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TENSOR CATEGORIES AND VACANT DOUBLE GROUPOIDS

Juan Mart́ın Mombelli and Sonia Natale

Abstract. We show that fusion categories Rep(|σ
τ T ) of representations of the weak

Hopf algebra coming from a vacant double groupoid T and a pair (σ, τ) of compatible
2-cocyles are group-theoretical.

1. Introduction

Semisimple tensor categories appear encoding symmetries of distinct mathematical
structures. This makes the problem of their classification both a highly interesting
and difficult one. The problem is difficult even for special classes of these categories
like representations of finite dimensional semisimple Hopf algebras. The main goal of
this paper is to establish a relation between two recent constructions of semisimple
tensor categories.

An important class of fusion categories was introduced by Ostrik in [O2], also
studied in the paper [ENO], by Etingof, Nikshych and Ostrik. These fusion categories
are built up from finite group data, and are called group-theoretical.

Let D be a finite group and let V ⊆ D be a subgroup. Let also ω ∈ Z3(D, k×) be
a normalized 3-cocycle, ψ ∈ C2(V, k×) a normalized 2-cochain, such that ω|V×V×V =
dψ. Denote by C(D, ω) = Vect D

ω the tensor category of finite dimensional D-graded
vector spaces with associativity constraint given by the 3-cocycle ω. The twisted group
algebra kψV is an algebra in this category. The category C(D, ω, V, ψ) is defined to
be the category of kψV -bimodules in Vect D

ω . This is a fusion category with tensor
product ⊗kψV and unit object kψV . A fusion category is called group-theoretical if
it is equivalent to a category of the form C(D,ω, V, ψ).

By the results in [ENO], the simple objects in a group theoretical category have
integer Frobenius-Perron dimensions and thus every group theoretical category is the
representation category of a semisimple finite dimensional quasi-Hopf algebra. An
explicit description (up to gauge equivalence) of these quasi-Hopf algebras was given in
[N2]: the quasi-Hopf algebras appearing in this description are a natural generalization
of the Dijkgraaf-Pasquier-Roche twisted quantum doubles DωG [DPR]. It has been
asked in [ENO] if group-theoretical Hopf algebras exhaust the class of semisimple
Hopf algebras. The answer to this question is not known until now.

Another construction of a family of tensor categories arising from finite vacant dou-
ble groupoids was done in [AN1], and later generalized to the nonvacant case in [AN2].
In these papers, a semisimple weak Hopf algebra kϑT is naturally attached to a finite
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double groupoid T satisfying a certain filling condition and a certain perturbation
datum ϑ, and giving a fortiori a semisimple tensor category of representations.

It is natural to ask if any fusion category arising from this construction is group-
theoretical. Several examples studied in [AN1] turn out to be group-theoretical. Nec-
essary and sufficient conditions on the double groupoid T in order that the category
Rep kT be fusion were given in [AN2]. It is also shown in [AN2] that in the cases
when ϑ comes from ’corner functions’ intrinsically attached to the double groupoid,
the category Rep kϑT = Rep kT is the representation category of a finite-dimensional
semisimple quasi-Hopf algebra.

In this paper we show that the tensor categories of the form Repkσ
τ T , arising from

a vacant double groupoid T and a pair of compatible cocycles σ, τ as in [AN1], are
group-theoretical whenever they are fusion. See Theorems 5.2 and 5.3. The precise
condition under which these categories are fusion has been given in [AN1]: it reduces
to the connectedness of the groupoid of vertical edges. Our proof relies on the fact
that vacant double groupoids are essentially the same as matched pairs of groupoids
[M]. This allows us to prove generalizations of certain category equivalences valid
for finite groups, and get the result. We give an explicit, although not canonical,
tensor equivalence between Rep kσ

τ T and a group-theoretical fusion category. One
of the main difficulties we encounter is that, although in the connected case we may
transfer ’group-theoretical facts’ to ’groupoid-theoretical facts’, some cohomological
obstructions appear. This is evidenced in Subsection 2.4, c.f. Proposition 2.5 therein.

It follows from our results that the Drinfeld center of the category Rep kσ
τ T is

equivalent to the representation category of a twisted quantum double [DPR]. In
view of the description in [N2] of group-theoretical quasi-Hopf algebras, our results
in the vacant context also bring implicit a description of a quasi-Hopf algebra whose
representation category is equivalent to Rep kσ

τ T .

The paper is organized as follows: in Section 2 we study several examples of tensor
categories arising from finite groupoids, which generalize group-theoretical categories.
In Section 3 we recall the definition and characterizations of vacant double groupoids.
Section 4 contains the construction of the associated weak Hopf algebras from [AN1];
we also give in this section an alternative description of the corresponding tensor
category of representations in terms of matched pairs of groupoids. Finally, in Section
5 we prove our main result.

Acknowledgement. The question we consider in this paper arose from discussions
with N. Andruskiewitsch. Both authors thank him for encouraging.

Conventions and notation. We shall work over an algebraically closed field k of
characteristic zero. The group of units of k is denoted by k×. All vector spaces and
algebras are assumed to be over k.

A groupoid with source s and target e will be denoted as a diagram e, s : D ⇒ P.
When h, g ∈ D are such that e(h) = s(g) their composition will be indicated by hg.
We shall identify the base P with a subset of D via the identity map: P 7→ id P ∈ D.

We shall say that the groupoid D ⇒ P is finite if D (hence also P) is a finite set.
The set of arrows α with source s(α) = P and target e(α) = Q will be indicated
D(P, Q); thus D(P,Q) is a torsor over the group D(P ) = D(P, P ). The groupoid
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D ⇒ P defines an equivalence relation ∼ on P by declaring P ∼ Q if and only if
D(P, Q) 6= ∅. We shall say that the groupoid is connected if this relation is connected.

If D ⇒ P is connected, then it is isomorphic to the direct product D(P ) × P2,
where P is any element of P. In general, let X be an equivalence class of ∼ and
let DX be corresponding connected groupoid on the base X induced by D. Then
D ' ∐

X∈P/∼DX .

2. Tensor categories coming from finite groupoids

2.1. Preliminaries on tensor categories. The reader is referred to [O1] for an ex-
position of the notions of tensor categories and their module categories used through-
out in this paper.

We shall be interested in a special class of tensor categories, whose definition we
recall next. These type of categories have been intensively studied by a number of
people in the last years.

Definition 2.1. A fusion category over k is a k-linear semisimple and rigid tensor
category C such that:

(i) all hom spaces are finite dimensional;
(ii) the set of isomorphism classes of simple objects in C is finite;
(iii) the unit object 1 is simple.

If C satisfies (i) and (ii), then C is called a multi-fusion category. See [ENO].

Suppose that C is a multi-fusion category. Write 1 = ⊕i1i, where 1i are the simple
constituents of the unit object 1. Then C = ⊕i,jCij , where Cij is the full subcategory
whose objects X satisfy X⊗1j = X = 1i⊗X. The categories Cii are fusion categories
called the fusion components of C.

Assume C is indecomposable. Then M = ⊕jCji is an indecomposable module
category over C [O1], and there are isomorphisms [ENO, 2.4]

C∗M = Fun C(M,M) ' Cop
ii .

For the rest of this section we fix a finite groupoid e, s : D ⇒ P and let ω ∈
Z3(D,k×) be a normalized 3-cocycle; that is, ω : De×s De×s D → k×, such that

ω(a, b, c) ω(a, bc, d) ω(b, c, d) = ω(ab, c, d)ω(a, b, cd),

ω(a, P, b) = 1,

for all appropriately composable arrows a, b, c, d ∈ D, P ∈ P.

2.2. Pointed multi-fusion categories. Denote by C(D, ω) the category of finite di-
mensional D-graded vector spaces with nontrivial associator ω. The category C(D, ω)
is a multi-fusion category as follows. If M = ⊕α∈DMα and N = ⊕β∈DNβ are two
objects then M ⊗N := ⊕e(α)=s(β)Mα ⊗k Nβ with D-grading determined by

(M ⊗N)α :=
⊕

α1α2=α

Mα1 ⊗k Nα2 .

The associativity constraint on homogeneous elements is given by ω. The unit object
is kP, with grading given by |P | = id P , P ∈ P. The unit isomorphisms for this
category are canonical.
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The category C(D, ω) is a direct sum of its indecomposable multi-fusion subcate-
gories corresponding to connected components of D ⇒ P. Therefore C(D, ω) is not
an indecomposable multi-fusion category unless D ⇒ P is connected.

The irreducible constituents of 1 = kP are the one-dimensional subspaces kP ,
P ∈ P. Therefore, C(D, ω) is a fusion category if and only if #P = 1, that is, if
and only if D is a group. Indeed, the categories CP,Q of C = C(D, ω) are the full
subcategories whose objects are finite dimensional vector spaces graded by the set
D(P, Q) of arrows going from P to Q.

An object X in a multi-fusion category C will be called invertible if there exists an
object Y such that X ⊗ Y and Y ⊗X are irreducible summands of the unit object 1.

Following [ENO] we shall say that a multi-fusion category is pointed if every simple
object is invertible. Every pointed multi-fusion category is equivalent to a category
of the form C(D, ω) for some finite groupoid D and 3-cocycle ω.

For all P ∈ P, the component fusion category CP,P is exactly the category of D(P )-
graded vector spaces with associativity given by the restriction ω̂ of ω to D(P ). In
particular, every fusion component in C is pointed group-theoretical.

Suppose that D ⇒ P is connected. By [ENO], M(P ) = ⊕Q∈PCQP is an inde-
composable module category over C consisting, in this case, of all objects graded by
arrows α with target e(α) = P , such that C∗M(P )

' C(D(P ), ω̂)op .

2.3. The categories C(D, ω,V, ψ). Let V ⇒ P̃ be a subgroupoid of D on the base
P̃ ⊆ P. Let also ψ : Ve ×s V → k× be a normalized 2-cochain such that

ω|Ve×sVe×sV = dψ.

Then the twisted groupoid algebra kψV is an algebra in C(D, ω).

Remark 2.1. The category C(D, ω)kψV of right kψV-modules in C(D, ω) is naturally a
module category over C(D, ω) [O1].

There is a decomposition

C(D, ω)kψV =
⊕

(P )∈ eP/V
(P )C(D, ω)kψV ,

where the module category (P )C(D, ω)kψV is the full subcategory of C(D, ω)kψV whose
objects are finite dimensional vector spaces graded by arrows with target in the con-
nected component (P ) of P̃ under the action of V.

In addition, the module category (P )C(D, ω)kψV is indecomposable if and only if
the groupoid V ⇒ P̃ is connected.

Denote by C(D, ω,V, ψ) the tensor category of kψV-bimodules in C(D, ω). The
category C(D, ω,V, ψ) is thus the dual category to C(D, ω) with respect to the module
category C(D, ω)kψV . By construction, the categories C(D, ω,V, ψ) are a multi-fusion
generalization of group-theoretical categories.

Remark 2.2. Let η : De×sD → k×, χ : V → k× be normalized cochains. As in [ENO,
Remark 8.39], there are tensor equivalences

C(D, ω,V, ψ) ' C(D, ω′,V, ψ′),

where ω′ = ω(dη), ψ′ = ψ η|V (dχ).
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Recall that a subgroupoid V ⇒ P̃ of D is called wide if P̃ = P.

Lemma 2.2. Suppose V is a wide subgroupoid. Then C(D, ω,V, ψ) is a fusion category
if and only if V ⇒ P is connected.

Proof. Let P =
∐

(P )∈P/V(P ) be the decomposition of P into disjoint equivalence
classes under the action of V. Then kψV = ⊕(P )kψ(P )V(P ), where V(P ) is the corre-
sponding connected groupoid on the base (P ) and ψ(P ) is the restriction of ψ to V(P ).
The components kψ(P )V(P ) are subobjects of kψV and it is not difficult to see that
kψ(P )V(P ) is irreducible as an object of C(D, ω,V, ψ). This implies the lemma. ¤

Suppose that the 3-cocycle ω satisfies

ω|Ve×sVe×sV = 1.

Objects in C(D, ω,V) := C(D, ω,V, 1) can be described explicitly as follows: these are
vector spaces graded by arrows in D with source and target in P̃,

M = ⊕α∈D| ePMα,

together with actions of V by linear isomorphisms:

g ⇀ : Mα → Mgα, ↼ h : Mα → Mαh,

g, h ∈ V, α ∈ D, such that e(g) = s(α), s(h) = e(α).

Letting |m| ∈ D denote the homogeneity degree of an homogeneous element m ∈
M , the following relations are satisfied:

(2.3) |m ↼ h| = |m|h, |g ⇀ m| = g|m|,
gh ⇀ m = ω(g, h, |m|)g ⇀ (h ⇀ m),(2.4)

id p ⇀ m =

{
m if p = s(|m|) ∈ P̃,

0 otherwise,
(2.5)

(m ↼ g) ↼ h = ω(|m|, g, h) m ↼ gh,(2.6)

m ↼ id p =

{
m if p = e(|m|) ∈ P̃,

0 otherwise,
(2.7)

(2.8) (g ⇀ m) ↼ h = ω(g, |m|, h)g ⇀ (m ↼ h),

for any homogeneous element m ∈ M , g, h ∈ V, such that the elements g, |m|, h are
composable in D.

The tensor structure on the category C(D, ω,V) can be described as follows. If
M, N ∈ C(D, ω,V) denote by V (M, N) the (graded) subspace of M ⊗N spanned by

(2.9) (m ↼ g)⊗n− ω(|m|, g, |n|)m⊗(g ⇀ n),

where m ∈ M , n ∈ N , are homogeneous elements such that |m|, g, |n| are composable
in D.

Tensor product ⊗̄ on C(D, ω,V) is defined by M⊗̄N = (M⊗N)/V (M, N), with
D-grading inherited from M ⊗N . The left and right actions of kV on M⊗̄N are as
follows. The class of m⊗n will be denoted by m⊗̄n. Assume that m ∈ M,n ∈ N
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are homogeneous elements such that e(|m|) = s(|n|). Let g, h ∈ V such that e(g) =
s(|m|), e(|n|) = s(h), then

(2.10)
g ⇀ (m⊗̄n) = ω−1(g, |m|, |n|)(g ⇀ m)⊗̄n,

(m⊗̄n) ↼ h = ω(|m|, |n|, h)m⊗̄(n ↼ h).

The unit object is kV.

Example 2.3. According to the above description, for all P ∈ P, there is a natural
identification

C(D, ω,V(P )) = C(D(P ), ω̂,V(P ));
hence C(D, ω,V(P )) is a fusion group-theoretical category.

Example 2.4. Let P ∈ P, and consider the subgroupoid

{id P } = V(P ) ⇒ P̃ = {P}.
In this case, the category C(D, ω)kV(P ) of right kV(P )-modules in C(D, ω) is the full
tensor subcategory whose objects are graded by arrows α with e(α) = P .

This coincides with the module category M(P ) = ⊕Q∈PCQP [ENO, 2.4].

Suppose that the groupoid D ⇒ P is connected. Let D = D(P ), and ω̂ the 3-
cocycle on D obtained by restriction. As remarked before, by the results in the proof
of Proposition 2.17 in [ENO, 5.5], M(P ) is an indecomposable module category and
there are isomorphisms

C∗M(P )
' C(D, ω,V(P )) ' C(D, ω̂)op .

The last isomorphism can also be seen as a consequence of the description of the
category C(D, ω,V(P )) given above.

In particular, the category C(D, ω,V(P )) is a fusion group-theoretical category,
even though the groupoid V(P ) may not be a wide subgroupoid, that is, we may have
P̃ 6= P.

2.4. The connected case. From now on we shall assume that V ⇒ P̃ is a wide
subgroupoid (so P̃ = P) which is connected. Thus D ⇒ P is also connected. We shall
also fix a 3-cocycle ω on D such that

ω|Ve×sVe×sV = 1.

The connectedness assumption on V implies that the unit object kV in the category
C(D, ω,V) is irreducible. Therefore, C(D, ω,V) is in this case a fusion category. In
what follows we shall give an explicit equivalence that shows that C(D, ω,V) is indeed
a group-theoretical category.

Fix an element O ∈ P. Since V is connected, for any P ∈ P, we can choose an
element τP ∈ V(O,P ). There is no harm to assume τO = id O.

Set V = V(O), D = D(O). For all P,Q ∈ P we have

D(P, Q) = τ−1
P DτQ, V(P, Q) = τ−1

P V τQ.

Let ω̂ be the restriction of ω to D; so ω̂ gives a well-defined 3-cocycle on D. This
restriction map determines a group isomorphism

H3(D, k×) → H3(D, k×), ω 7→ ω̂.
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See for instance [AM].

Let ω̃ ∈ Z3(D, k×) be the 3-cocycle defined by the formula

(2.11) ω̃(g, h, t) = ω̂(τP gτ−1
Q , τQhτ−1

R , τRtτ−1
S ),

for g ∈ D(P,Q), h ∈ D(Q,R), t ∈ D(R, S).
Note that, since τP ∈ V, for all P ∈ P, then we also have ω̃|Ve×sVe×sV = 1.

By construction, ω̃|D = ω̂. Therefore ω̃ is cohomologous to ω, say

(2.12) ω̃ = ω(dψ),

for some normalized 2-cochain ψ : De ×s D → k×.
In particular, the tensor categories C(D, ω) and C(D, ω̃) are equivalent.

Moreover, since both restrictions ω|V and ω̃|V are trivial, relation (2.12) implies
that the restriction ψ : Ve ×s V → k× is a 2-cocycle, and by Remark 2.2 there is a
tensor equivalence

(2.13) C(D, ω,V) ' C(D, ω̃,V, ψ).

Let ψ̂ = ψ|V : V × V → k× be the corresponding 2-cocycle on V , and let also
ψ̃ : Ve ×s V → k× be the 2-cocycle defined by the formula

(2.14) ψ̃(g, h) := ψ̂(τP gτ−1
Q , τQhτ−1

R ),

for all g ∈ V(P,Q), h ∈ V(Q,R). Repeating the argument used above for ω, the
results in [AM] imply that ψ and ψ̃ differ by a 2-coboundary, that is,

ψ̃ = ψ(dχ),

on the connected subgroupoid V, where χ : V → k× is a normalized 1-cochain.
Combining this fact with the equivalence (2.13) and Remark 2.2 we get tensor

equivalences

(2.15) C(D, ω,V) ' C(D, ω̃,V, ψ) ' C(D, ω̃,V, ψ̃).

Let M ∈ C(D, ω̃,V, ψ̃). Let us define F (M) ∈ C(D, ω̂, V, ψ̂) by

F (M) =
⊕

z∈D

Mz.

This gives us a well-defined functor F : C(D, ω̃,V, ψ̃) → C(D, ω̂, V, ψ̂).
Note that, for M ∈ C(D, ω̃,V, ψ̃),

(2.16) M =
⊕

P,Q∈P
τ−1
P ⇀ F (M) ↼ τQ.

Proposition 2.5. The functor F is an equivalence of tensor categories

F : C(D, ω̃,V, ψ̃) '→ C(D, ω̂, V, ψ̂).
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Proof. Define a functor G : C(D, ω̂, V, ψ̂) → C(D, ω̃,V, ψ̃) by the formula

G(W ) =
⊕

P,Q∈P

⊕

z∈D

W(P,z,Q) ' kP ⊗k W ⊗k kP,

for all P, Q ∈ P, z ∈ D, where

W(P,z,Q) = kτ−1
P ⊗kWz⊗kkτQ,

is an object in the category C(D, ω̃,V, ψ̃) as follows: all elements in W(P,z,Q) are
homogeneous of degree τ−1

P zτQ. If v ∈ Wz and g ∈ V(R,P ), h ∈ V(Q, S) then the left
and right actions are defined by

g ⇀ τ−1
P ⊗w⊗τQ = τ−1

R ⊗(τRgτ−1
P ) · w⊗τQ ∈ W(R,z,Q),

τ−1
P ⊗w⊗τQ ↼ h = τ−1

P ⊗w · (τQhτ−1
S )⊗τS ∈ W(P,z,S).

Formulas (2.11) and (2.14) imply that G is well defined.

We claim that the functors F and G are inverse tensor equivalences.
Because ω̃|D = ω̂ and ψ̃|V = ψ̂, we have F (G(W )) ' W , for all W ∈ C(D, ω̂, V, ψ̂).
The proof of the proposition will be finished once we have established the following

claim. Its proof uses connectedness of the groupoid V ⇒ P.

Claim 2.1. The map

f : (kτ−1
P ⊗kU⊗kkτQ)⊗k (kτ−1

Q ⊗kW⊗kkτS) → kτ−1
P ⊗k (U⊗W )⊗kkτS ,

determined by

τ−1
P ⊗ku⊗kτQ ⊗k τ−1

Q ⊗kw⊗kτS 7→ τ−1
P ⊗k(u⊗w)⊗kτS ,

induces a natural isomorphism ζU,W : G(U)⊗̄G(W ) → G(U⊗̄W ). This isomorphism
endows G with a tensor functor structure.

Recall that ⊗ means tensor product in the category of D-graded spaces.

Proof of the Claim. First note that f defines a map from the space

(kP ⊗k U ⊗k kP)⊗ (kP ⊗k W ⊗k kP) =
⊕

P,Q,S

kτ−1
P ⊗kU⊗kkτQ ⊗k kτ−1

Q ⊗kW⊗kkτS

to the space
G(U⊗W ) =

⊕

P,S

kτ−1
P ⊗k (U⊗W )⊗kkτS .

Let now g ∈ V with s(g) = Q, e(g) = Q′. Then we have

f
(
(τ−1

P ⊗ku⊗kτQ) ↼ g ⊗k τ−1
Q′ ⊗kw⊗kτS

)

= f(τ−1
P ⊗ku.(τQgτ−1

Q′ )⊗kτQ′ ⊗k τ−1
Q′ ⊗kw⊗kτS)

= τ−1
P ⊗ku.(τQgτ−1

Q′ )⊗kw⊗kτS

= ω̂(|u|, τQgτ−1
Q′ , |w|) τ−1

P ⊗ku⊗k(τQgτ−1
Q′ ).w⊗kτS

= ω̃(τP |u|τ−1
Q , g, τQ′ |w|τ−1

S ) f
(
τ−1
P ⊗ku⊗kτQ ⊗k g ⇀ (τ−1

Q′ ⊗kw⊗kτS)
)

.

Hence f induces a map ζU,W : G(U)⊗̄G(W ) → G(U⊗̄W ). Using (2.10) and (2.11)
we see that ζU,W is a map in C(D, ω̃,V, ψ̃).
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Let f : kP⊗kU⊗kW⊗kkP → G(U)⊗G(W ) be determined by

f(τ−1
P ⊗ku⊗kw⊗kτS) = τ−1

P ⊗ku⊗kτO ⊗ τO ⊗k w⊗kτS .

Recall that τO = id O. A similar computation to the one done before shows that f
induces a map ξU,W : G(U⊗W ) → G(U)⊗G(W ). Clearly ζU,V ξU,V = id . On the
other hand, for all P, Q, S ∈ P, we have

τ−1
P ⊗ku⊗kτQ⊗τ−1

Q ⊗k w⊗kτS

=
(
τ−1
P ⊗ku⊗kτO

)
↼ τQ⊗τ−1

Q ⇀ (τO ⊗k w⊗kτS)

= τ−1
P ⊗ku⊗kτO⊗τO ⊗k w⊗kτS ,

because ω̃ and ψ̃ are trivial whenever any one of their arguments is a τQ. This implies
that ξU,V ζU,V = id . Therefore ξU,V is inverse to ζU,W , whence ζ is an isomorphism.

The definition of ω̃ also implies that ζ is compatible with the associativity and unit
constraints. This finishes the proof of the claim. ¤

¤

Corollary 2.6. There is a tensor equivalence C(D, ω,V) ' C(D, ω̂, V, ψ̂). In partic-
ular, the category C(D, ω,V) is group-theoretical.

Proof. It follows from (2.15) and Proposition 2.5. ¤

3. Vacant double groupoids

According to the definition given by Ehresmann [E], a double groupoid is a groupoid
object in the category of groupoids. A double groupoid can be represented in the form
of four related groupoids

T :
B ⇒ H
¸ ¸
V ⇒ P

subject to a set of axioms.
This structure admits a pictorial description as ’boxes’ that can be composed in two

directions: horizontal and vertical. Throughout we shall work with the conventions
and notations from [AN1, Section 2]. An element A ∈ B is depicted as a box

A =
t

l r
b

,

where t = t(A), b = b(A) ∈ H are respectively the source and target of A with respect
to vertical composition, and similarly for l = l(A), r = r(A) ∈ V with respect to
horizontal composition.

Horizontal and vertical composition of boxes will be written from left to right and

from top to bottom, respectively. The notation AB (respectively, A
B) will indicate

the horizontal (respectively, vertical) composition; this notation will always implicitly
assume that A and B are composable in the appropriate sense.
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A double groupoid T is called vacant if for any g ∈ V, x ∈ H such that the target of

x coincides with the source of g, there is exactly one box X ∈ B such that X =
x

g .

In particular, in a vacant double groupoid, every box is determined by (any) pair
of adjacent edges.

3.1. Matched pairs of groupoids. Let s, e : G ⇒ P be a groupoid with source and
target maps s and e. A left action of G on a map p : E → P is a map . : G e×p E → E
such that, for all composable g, h ∈ G, x ∈ E ,

p(g.x) = s(g), g.(h.x) = gh.x, id p(x) .x = x.

Similarly, a right action of G on E is a map / : E p ×s G → E such that

p(x/g) = e(g), (x.g).h = x/gh, x/id p(x) = x,

for all composable g, h ∈ G, x ∈ E .

A matched pair of groupoids is a collection (H,V, ., /), where t, b : V ⇒ P and
l, r : H ⇒ P are two groupoids on the same base P, . : H r×t V → V is a left action
of H on (V, b) and / : H r×t V → H is a right action of V on (H, l) satisfying the
following conditions:

r(x.g) = t(x/g), x.gh = (x.g)((x/g).h), xy/g = (x/(y.g))(y/g),

for composable elements x, y ∈ H and g, h ∈ V.

3.2. Exact factorizations. Let (H,V, /, .) be a matched pair of groupoids. There
is an associated diagonal groupoid D ⇒ P with arrows set D = V e×s H, and source,
target, composition and identity given by

s(g, x) = s(g), e(g, x) = e(x),

(g, x)(h, y) = (g(x.h), (x/h)y), id P = (id P , id P ),

g, h ∈ V , x, y ∈ H, P ∈ P. The diagonal groupoid D admits an exact factorization
as the product of its wide subgroupoids V and H. In what follows we shall use the
notation D = V ./ H.

3.3. Characterization. Out of each matched pair of groupoids (H,V) one can build
a vacant double groupoid with boxes B := H r×tV. The element X = (x, g) ∈ H r×tV

can be represented by X =
x

x.g g
x/g

.

More precisely, the following result due to Mackenzie says that the three notions
discussed in this section are indeed equivalent ones.

Proposition 3.1. [M, Theorems 2.10 and 2.15] The following notions are equivalent.
(1) Matched pairs of groupoids.
(2) Groupoids with an exact factorization.
(3) Vacant double groupoids.

¤
We refer the reader to [AN1] for more details on these equivalences.
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4. Weak Hopf algebras arising from vacant double groupoids

Throughout this section we shall consider a finite vacant double groupoid T . We
recall the weak Hopf algebra introduced in [AN1] arising from T .

Let us first recall the definition of Opext(V,H). As a set Opext(V,H) consists of
equivalence classes of pairs (σ, τ), where σ is a normalized 2-cocycle for the vertical
groupoid B ⇒ V and τ a normalized 2-cocycle for the horizontal groupoid B ⇒ H,
such that

(4.1) σ(AB, CD)τ
(

A
C

,
B
D

)
= τ(A,B)τ(C, D)σ(A,C)σ(B, D),

for all appropriately composable A, B,C, D ∈ B.

The set Opext(V,H) has a group structure and it fits into the following general-
ization of the so called Kac exact sequence, see [AN1], [AM]:

(4.2)

0 −→ H1(D,k×) res−→ H1(H, k×)⊕H1(V, k×) −→ Aut (k T )

−→ H2(D,k×) res−→ H2(H, k×)⊕H2(V, k×) −→ Opext(V,H)

−→H3(D, k×) res−→ H3(H,k×)⊕H3(V,k×) −→ . . . ,

where res denotes the restriction maps.

Remark 4.3. Let (σ, τ) be a representative of a class in Opext(kT ). The map
Opext(kT ) → H3(D, k×) in the above sequence takes the class of (σ, τ) to the class
of the 3-cocycle ω = ω(σ, τ) defined by

(4.4) ω((g, x), (h, y), (f, z)) = τ(
x/h

y.f,

y

f) σ(
x

h,

x/h

y.f),

for all composable (g, x), (h, y), (f, z) ∈ V ./ H. Compare with [Sch, 6.4].

Proof. We only sketch the proof. The Kac exact sequence (4.2) comes from a short
exact sequence of double complexes

0 → A•,•(k×) → B•,•(k×) → E•,•(k×) → 0,

see [AN1], [AM]. The associated total complex of the double complex B•,•(k×) is a
“non-standard” projective resolution of the trivial kD-module, hence there are iso-
morphisms ζn : Hn(TotB(k×)) '→ Hn(D,k×) for all n ≥ 0, that can be computed
explicitly. The map Opext(V,H) → H3(D, k×) is obtained by composing the map
Opext(V,H) = H2(TotA•,•(k×)) → H3(TotB•,•(k×)) associated to the inclusion
A•,•(k×) → B•,•(k×) with ζ3. ¤

We note for future use the following properties of the Kac 3-cocycle ω = ω(σ, τ):

ω|V×D×D = 1,(4.5)

ω((g, x), (h, y), (f, z)) = ω((id s(x), x), (h, y), (f, id e(f))),(4.6)

ω((id s(x), x), (h, id e(h)), (f, id e(f))) = σ(
x

h ,

x/h

f),(4.7)
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for all appropriate choice of (g, x), (h, y), (f, z) ∈ D.

Formulas (4.6) and (4.7) are a consequence of (4.4), and (4.5) follows from Remark
3.7 in [AN1].

We now fix a representative (σ, τ) of a class in Opext(V,H). We denote by kσ
τ T

the vector space spanned by the boxes of T endowed with the σ-twisted groupoid
algebra of the vertical composition groupoid and the dual τ -twisted groupoid algebra
of the horizontal composition groupoid.

That is, the comultiplication and multiplication in kσ
τ T are determined by:

∆(A) =
∑

A=BC

τ(B, C) B ⊗ C; A.B =





σ(A,B)
A

B
, if

A

B
,

0, otherwise.

Consider, for any P ∈ P, the elements

P 1 =
∑

x∈H,l(x)=P

id x, 1P =
∑

x∈H,r(x)=P

id x.

Theorem 4.1. ([AN1, Theorem 3.8]) kσ
τ T is a semisimple weak Hopf algebra with

antipode given by
S(A) = τ(A, Ah)−1 σ(A−1, Ah)−1 A−1.

The source and target subalgebras are the subspaces spanned by (1P )P∈P and
(P 1)P∈P , respectively; so they are commutative of dimension |P|. ¤

The weak Hopf algebra structure on kσ
τ T gives rise to a multi-fusion category

structure on the category Rep(kσ
τ T ) of its finite-dimensional representations. This

category is a fusion category if and only if the groupoid V ⇒ P is connected, c.f.
[AN1, Proposition 3.11].

The tensor category Rep(kσ
τ T ) can be described in terms of the combinatorics

of double groupoids, as in [AN1, 3.4]: objects are H-graded vector spaces endowed
with a left σ-twisted action of the vertical composition groupoid B ⇒ H by linear
isomorphisms.

This means that every A ∈ B determines a linear isomorphism A : Vb(A) → Vt(A),
compatible with vertical composition in the following sense:

A.(B.v) = σ(A,B)
A
B

.v,

for all vertically composable A,B ∈ B, and for all v ∈ Vb(A).

Tensor product is as in H graded vector spaces, with twisted V-action induced by
∆. The unit object is the target subalgebra (kσ

τ T )t = ⊕P∈PkP 1, with H-grading
defined by

(kTt)x =

{
kP 1, if x = id P,

0, if x /∈ P,

for all x ∈ H, and B-action A.P 1 = εt(A P 1).
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4.1. The category Rep(kσ
τ T ). We aim to give a combinatorial description of the

category Rep(kσ
τ T ) in terms of the matched pair (H,V) of groupoids associated to T .

Define the category VectHV (σ, τ) as follows. Objects in VectHV (σ, τ) are H-graded
vector spaces M = ⊕x∈HMx, together with a right action of V by linear isomorphisms

g : Mx → Mx/g,

for all x ∈ H such that r(x) = t(g).

That is, for all homogeneous elements m ∈ M and all composable g, h ∈ V such
that r(|m|) = t(g), and for any P ∈ P

m ↼ id P =

{
m if P = r(|m|)
0 otherwise,

(4.8)

(4.9) (m ↼ g) ↼ h = σ(
|m|

g ,

|m|/g

h) m ↼ (gh),

(4.10) |m ↼ g| = |m|/g.

The tensor product of two objects M = ⊕x∈HMx, N = ⊕y∈HNy is given by

(M ⊗N)z = ⊕xy=zMx ⊗Ny,

with right action of V on homogeneous elements

(m⊗ n) ↼ g = τ(
|m|

|n|.g,

|n|
g) m ↼ (|n|.g)⊗ n ↼ g.(4.11)

The unit object is kP with H-grading determined by |P | = id P , P ∈ P, and right
V-action given by P ↼ g = b(g), for all P ∈ P, g ∈ V such that t(g) = P .

Proposition 4.2. For any matched pair of groupoids (H,V) and any pair (σ, τ) ∈
Opext(kT ) there is a natural tensor equivalence

VectHV (σ, τ) ∼= Rep((kσ
τ T )op).

Proof. We will actually prove that VectHV (σ, τ) is tensor equivalent to the category of
right kσ

τ T -modules.

Let M be a right kσ
τ T -module. The H-grading on M is defined by

(4.12) Mx := M ·
x

x
,

for any x ∈ H. If x ∈ H, h ∈ V are elements such that r(x) = t(h), then the action
of h on m ∈ Mx is given by

m ↼ h := m ·
x

h.
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Straightforward calculations show that equations (4.8), (4.9), (4.10) and (4.11) are
fulfilled.

Conversely, assume that N = ⊕y∈HNy is an object in VectHV (σ, τ). Define

n ·
x

g :=

{
n ↼ g if y = x

0 otherwise,
∀n ∈ Ny,

x

g ∈ B.

This defines a right action and the action on a tensor product is given by the comul-
tiplication of kσ

τ T . Moreover, the above functors are strict tensor functors and define
inverse tensor equivalences of categories. Details are left to the reader. ¤

5. Rep(kσ
τ T ) as a category of bimodules

The main goal of this section is to prove that the category Rep(kσ
τ T ) is group-

theoretical. To achieve this we shall use an auxiliary tensor category, namely the
category C(D, ω,V) introduced in Section 2.

Along this section D ⇒ P will be the diagonal groupoid D = V ./ H associated
to the matched pair as in Section 3. We do not assume however that the wide
subgroupoid V ⇒ P is connected.

We begin with the following technical lemma. For any P ∈ P let

θ(P ) = #{g ∈ V : s(g) = P} = #{g ∈ V : e(g) = P}.
Observe that θ(P ) is constant on the connected components of P with respect to V.

Let us define elements ΛP , Λ̃P , Λ in the groupoid algebra kV as follows

(5.1) ΛP =
1

θ(P )

∑

g∈V:s(g)=P

g, Λ̃P =
1

θ(P )

∑

g∈V:e(g)=P

g, Λ =
∑

P∈P
ΛP .

Note that also Λ =
∑

P∈P Λ̃P .

Lemma 5.1. The following identities hold, for all h ∈ V:

(i) h ΛP =

{
Λs(h) if e(h) = P

0 otherwise,
and Λ̃P h =

{
Λ̃e(h) if s(h) = P

0 otherwise,
(ii) h Λ = id s(h) Λ,
(iii) Λ h = Λ id e(h).

Proof. Straightforward. ¤

For any left kV-module M we denote
VM := {m ∈ M : g ⇀ m = id s(g) ⇀ m for any g ∈ V}.

Remark 5.2. Note that for M ∈ C(D, ω,V), we have VM = Λ ⇀ M . Indeed Λ ⇀
M ⊆ VM follows from Lemma 5.1 (ii), and if m ∈ VM then

Λ ⇀ m =
∑

P∈P

1
θ(P )

∑

s(g)=P

g ⇀ m =
∑

P∈P
id P ⇀ m = m.

We now state the main result of this section.
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Theorem 5.2. Let (σ, τ) ∈ Opext(kT ) and let ω = ω(σ, τ) be the 3-cocycle defined
by (4.4). Then the categories Rep(kσ

τ T ) and C(D, ω,V) are tensor equivalent.

Proof. Set p : D → H, p(g, x) = x and π : D → V, π(g, x) = g. Define the
functors Φ : VectHV (σ, τ) → C(D, ω,V), and Ψ : C(D, ω,V) → VectHV (σ, τ) as follows:
Φ(W ) := kV ⊗W , where the tensor product is the tensor product in C(D, ω).

The V-actions and D-grading are determined by

g ⇀ (h⊗ w) := gh⊗ w, (h⊗ w) ↼ g := h(|w|.g)⊗ w ↼ g,

|h⊗ w| := h|w|,
for any homogeneous element w ∈ W and g, h ∈ V appropriately composable.

Given M ∈ C(D, ω,V) define Ψ(M) :=VM . The H-grading on Ψ(M) is given by

(5.3) ||m|| := p(|m|),
and the right action of V is the action on M as an object in C(D, ω,V). Let us prove
that this functors are well defined. Let W ∈ VectHV (σ, τ). Identities (2.3), (2.4), (2.5),
(2.7) and (2.8) are easily checked. Let w ∈ W , h, g, f ∈ V appropriately composable,
then

((h⊗w) ↼ g) ↼ f = h|w|.g⊗ (w ↼ g) ↼ f

= h(|w|.g) (|w|/g).f⊗ (w ↼ g) ↼ f

= ω(|w|, g, f) h(|w|.gf)⊗w ↼ gf,

the last identity by (4.9) and (4.7). This proves identity (2.6), thus Φ is well defined.

We claim that the functors Φ, Ψ give an equivalence of categories.
Let Λ be the element defined by (5.1). Define the map

γM : M → Φ(Ψ(M)), γM (m) = π(|m|)⊗Λ ⇀ m

for any homogeneous element m ∈ M .
The map γM is a kV-bimodule map: indeed, if g ∈ V and m ∈ M is homogeneous

of degree (h, x) ∈ D then

γM (g ⇀ m) = π(g|m|)⊗Λ ⇀ (g ⇀ m) = gπ(|m|)⊗Λ g ⇀ m

= gπ(|m|)⊗Λ id e(g) ⇀ m = g ⇀ γM (m).

The third equality by Lemma 5.1 (iii). On the other hand

γM (m ↼ g) = π(|m|g)⊗Λ ⇀ (m ↼ g)

= h(|m|.g)⊗ (Λ ⇀ m) ↼ g = γM (m) ↼ g.

The inverse of γM is given by γM (g⊗Λ ⇀ m) = gh−1 ⇀ m, if m ∈ M is homogeneous
of degree (h, x).

Claim 5.1. The map γM is well defined.

Proof. First note that if m ∈ M is an homogeneous element of degree (h, x) then the
homogeneous component of degree (id , x) of Λs(h) ⇀ m is h−1 ⇀ m.
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Now, let m,n ∈ M be homogeneous elements of degree (h, x) and (h′, x′) respec-
tively, such that Λ ⇀ m = Λ ⇀ n. Equation (2.5) implies that Λs(h) ⇀ m = Λs(h′) ⇀
n. Any homogeneous component of Λs(h) ⇀ m, respectively Λs(h′) ⇀ n, has degree
(gh, x), resp. (gh′, x′), for some g ∈ V. This implies that x = x′. By the previous
observation h−1 ⇀ m = h′−1 ⇀ n. ¤

If W ∈ VectHV (σ, τ) then Ψ(Φ(W )) =V (kV ⊗ W ) ∼= W , the isomorphism φW :
W −→ V(kV ⊗ W ), being given by φ(w) := Λ id e(|w|) ⊗ w, for any homogeneous
element w ∈ W .

Finally, we shall prove that Φ is a tensor functor. Let W,U ∈ VectHV (σ, τ) and
define ξWU : Φ(W ⊗ U) → Φ(W ) ⊗̄Φ(U) in the form

ξWU (g ⊗ (w ⊗ u)) := (g ⊗ w)⊗̄(e(|w|)⊗ u),

for any appropriate choice of g ∈ V, and homogeneous w ∈ W , u ∈ U .

The natural map ξWU is an isomorphism, its inverse ξWU : Φ(W ) ⊗̄Φ(U) →
Φ(W ⊗ U) being given by

ξWU ((h⊗ z)⊗ (f ⊗ y)) = h(|z|.f)⊗ z ↼ f ⊗ y.

We next show that ξWU is a morphism of V-bimodules.
Let h, g ∈ V, w ∈ W , U ∈ U . To prove right V-linearity we compute

ξWU ((g ⊗ (w ⊗ u)) ↼ h) = ξWU (g(|w||u|.h)⊗ (w ⊗ u) ↼ h)

= τ(
|w|

|u|.h,
|u|

h) ξWU (g(|w||u|.h)⊗ (w ↼ (|u|.h)⊗ u ↼ h))

= τ(
|w|

|u|.h,
|u|

h) (g(|w||u|.h)⊗ w ↼ (|u|.h))⊗̄ (s(|u|)⊗ u ↼ h)

= τ(
|w|

|u|.h,
|u|

h) ((g ⊗ w) ↼ (|u|.h))⊗̄ (s(|u|)⊗ u ↼ h)

= τ(
|w|

|u|.h,
|u|

h) (g ⊗ w)⊗̄ (|u|.h⊗ u ↼ h)

= ω(g|w|, |u|, h) (g ⊗ w)⊗̄ (|u|.h⊗ u ↼ h)
= ξWU (g ⊗ (w ⊗ u)) ↼ h.

The fifth equality by (2.9), the sixth follows from the definition of ω, and the last
equality follows from equation (2.10). Left V-linearity is similarly established.

Claim 5.2. For all U, V, W ∈ VectHV (σ, τ), we have

aΦ(U),Φ(V ),Φ(W ) (ξU,V⊗id ) ξU⊗V,W = (id⊗ξV,W ) ξU,V⊗W Φ(aU,V,W ).

Proof. Let U, V, W ∈ VectHV (σ, τ), g ∈ V and let u ∈ U, v ∈ V, w ∈ W be homogeneous
elements with appropriately composable degree. The left hand side of this equation
evaluated in g⊗u⊗v⊗w gives

a (ξU,V⊗id )(g⊗(u⊗v)⊗̄ s(|w|)⊗w) = a((g⊗u⊗̄ s(|v|)⊗v)⊗̄ s(|w|)⊗w)

= ω(g|u|, |v|, |w|) g⊗u⊗̄ (s(|v|)⊗v⊗̄ s(|w|)⊗w)

= g⊗u⊗̄ (s(|v|)⊗v⊗̄ s(|w|)⊗w).
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The last equality by (4.6). The right hand side of (5.2) evaluated in g⊗u⊗v⊗w gives

(id⊗ξV,W )ξU,V⊗W (g⊗u⊗(v⊗w)) = (id⊗ξV,W )(g⊗u⊗̄ s(|v|)⊗(v⊗w))

= g⊗u⊗̄ (s(|v|)⊗v⊗̄ s(|w|)⊗w).

¤

The proof of the theorem is now complete. ¤

We now can state the main result of this section.

Theorem 5.3. Suppose that Rep(kσ
τ T ) is a fusion category. Let D be the diagonal

groupoid associated to T , and let ω = ω(σ, τ) ∈ H3(D, k×) be the 3-cocycle given by
(4.4). Then there is an equivalence of tensor categories

Rep(kσ
τ T ) ' C(D, ω, V ),

where ω is a normalized 3-cocycle on D cohomologous to the restriction ω̂.
In particular, the category Rep(kσ

τ T ) is group-theoretical. ¤

Proof. By [AN1, Proposition 3.11], the assumption implies that V ⇒ P is connected.
Combining Corollary 2.6 and Theorem 5.2, we get tensor equivalences

Rep(kσ
τ T ) ' C(D, ω,V) ' C(D, ω̂, V, ψ̂),

where ψ ∈ H2(V,k×) is determined by (2.12), and ψ̂ is the 2-cocycle on V obtained
by restriction. By [N2, Remark 3.2], there exists a 3-cocycle ω on D which is coho-
mologous to ω̂ and such that C(D, ω̂, V, ψ̂) ' C(D, ω, V ). This finishes the proof of
the theorem. ¤

It follows that Rep(kσ
τ T ) is the representation category of certain (unique up to

gauge equivalence) semisimple finite-dimensional quasi-Hopf algebra. We point out
that an explicit description (up to twist equivalence) of this quasi-Hopf algebra has
been given in [N2], where the Frobenius-Schur indicators of a group-theoretical fusion
category were also computed.

By specializing the results of Ostrik on classification of module categories over
group-theoretical categories, we can parameterize module categories and fiber functors
for the categories Rep(kσ

τ T ).
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