 0 = {0, 1, : Fy(An) = Agn}gnec is a G x G-indexed family of 1-cell
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equivalences and

(Xgﬁh)Af
Fth(Af) th(Af)
Fg(On,f) Yog n, s Ogh,
F,(A Agnt,
o(Ang) ——— ghf

a G X G x G-index family of isomorphism 2-cells, such
9179 = IAg’ alvhaf = ld’ anLf = ld

that for all g, h, f, k, and equation

(3.1)
o Xon ¢ o
gh f Ay ghtf Ay
Xgn®l7 Xg s W\
Ywg,n, g
== 1§®X(})17f o
gh f A ghf Ay Yagnsk Aghrk
150
Vg®an, .k ISR
150100 1 Og.nfk
ghA gA
g Tk 1,80 g Anfk
_ Xon _
gh [ Ay ghf Ag
X27h®1? 197®9f,k W
Yagh, ¢k
gﬁ? Ay U(Xg,h)efﬂk gih Afk 7 Aghfk
gk, fk
Yoy n,
15@1:00 1 % oI A

ghA gA
g fk 1220n 1 g Anfk

holds in B(F,(F(Fr(Ar)), Aghrr). If (A,0,a) is a O-cell, the identity 1-cell
I(4,9,q) is defined as follows. I(49..) = (Ia,,l), where Iy, = idg,,, for any
g,h €G.
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If (A,0,«) and (B, p, 3) are objects in B[G], a 1-cell is a pair (X, 1), where
X ={X,: Ay = By} is a G-indexed family of 1-cells and

Fy(Xpn)
Fy(Ap) —"— F,(By,)

eg,h iug,h Pg,h

Agn By,
g Xgh gn»

is a G x G-indexed family of isomorphism 2-cells, such that for all f,g,h € G,
l1,4 = idx, and equation

- _ ??(Xh) < _ ?g -
(3.2) f9(An) f9(Bn) J9(Bp)
f(eg,h)l U'?(lg,h) lfpg,h) uﬁf,g,h prg,h
H(Agn) — T (Boh) —70 Bign
l .
M Y figh %
Aggh
- Faxn - X9 —
J9(An) J9(Bn) f9(Bn)
[ U ,
! g’h)l X P Fa(Xn) e

holds in B(F(F4(An)), Brgn). If (X, 1), (Y, s) are 1-cells, a 2-cell m : (X,1) =

(Y, s) is a G-indexed family of 2-cells m = {m, : X, — Y} such that for all
g, f € G, equation
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3.3) Fg(Ah) Ug,n Fg(Bh)

Fo(Xn)

T

Fg(Ah) $Fg(mp) Fg(Bh)

Fy(Y;
00 9(Yn) pon
Agh Usg,n th
Y,

gh
holds in B(F,;(Ap), Bgh).
The (vertical) composition in each category B|G|((4, 0, «), (B, p, 5)) is defined
pointwise.
Now, let us define the horizontal composition o : B[G]((A, 6,
A0

B@N%ﬁwyAﬁaD%mea&ﬂdﬂmﬂﬂﬁ(7ﬂ0wﬂﬂmm

(X,1) € BIG]((A,0, ), (B, p,B)), (Y,s) € BIGI((C,k,7), (A,0,))
are 1-cells, define
(Xal) © (K 5) = (Z7t)>

where Z, = X 0Y,, and ty ), = (1Xgh o sg’h) (lgyh ) ].Fg(yh)), for any g, h € G.
The horizontal composition of 2-cells in B[G] is just the horizontal composition of
2-cells in B.

Lemma 3.2. B[G)| is a 2-category endowed with a strict action of G.

Proof. The proof that B[G] is indeed a 2-category follows by a straightforward
calculation. Let us define now a canonical strict action of G on the 2-category
B[G]. For any g € G define the 2-functors L, : B[G] — B[G] as follows. If
(A,0,a)isa0-cell, g,z € G, then

Ly(A)z = Azg, Lg(0)zy = Oryg, Lg(Q)zyz = Qzy zg-
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If (X,0): (A,0,a) = (B,p, ) is a 1-cell,

Lg(X)z = Azg, Lg(l)a:,y = lmyg'

If m: (X,1) = (Y,s) is a 2-cell, then Ly(m), = myg, for any 2 € G. Since the
L are 2-functors such that Ly o Lj, = Ly, forall g,h € G and L., = IdB[G], L
defines a strict action of G on B[G]. O

There is a pseudofunctor H : B — B[G] defined as follows. If A is a 0-cell in
B, then
H(A) = ({Fo(A)}, (Xg.) A Wouh ) 1.9.heC
if X : A — Bisa l-cell, then H(X) = (Fy(X), (xg,n)x) and for 2-cells m :
X =Y, H(m), = Fy(m), where f,g,h € G. The fact that w are modifications
implies that H(X) is indeed a 1-cell in B[G]. The following proposition implies
immediately Theorem 3.1

Proposition 3.3. 1 : B — B[G] is a G-biequivalence.

Proof. If (A, 0, «) is an object in B[G], then the 1-equivalences 0y : H(Ac)g —
Ay and the 2-cells

Xg,h
FyH(Ae)n . H(Ae)gn
Fg(eh,e) llag,h,e Ogh,c
Fy(Ap) 0 Agny,
g,h

defines a 1-equivalence from H (A1) to A, that is, H is bi-essentially surjective.

Let A and B be objects in B, and (X,1) : H(A) — H(B) be a 1-cell in B[G].
The invertible 2-cells [, 1 : H(X1)y — X, define an invertible 2-cell from H(X1)
to X. Then H is locally essentially surjective.

If X,Y,e B(A,B) and f,f" : X — Y such that H(f) = H(f’). Thus,
H(f)1 = H(f')1, but since we are considering a unital action, f = H(f)1 =
H(f")1 = f', that is, H is locally faithful. Suppose w : H(X) — H(Y") is a 2-cell
in B[G], condition (3.3) implies that wy, = F,(m1), then w = H (w1 ). Since, H is
bi-essentially surjective and locally fully faithful, H is a biequivalence.

To see that ‘H has a canonical structure of G-pseudofunctor, we note that

(HOFg)x:FxOFga (LQOH)xz zg»

forany x, g € G. Then, using the pseudonatural transformations X g : 0 Fyg —
F.4, we define a pseusonatural transformation

Yg:HoFy— LygoH,

as follows. For any O-cell A € Obj (B) we have to define an equivalence 1-cell
7Y : HoFy(A) — LyoH(A)in B[G]. Sety) = (X, 1), where, forany x, f,h € G

Xo= (094 lin=(Wpp o)A
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Axiom (2.3) implies that morphisms [ , fulfill condition (3.2). Thus, %91 is indeed
a l-cell in B[G]. To complete the definition of of the pseudonatural equivalence
7g> We have to define, 2-cells in B[G]

(vg)x = 7B 0 HFG(X) = LyH(X) 073,

for any 1-cell X € B(A, B). Set ((74)x), = (Xa,g)x- for any z € G. The fact

that w are modifications, imply that 2-cells (('yg) X)x satisfy (3.3). To define the
modifications

1Lf®’Yg
LyHF, LyLH
s N
HFf Fg g g Lng
M /
HFEy,

we note that

[(1Lf®’Yg) o (fo & ]-Fg)]l‘ = Xaf,g© (X:E,f & 1Fg)7 &€, fvg € G7
and

[(17{ ® Xf,g) © ('Vfg)]w = Xz,fg © (]‘Fz ® Xf,g)a z, f,g€G.

Then we define (Ilf 4), = wy ¢4 forall z, g, f € G.
Since w,, f 4 are modifications, 11, j, turns out to be modifications for any g, h €
(. Condition described in diagram (2.5) is exactly diagram (2.3). [l

4. THE EQUIVARIANT 2-CATEGORY

Let G be a group. Denote by Z the unit 2-category endowed with the trivial
action of GG, and assume that B is a 2-category with an action of G.

Definition 4.1. The equivariant 2-category is B = 2Cat%(Z, B). O-cells, 1-cells
and 2-cells in BE will be called equivariant 0-cells, 1-cells and 2-cells, respec-
tively.

Proposition 4.2. Assume B and B are G-biequivalent. Then the 2-categories BC,
BS are biequivalent.

Proof. Straightforward. ([
Lemma 4.3. There exists a forgetfull 2-functor ® : B — B. (]

Proof. If (#,11,7) is an equivariant O-cell in BY , then ®(H,11,~) = H(%). If
(0,{04}gec) is an equivariant 1-cell, then ®(0,{0,}4ec) = 6. On 2-cells the
functor @ is the identity. O
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4.1. Unpacking definition of equivariantization. We shall explicitly describe
the 2-category BS. This would allows us to show concrete examples and obtain
some results in Section 7.

We shall assume that there is a unital action of G on the 2-category B such that
all pseudofunctors Fj, are 2-functors. This is possible using Corollary 2.12. The
2-category B has O-cells triples (A, {U,} e, {yn}g.nec)s where

o Aisa0-cellin B;

e U, are invertible 1-cells in B(A, Fy(A));

o Tyn : (xgp)a o Fy(Un) o Uy — Uy are isomorphisms 2-cells in the
category B(A, Fy;,(A)) such that

Up =14, gy =idy, =114,

an e (i, a0 FrMyn) oiduy ) (@rgn)a oid pyr, i rwyv,) =
= ygn(id o ) ary,@n ©Mrg) (o ), 0 (rglu 0 idpywyu,)

for all g, h, f € G. For short, the collection (A, {Uy}gec, {Ilgn}g.nec) Will be
denoted simply as (A4, U, II).

, U, D), (ﬁ, U, ﬁ), an equivariant 1-cell is a
A,U,1II)) where

Given two equivariant O-cells (A
pair (0, {QQ}QEG) € BG((A7 U, 1D), (
e 0:B(A,A)isa l-cell, N
e and forany g € G, 6, : F;(0) o Uy = Uy o 6, are invertible 2-cells such

that 61 = id ¢, and such that forany ¢, f € G

ws) (T, s oidg) (id (00 aFy(Tp) ° 0,) (id (0 )4 © Fylby) 0id u,) =
=0y (id Fyp(0) © Hg,f) ((Xgﬁf)(’ oid Fg(Uf)Ug)'

If (0,{04}gec), (0, {0g}gec) : (A, U,n) — (ﬁ, U, ft) are equivariant 1-cells, an
equivariant 2-cell o : (0,{04}4ec) — (0,{0g}gec) is a2-cell « : § — o such
that forall g € G

4.3) (id 7, °© a)ly = o4(Fy(a) oidy,).
Suppose that (A, U, 1), (A, U, i), (A’,U’, i) are equivariant O-cells, and
(0,0,) : (AU, 1) — (A, U, 1), (0,09) : (A, U, p) — (A, U, 1)

)
are equivariant 1-cells, then the composition (0, 6,)o(o, 04) : (A, U, pu) — (A, U, f)
is defined as (0, 0) o (0,04) = (@ 0 0, (0 0 0)g), where for any g € G

(4.4) ((900)9 = (QgOidg)(ing(g) OO'g).

5. GROUP ACTIONS FROM GRADED TENSOR CATEGORIES

Starting with a GG-graded tensor category ©4ecCy, We shall construct a G-action
on the 2-category of C; -representations.
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5.1. Group actions on tensor categories. Let GG be a finite group and C be a finite
tensor category. An action of GG on C consists of the following data:

e tensor autoequivalences (g.,&9) : C — C forany g € G,

e anatural isomorphism ¢ : Id¢ — (1),

e and monoidal natural isomorphisms vy 5, : g« © hs — (gh)«,
such thatforall X € C, g,h, f € G

(5.1 (Voh, ) x Wgn)r.(x) = Wgnf) x e (Vn,£)x),

(5.2) (Vg,1)x9x(Cx) = id x = (v1,9)xCg.(x)-
For simplicity, we shall assumed that (1), =1Id¢, ¢ =id and g =id = vy 4 for
allg € G.

If a finite group G acts on a finite tensor category C, there is associated a new
finite tensor category C” called the equivariantization of C by G. An object in
CC is a pair (X, s), where X € C is an object together with isomorphisms 5g :
9+(X) — X satisfying
(5.3) S1 = idx, Sgh e} (Vg,h)X = Sg @) g*(sh),
for all g,h € G. A G-equivariant morphism f : (V,s) — (W,t) between G-
equivariant objects (V,s) and (W, ), is a morphism f : V' — W in C such that
fosg =tg00.(f) forall g € G. The category C% has a monoidal product as
follows. If (V,s), (W,t) € C%, then (V, s)®(W,t) = (V@W,r), where for any
geG

Tg = (Sg®tg)(f\%,w)_l-

For more details we refer the reader to [1], [2], [3].

There is also associated the graded tensor category C[G], with underlying abelian
category C[G] = @4ciCy, where C; = C forany g € G. If X € C is an object, the
object in C4 is denoted by [X, g]. The tensor product is

(X, g]®[Y,h] = [X®g.(Y),gh], X,Y €C,g,heC.
The reader is refered to [24] for the complete monoidal structure of this tensor
category.
5.2. Representations of tensor categories. A left C-module category over a ten-
sor category C is a finite k-linear abelian category M equipped with

e a k-bilinear bi-exact bifunctor ® : C x M — M;
e natural associativity and unit isomorphisms mx ya : (X ® V)M —
X®(Y®RM), Ly - 1®M — M, such that

(54) myyzsm Mxeyv.zym = (idx@my,zm) mx yezm(axyz®id y),

(5.5) (id X@l]y[)m)gLM = idX@M'
A module functor between module categories M and N over a tensor category
C is a pair (F, ¢), where
o F: M — N is aleft exact functor;
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e natural isomorphism: cx ys : F(X®@M) - XQF (M), X € C,M € M,
such that forany X, Y € C, M € M:

(5.6) (id x®cy,m)ex yauF (mx y,m) = mx )y, p(un) CXev,M
(5.7) Cronycim = F(lar).

Let M and V be C-module categories. We denote by Fung (M, N) the category
whose objects are module functors (F,c) from M to N'. A morphism between
(F,c)and (G,d) € Fung (M, N) is a natural transformation v : F' — G such that
forany X € C, M € M:

(5.8) dx moxgy = (id x®an)ex,m-
We shall also say that « : F' — G is a C-module transformation.

Let (F,&,¢) : C — C be a tensor functor and let (M, ®, m) be a C-module
category. We shall denote by M the C-module category with the same under-
lying abelian category M and action, associativity and unit morphisms defined,
respectively, by

(5.9) X®"'M = F(X)®M,

m v ar = mpo,reom (Exy®id ), Ty = (¢®id v),

forall X,Y € C, M € M. Right C-module and C-bimodule categories are defined
in a similar way. For the complete definition see [10].

A C-module category M is exact [5] if, for any projective object P € C, the
object PQM is projective in M for all M € M. If M is a left C-module then
MPCP is the right C-module over the opposite Abelian category with action

(5.10) M x C — MO (M, X) — X*BM,

associativity isomorphisms mﬁxy = my=« x+p forall XY € C,M € M.
Analogously, if M is a right C-module category, then M°P is a left C-module
category. If M is a C-bimodule category, we denote M the opposite Abelian
category, with left and right C-module structure given as in (5.10).

5.3. 2-categories of representations of tensor categories. Suppouse that C is a
tensor category. The 2-category ¢Mod has as O-cells, left C-module categories, if
M, N are C-module categories, then the category cMod (M, N') = Fune (M, N).
Analogously we define the 2-category Mod ¢ of right C-module categories.

If C is a finite tensor category, the 2-category ¢Mod, of exact left C-module
categories is defined in a similar way as ¢Mod, with O-cells being exact left C-
module categories. It is known that cMod, is 2-equivalent to pMod . if and only
if C is Morita equivalent to D.

5.4. G-Graded tensor categories. Let (G be a finite group. A (faithful) G-grading
on a finite tensor category D is a decomposition D = ©4ecCy, Where Cy are full
abelian subcategories of D such that

o Cg #0;

e ®:CyxCp — Cyy forall g, h € G.
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In this case C = C; is a tensor subcategory of D and each C, is an exact C-bimodule
category. We shall assume that C;, # 0 for any g € G. The tensor category D is
called a G-graded extension of C.

In [4] Etingof, Nikshych, and Ostrik studied fusion categories graded by a fi-
nite group. They reduce the classification problem of fusion categories graded by
a group G to the classification (up to homotopy) of maps from BG to BPic(C),

the classifying spaces of the monoidal bicategory where objects are invertible bi-
modules, 1-arrows are bimodule equivalences and 2-arrows are bimodule natural
isomorphisms, see [4] for details. Since tricategories are algebraic models of ho-
motopy 3-types, extension of a fusion categories are classified by monoidal pseud-
ofunctors from G to Pic(C), where G is the discrete monoidal 2-category with

objects G, see [4, Section 8]. Now, since the monoidal bicategory Pic(C) can be

interpreted as the monoidal bicategory of biequivalences of Mod ¢, then it is natural
to expect that every G-extension of C induces an action of G on Mod ¢.

In this section, we explicitly present the action associated with a G-extension of
any finite tensor category as well as some consequence of this fact.

If M is a left C-module category, X € C4, M € M, the functor G'x s : CT] —
M defined by

Gxm(Y) = (YRX)0M,
for any Y € C,, is a C-module functor. Moreover, the functor
®:Cy e M — Fune(Cy, M), @(XKM)=Gx um,

is an equivalence of C-module categories.This is a particular case of [10, Thm.
3.20].

5.5. The relative center of a bimodule category. The next definition appeared
in [8].

Definition 5.1. Let C be a tensor category and M a C-bimodule category. The
relative center of M is the category Z¢ (M) of C-bimodule functors from C to M.
Explicitly, objects of Z¢ (M) are pairs (M, y), where M is an objects of M and

v={yx: X&M = M®X }xec
is a natural family of isomorphisms such that
(5.11) TX © Oz;(’lM’Y Oy = ai/[{xy °CYXQYy © a;(}KMa

where ax pry @ (X@M)RY = X@(M®Y) are the associativity constraints
in M.

Let D = ©4ecCy be a G-graded tensor category, with C = C;. The inclusion
functor C — D induces the forgetful pseudofunctor H : pMod — ¢Mod.

Proposition 5.2. There is a monoidal equivalence Z(H) = Z¢(D).
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Proof. Let us define the functor F : Z¢(D) — Z(H), as follows. For any (V,~) €
Zc(D) set F(V,~) = (WY, 7). Here, for each M € pMod, WY : M — M is
the C-module functor given by
WY(M) =VOM.
The isomorphisms endowing the functor W/‘\/A structure of C-module functor are
exar: WH(XBM) — X@W (M),
given by the following composition:

—1 I p—
My x,M Tx ®id

WH(XOM) = VR(XaM) ——5 (Ve X) &M =— (X @ V)&M

mXx,V,M

— 0 XR(VaM) = XaW (M),
forany X € C, M € M. It follows that (W}, ¢) is a C-module functor.

Now, we shall explain the definition of 7. Take M, N € pMod, and (G, d) :
M — N a D-module functor. Define

T(G.d) - W/\‘;OG—)GOWA‘Q,

(T(G,d))M : V@G(M) — G(V@M), (T(G7d))M = d‘_/}]\/f,
for any M € M. Then, 7(¢g q) is a C-module natural isomorphism.

Now, we shall define the functor F on morphisms. Let (V,7), (V',4) be
objects in Z¢(D) and f : (V,v) — (V',+') be an arrow in Z¢(D). Define
F(f) : WV, 7) = (WY 7), as follows. For any D-module M, define the
C-module natural transformation

FPm: W= Wi, (F(Hlm)m = f@id ur,
for any M € M.

Now, we shall define a functor G : Z(H) — Z¢(D), that will be the inverse of
F. Any object X € C induces a D-module functor Jx : D — D, Jx (V) = VR X.

Let (W, 7) be an object in Z(#). For any D-module category M, W, : M —
M is a C-module functor. We shall denote it by Wiy = (Wy, CM). In particular,
Wp(1) € D. We have natural C-module isomorphisms (7pp)j, : Wp o Jx =
Jx o Wp. In particular, we have isomorphisms

((rp,p)ax )1 s Wn(X) = Wp(1) @ X.
Using that Wp has a C-module structure, there is a natural isomorphism
X1 X @ Wp(1) = Wp(X).
Let ~y be the natural isomorphism defined as
vx : X@Wp(1) = Wp(1)®X, vx = ((Tp,p)Jy)10Cx 1

The natural transformation ~ satisfies 5.11 since (7pp)j, is a C-module natu-
ral transformation. Then (Wp(1),v) € Z¢(D). Whence, we define G(W, 1) =

(Wp(1),7).
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Let f : (W,7) — (W', 7') be a morphism in Z(H), then (fp); is a morphism
in Z¢(D) since fp is a C-module natural transformation. Set G(f) = (fp)1. It
follows straightforward that G is well-defined and that F and G are inverse of each
other. U

The center of the 2-category of representations of a tensor category C coincides
with the Drinfeld center of C.

Corollary 5.3. Z(¢cMod) = Z(C).
Proof. Take D = C and H : ¢cMod — ¢Mod the identity pseudofunctor. ([

5.6. Group actions coming from graded tensor categories. Throughout this
section G will denote a finite group. Assume that C is a finite tensor category
and D = @©4eaDy is a G-graded extension of C. Set D; = C. We shall further
assume that D is a strict monoidal category.

In this section we aim to prove the following result.

Theorem 5.4. There is an action of G on the 2-category ¢Mod °®. Moreover, there
are 2-equivalences
(¢cMod OP)G ~ pMod, (¢Mod gp)G ~ pMod ..

Proof. First, let us define an action of G on the 2-category B = ¢Mod°P. For
any g € G define the 2-functors F; : B — B as follows. For any left C-module
category M, set Fyy(M) = Func(Dy, M). If M, N are left C-module categories,
and G : M — N is a C-module functor, then
Fy(G) : Fune(Dy, M) — Fune(Dy, N), Fy(G)(H)=Go H.
Now, we shall define the pseudonatural equivalences x4 : Fy o Fj, — Fyp, for
any g, h € G. For any left C-module category M
(Xg,h)M : Fune(Dyp, M) — Fune(Dy, Fune(Dp, M)),
(Xgn) MH)(X)(Y) = H(X®Y),
for any H € Fune(Dyp, M), X € Cy,Y € Cp. It follows that (Xg n)M is a well-

defined C-module functor. For any C-module functor G : M — N we have that
Fy(Fi(G)) o (X ) m = (Xg n)N © Fyn(G), whence, we can define

(xg.n)c : Fy(Fr(G)) o (xXgn)m — (Xgn)v © Fygn(G)
to be the identities. Since xgn,1 © (Xg,n®id r;) = Xg,ns © (1d £, ®@Xn,f), for any
f,g9,h € G, then we can choose wy 5, ; to be the identities.
Now, we shall define a biequivalence ® : B — pMod. Assume (M, U,II) is
an equivariant 0-cell. This means that we have C-module functors
Uy : Fune(Dy, M) — M,
together with C-module natural isomorphisms

My p: Uyo Fy(Up) o (ngh)M = Ugh,

satisfying the required axioms. Recall the definition of the functors G x s given in
Section 5.4.
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Claim 5.1. Let be g,h € G. If X € Cy,Y € Cy, then, there exists a family of
C-module natural isomorphisms

Bxym s Fy(Un) ((Xgn) m(Gxaym)) = Gx ., (Gyar):
Proof of Claim. 1f Z € Cg4, then
GX7Uh(GY,M)(Z) = (*Z®X)®Uh(GY,M)a

Fo(Un) (xg.n)M(Gxovm)) (Z) = Un(Gxey,mu(Z®-)).
Note that there are module natural isomorphisms
Gxm(Z®—) ~"Z2Gx M, X®Gynm =~ Gxey,m-
Combining these two isomorphisms we get that
GxgymM(Z0—) ~ ("Z&X)®Gy M.
Using this isomorphism and the fact that U}, is a C-module functor, we get that
Un(Gxgym(Z0—)) ~ (*ZX)QUL(Gy,Mm),

obtaining the desired isomorphisms. (]

We define ®(M,U,II) = M as Abelian categories. We must endowed the
category M with a structure of D-module category. If X € Cy, M € M set

XM =Uy(Gx nm)-
We have to define associativity isomorphisms
mxyum: (XQY)OM — XR(YRM).
Suppouse that X € Cy,Y € Cj,, M € M. Then
(X@Y)OM = Ugn(Gxeym), XY RM)=Uy(Gx v,(Gy.u))-
Hence, we define

mx,y,M = Ug(BX,Y,M)(Hg,h)éi,@Y’hf

Axiom (5.4) is equivalent, in this case, to axiom (4.1). It is clear that ® is a biequiv-
alence and restricted to the category of exact modules (¢Mod 2P) gives the second
biequivalence. ([

6. BRAIDED (G-CROSSED TENSOR CATEGORIES FROM (G ACTIONS ON
2-CATEGORIES

In this section actions of groups on 2-categories are assumed to be strict. This
does not lead to any loss of generality, since, in view of Theorem 3.1, all definitions
and statements remain valid for non-strict actions after insertion of the suitable
isomorphisms.
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6.1. Strict braided G-crossed tensor categories. Braided GG-crossed fusion cat-
egories play the same role in homotopy quantum field theory that braided fusion
categories in the topological quantum field theory, see [25, 26, 27].

Definition 6.1. Let GG be a groups and C a strict monoidal category. A strict braided
G-crossed structure on C consist of the following data:

(1) adecomposition C =[]
e 1lcC,,
° Cg®Ch chthI‘allg,h € G,

(2) a G-indexed family of strict monoidal functor g, : C — C, such that
e g.(Cp) C Cong—1s  Gxhs = (gh)s«, e« =1dg,

(3) afamily of natural isomorphisms

gec Cg (coproduct of categories) such that

CxC, 9. xlde CxC,
flip Je ®
C, % C . C

such that

°* g.(cx,z) = ¢y, (X)40.(2)

e cxygz = (ldy®cx z) o (cx,y®id z)

® cxoy,z = (Cx h.(z)®idy) o (id x®cy,z)

foral X € C,Y €Cy,Z € Cp,g9,h €G.

Even when the definition of strict braided GG-crossed monoidal category is too
restrictive, every weak braided GG-crossed category is equivalent to a strict braided
G-crossed category, see [7].

6.2. Center of a G-action. Let GG be a group acting strictly on a 2-category B,
where F;, : B — B, denotes the associated 2-functors. We shall introduce a G-
graded monoidal category equipped with an action of G.

6.2.1. The G-graded monoidal category Zq(B). Define the strict monoidal cat-
egory Z¢(B) = [l cq Z2c(B)g, where Z¢(B)y = Pseu-Nat(ldg, Fy) and the
product induced by the tensor product of pseudonatural transformation defined in
(1.1). In other words, if X € Zg(B)y and Y € Zg(B)p,, we define X @ Y €
Zc(B)gn = Pseu-Nat(Idg, Fyp) as folows: for any object A € B, (X ® B)4 =
X, (4) © Ya and for any 1-cell W € B(A, B)
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A W B
Ya JYw Ys
xevia|  Fu(A) o) Fu(B) | xev)s
XFy,(4) X F (x) Fy(B
F(4) —— ™ p(5)

The unit object is 114, € Pseu-Nat(Idg, Idg).

6.2.2. The action of G on Z5(B). Given X € Zg(B), and g € G, we define
9+(X) € 2¢(B)gpg—1 as follows: for objects A € B, g.(X)a = Fg(Xngl(A))
and for any l-arrow W : A — B

A W B
FQ(XFg_l(A)) UFg(XFg_l(W)) Fg(XFg_l(B))
Fh 71(W)

Fypg-1(A) = Fypg-1(B).

Analogously, the functor g, is defined for morphism in Zg(B).

6.2.3. The G-braiding of Zg(B). Let X € Zg(B)y and Y € Zg(B)p,. By the
definition of pseudo-natural transformation we have

A Y4 F(A)
Xa Xy, XF,(4)
Fy(Ya)
Fg(A) o th(A)a

but (X ® Y)a = Xp,(a)0Yaand (g:(Y) ® X)a = Fy(Ya) o Xa, then the Xy,
define natural isomorphism cx y := Xy, : X @Y — g.(YV) ® X.

Theorem 6.2. Let G be a groups with a strcit action on a 2-categoy B. Then the
monoidal category Z¢(B) defined in 6.2.1 is a strict braided G-crossed monoidal
category with action defined in 6.2.2 and G-braiding defined in 6.2.3. Moreover,
the braided category Z¢(B). is exactly the Drinfeld center of B.

Proof. Since the action of G on B is strict, it follows by definition the equations

b g*(CX,Z) = Cg*(X),g*(Z)
o cxyez = (ldy®cx z) o (cx,y®id z)
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® cxoy,z = (Cxh.(2)®idy) o (id x®cy 7).

6.3. Example. Let D = ©4cqD, be a faithfully G-graded fusion category.
Since every D, is a D.-bimodule category, they define 2-functors

Fy(=) := Dy Rp, () : D, — Mod — D, — Mod,

the tensor products ® : Dy x D, — Dy, induce pseudo-natural equivalences
Xg,h + Fg o Iy, — Fy, and the associator of D induce invertible modifications
Woh,f * Xgh,f © (Xg,n®id Fp) = Xgny © (id 5, @Xn,f), that defines an action of G
on D, — Mod. See [4] for details.

In this case the category Z¢(p,Mod ), is just Funp, _p, (De, Dy ), the category
of D.-bimodule functors and natural transformations from D, to D,. The cate-
gory Zg(p,Mod ), is canonically equivalent to the category Zp, (D) defined in
[8, Definition 2.1] (use that Funp, (D., Dy) — Dy, F' — F (1) is a category equiv-
alence). Then the G-graded category Z¢;(p,Mod ) is equivalent to the monoidal
category Zp(D,). The braided G-crossed category Z¢(p,Mod ) is equivalent to
the G-crossed category Zp (D, ) defined in [8].

7. THE CENTER OF THE EQUIVARIANT 2-CATEGORY

This section is devoted to prove the following result. Let G be a finite group
acting on a 2-category . Recall the forgetful 2-functor ® : BY — B described in
Lemma 4.3.

Theorem 7.1. The group G acts on Z(®) by monoidal autoequivalences, and there
is a monoidal equivalence
Z(BY) ~ z(®)°.

As a consequence, we have the following result.
Corollary 7.2. [8, Thm. 3.5] Let D = ©4ecCy be a faithfully graded tensor

category, with C = Cy1. There is an action of the group G on the relative center
Z¢(D) and a monoidal equivalence

Z(D) ~ Z¢(D)“.
Proof. Let H : pMod — ¢Mod be the forgetful pseudofunctor. Then
Z(D) ~ Z(pMod ) ~ Z((¢Mod ) %) ~ Z(H)% ~ Zc(D)¢

The first equivalence follow from Corollary 5.3, the second one is Theorem 5.4,
and the last one is Proposition 5.2. U

For the rest of this section we shall use the notation introduced in Section 4.1.
There is no harm in assuming that the action is unital and strict, see definitions
2.2,2.3. By Proposition 1.2, we can assume that any invertible 1-cell is an isomor-
phism. In particular, if (A, U, II) is an equivariant O-cell, for any g € G, the 1-cell
U, is invertible. Thus, we can choose a 1-cell U;‘ such that

UgoUs =1Ipay, UjoU,=Ia.



28 BERNASCHINI , GALINDO, MOMBELLI

If X, Y are 1-cells, we shall sometimes denote X oY = XY, as a space saving
measure.

7.1. A group action on Z(®). For any g € GG, we shall define tensor autoequiva-
lences Ly : Z(®) — Z(®) such that they define an action of G on Z(®). First, let
us explicitly describe objects in Z(®). An object (X, o) € Z(®P) consists of

X ={X(avm € B(A, A) alcell, (A U,I) € Obj (BY)},
o={0@e, : X(Z 7 i) © ) = 6 o X4,y isomorphisms 2-cells in B,
where (6,0,) € BY((A,U,1I), (A,U,II)) is an equivariant 1-cell. The isomor-
phisms o ) satisfy (1.4). If (X, 0), (Y,7) € Z(®), a morphism f : (X,0) —

(Y, 7) is a collection of 2-cells in B(A, A)
faaom : Xaom = Yaum,
such that for any equivariant 1-cell (6,6,) € B ((A, U,1I), (A,U,10))
(idg o fraum) o0, = 70,0, (f75m °ido)-

Lemma 7.3. Suppose g, h € G and (A, U,11) is an equivariant O-cell. There are
isomorphisms 2-cells

€ au)  Ug o Fy(Uy) = Uy,

such that
(7.1) gnavm o gn =idr,, Igpoegnavm =idr, ),
(7.2)

€gn, (A0 (€g.h (a0 ©1d £y @) = €gnpavm (ldu; © Fylen, g a0m)),
forany g, h, f € G.
Proof. Take €, 1, (a,u,m) = 1d UzoFy(Ut) © H;}L oid Uz, Equation (7.2) follow from
4.1). -

For any g € G, let us define the functors L, : Z(®) — Z(®), Ly(X,0) =
(X9, 09). Where, for any equivariant 0-cell (A4, U, IT)

XEJA,U,H) == U; o Fg(X(A,U,H)) o Ug.

Remark 7.4. As a saving space measure, if (A, U, II), (E, U , ﬁ) are equivariant 0-
cells, we are going to denote X = X4 ym), X = X (A.010)" Also, we shall denote
€g,h = €g.h, (AU, and €y = € (A0, 1) when no confusion arises.

If (0,0,) € BE((A, U, 1I), (A,U,1I)) is an equivariant 1-cell, then

-1

Uf]a,eg) = (117; © 0 0 1U5F9(X)Ug) (117; ° Fy(a(p,)) © 1u,) (1(7QF9()~<) 00,").

If f:(X,0) — (Y,7) is amorphism in Z(®), then
Lg(f)aum =idu; o Fy(faum) cidu,.

The proof of the next result follows straightforwardly.
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Proposition 7.5. The functors Ly : Z(®) — Z(®) are well-defined monoidal
functors. O

Now, for any g, h € G, we shall define monoidal natural isomorphisms v, , :
Lgo Ly — Ly, satisfying (5.1) and (5.2). Take (X, 0) € Z(H), so we must define
an arrow

(1/97;1)()(70) :Lgo Lp(X,0) = Lgn(X,0).

For each equivariant O-cell (A, U, IT) we define the map

((Won)(x.0)) (avy * Ug Fo(Un) Egn(X(a,0,0) Fy(Un)Ug — Ugh Fon(X (4,0,)) Ugh

((VQJ’L)(X,O')) (A,U“u,) = Egvh‘ oid th(X(A,U,u)) ° Hgvh'

Proposition 7.6. For any g, h, f € G, the following assertions holds.
() vgn : Lgo Ly — Ly, are well-defined natural isomorphisms in Z(®).
(i1) vy p : Lyo Ly — Lgp, are monoidal natural transformations.
(iii) Forany g, h, f € G and any (X, 0) € Z(®), the following equation holds
(7.3) (Voh,)(x,0)Vgn) Ls (X,0) = Wanf) (x,0) Lg((Vn,f) (X ,0))-

Proof. (i). We must verify that (v ) (x ») are morphisms in the category Z(®),
that is, equation
(7.4)

(ido o ((vg,0)(x,0)) (a0 (6" (00,) = Ufgfgg) (((vgn)x.o)) (2,51 ©1do)

is fulfilled for any equivariant 1-cell (6,6,) € BY((A,U, 1), (A, U, II)). The left
hand side of (7.4) equals to

= (idgoegnoidp,, (x) 0 yn) (id g, 00y 0 id s r, Wz F,x) P, UU,)

(id g, © Fy(o(y,) 0idu,) (id g, © 0 0 id s p, ;) Fon () Fy0)T,)

= (idgoegnoidp,x)ollyn)(id oy oid)(id bs 5y (T7) © Fy(0y) 0id)

(id Uz Fy(Uy) © Fon(o(0,6,)) 0 1d Fg(Uh)Ug) (id Uz Fy(U7) © Fg(ggl) oidy,)

(id 7, © 6 © 1 1z 7, U)oy (X) Fy (U, )

= (id oy p0id)(id b1 Fy (O © (id 1, (77, © 0g) (Fy () 0id ) o id U;Fg(U;)th(xwgh)
(id bs Fy(T7) © Fyn(o(a,)) ©idu,,)

(id Oy () Fy () © (id f, (9) © I, 1) (Fy(6;, 1) oidy, )(id Fon(@n) © 0,))

= (id 0 ey 0id) (id bs Fy (O © (id 1, 7,y © 0g) (Fy(0n) 0id y,) © id)

(id g r, @) © Fan(o(0.0,)) ©id v, ) (id © 6 (T, 0 id )
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The second equation follows from the definition of aé‘e 0,)° the fourth equality
follows from (4.2). The right hand side of (7.4) equals to

= (idg. o0 0iduy, ryxv,) ([ 0 Fon(0,0,) 0 idu,,)

(idg. » 5000 ) (€gnoid

U2, Fon(X) ollgpo id@)

th()?)
= (€gn 0 bgn 0 idy= 1, (x)0,) (iU (07 © Fon(0(0,0,)) 0 idU,,)

. 1/ .
(id Uz Fy(Up ) Fyn(X) © Oy, (g p 0 id 0))-

It follows from Equation (7.1) that both sides are equal.

(ii). Let (X, 0), (Y, 7) be objects in Z(®). Since the functors L, are strict, this
means that Ly ((X,0)®(Y, 7)) = Ly¢(X,0)®Ly(Y, 7), we must prove that

(7.5) (Vgn)(x,m)0vr) = Van) (x,0)@Vgn) (X,0)-

Let (A, U,II) be an equivariant O-cell. The left hand side of (7.5) evaluated in
(A, U,1I) equals to

€g,n 0 1d F, ollypoe€gpn0id Fyn( I, .

w(X(a,u,m) Yia,um) ©

The right hand side of (7.5) evaluated in (A, U, IT) equals to

€g,h Oing Hg,h-

r(Xa,umoYa,um) ©
It follows from (7.1) that both sides are equal.

(iii). Let (A, U, II) be an equivariant O-cell. The left hand side of (7.3) evaluated
in (A, U,1I) is equal to

= (6gh7f ° ld thf(X) ° thaf) (697]7’ © ld Fg}L(U;XUf) ° Hgah)

= egh,f(€g.0 ©1d £y ) ©1d 5 (x) © Hgn, £ (id 7y, 0y © Tlg,p)-
The right hand side of (7.3) evaluated in (A, U, II) is equal to

= (egns 0 id £, (x) © Mgy ) (id vz © Fy(en.f) 0 id F,, ,(x) © Fy(Tng) 0 id )
= egnf(idus o Fy(en,r)) oid p,,  (x) © g np(Fy(Ily f) 0 id ).
Now, that both expressions are equal follow by (7.2) and (4.1). U

7.1.1. Proof of Theorem 7.1. Let us first describe an object in the equivariantiza-
tion of the category Z(®). An object in Z(®)% is a collection ((X, o), s) where
(X,0) € Z(®),and s4 : Ly(X,0) = (X,0) is a morphism in the category, for
any g € G. This means, that X4 y,m) € B(A, A) is a 1-cell, for any equivariant
0-cell (A, U, II), and for any equivariant 1-cell (1, 7,) € BE((A, U,1I), (A,U,10))
there is an isomorphism o, ) : X (AomoT 7 TO X(a,u,m) such that equation
(1.4) is fulfilled. Also, for any ¢ € G and any equivariant O-cell (A4, U, II) there
are morphisms

(sg)aum) : Uy Fy(Xaum)Ug = Viaum,
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such that
(7.6) (id o (59)(A,U,H))U€T,Tl) = () ((39)(A,ﬁ,ﬁ) oid-),
(7.7) (8gn)(a,u,m) Von)(a,om = (8¢)a,u,m) Lg((sh)(a,0,m))5

for any equivariant O-cells (A, U, I1), (A, U, II), any equivariant 1-cell (r, T4) €
BY((A,U,TI), (Z, U, ﬁ)), and any g, h € G. Equation (7.6) follows from the fact
that s, : Ly(V,0) — (V,0) is a morphism in the category Z(®), and equation
(7.7) follows from (5.3).

Define the functor ¥ : Z(®)% — Z(BY) as follows. Let (X, 0),s) € Z(®)Y,
then ®((X, o), s) = (V, 7). For any equivariant O-cell (A, U, IT), V| 4 7,1y must be
an equivariant 1-cell in the category B ((A, U, II), (A, U, 1I)). Define Viaum =

AU
(X(A’U’H), 95(, )), where
oAU Fy(Xapm) o Uy = Uy o Xapm,
(7.8) (AT
0,7 =idy, o (sg)(a,u,m)-
If (1,7,) € BY((A,U,10), (A, U,II)) is an equivariant 1-cell, then
Tlrry) (X(,Zﬁ,ﬁ)v%A’U’H)) o (1,74) = (1,7¢) © (X(avm), 05V,

0—(7'77'9) - J(Tﬂ'g)'
Claim 7.1. The following statements hold.

@) Viaom = Xaum, 9§A’U’H)) € BY, for any equivariant 0-cell (A, U, TI).

(ii) The object (V, ) belongs to the category Z(B%). In particular, the functor
U is well-defined.

(iii) The functor ¥ : Z(®)Y — Z(B%) is an equivalence of categories, and it
has a monoidal structure.

Proof of Claim. (i). We must check that the maps GéA’U’H)) satisfy (4.2). In this

case, we must prove that for any g, h € G

(Hgvh oid X(A,U,H)) (id Fy(Up) © %A’U’H)) (Fg(eéAU’H)) oid Ug)

is equal to
(AU /.
th (ld Fon(Xca,um) © Hgvh)'
Using the definition of HéA’U’H), we get that the first expression is equal to

(Hgn 08 x4 1)) (1 £y (w10, © (39)a.0m) (i 7y (01) © Fy((sn)a.0m) 0 id v, )

= (1_[97;Z oid X(A,U,n)) (id Fy(Up)Ug © (59)(A7U7H) (id UJOFg((Sh)(A,U,n))) oid Ug)
= (Mgn 0id x4 1)) (id £y 00, © (Sg1) (4,01 (Vg,n) (a,0m))

. AUII
= (ld Ugh © (Sgh)(A,U,H)) (Hgvh o (ngh)(A7U7H)) = eéh )(

The second equality follows from (7.7), and the last one follows from (7.1).

id Fgn(X(a,um) © H%h) :
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(ii). Since 7(;.,) = 0(;,r,) for any equivariant 1-cell (7, 74), then o satisfy (1.4).
We must verify only that E(Tﬁg ) is an equivariant 2-cell, that is (4.3) is satisfied. To

simplify the notation, let us denote HéA’U’H) =0,, gAY gg. In this particular

case, using the composition of equivariant 1-cells given by (4.4), we have to prove
that
(7.9

(1(79 o O’(T,Tg)) (gg o 17) (1Fg()?) o Tg) = (Tg o 1)() (1Fg(7) © 09) (FQ(U(T,Tg)) ° 1Ug)-
The left hand side of equation (7.9) is equal to

- (1[79 © O-(TrTg)) (1[747 © (SQ)(A,U,H)) (1Fq()~() e} Tg)

= (1, © (1r o (s9)awm)of, . ) (Lg% © 7o)

= (1[7g o (SQ)(A,U,H)) (Tg o 1U9*Fg(X)Ug) (FQ(U(T,Tg)) o 1Ug)

= (Tg o 1x) (1Fg(7') o) 99) (Fg(U(T,Tg)) e} 1Ug)-
(A,UII)

The first equality follows by using the definition of 6 given in (7.8), the
second equality follows from (7.6), and the third one follows from the definition of
g
g .
(7.79)

(iii). The fact that ¥ is an equivalence follows easily. A direct computation
shows that

V(((X,0),5)0((Y,7),1)) = ¥((X,0), )@Y((Y,7),1),
for any pair of objects (X, o), s), (Y,7),t) € Z(®)C. O
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