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Abstract Let H be a finite-dimensional Hopf algebra. We give a description of the tensor
product of bimodule categories over Rep(H). When the bimodule categories are invertible
this description can be given explicitly. We present some consequences of this description
in the case H is a pointed Hopf algebra.
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1 Introduction

The Brauer-Picard groupoid of finite tensor categories, introduced and studied in [7], is the
3-groupoid whose objects are finite tensor categories, a 1-morphism between two tensor cat-
egories C1, C2 are invertible (C1, C2)-bimodule categories, 2-morphisms are equivalences of
such bimodule categories and 3-morphisms are isomorphisms of such equivalences. Given
a tensor category C the Brauer-Picard group of C , denoted by BrPic(C), is the group of
equivalence classes of invertible C -bimodule categories.

The Brauer-Picard group of a tensor category has been used to classify its extensions by
a finite group [7]. Also it has a close relation to certain structures appearing in mathematical
physics, see [10]. In the work [7] the authors compute the Brauer-Picard group of categories
V ectG of finite-dimensional G-graded vector spaces, where G is an Abelian group.
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It is natural to pursue the computation of the Brauer-Picard group of the tensor cat-
egory of representations of an arbitrary finite-dimensional Hopf algebra H . To compute
BrPic(Rep(H)) one has to be able to give an explicit description of tensor product of two
Rep(H)-bimodule categories.

It is well-known that any indecomposable exact Rep(H)-bimodule category is equivalent
to K M, the category of finite-dimensional left K-modules, where K is a right H⊗kH

cop-
simple left H⊗kH

cop-comodule algebra. If S is another such H⊗kH
cop-comodule algebra

one could ask about the decomposition of S M �Rep(H) K M in indecomposable Rep(H)-
bimodule categories. For group algebras of finite Abelian groups this decomposition was
explicitly given in [7], but for arbitrary Hopf algebras this problem seems more complicated.
However, if both bimodule categories K M, S M are invertible then S M �Rep(H) K M is
indecomposable and, under some additional assumptions, it is equivalent to S�H K M. We
present some consequences of this result that will be useful to compute the Brauer-Picard
group for pointed Hopf algebras over an Abelian group.

The contents of the paper are the following. Section 3 is dedicated to recall necessary
definitions and facts on representations of tensor categories. In Sect. 4 we study the tensor
product of bimodule categories over the category Rep(H), where H is a finite-dimensional
Hopf algebra and in Sect. 5 we restrict to the case when H is quasi-triangular, allowing us
to give another proof of [9, Corollary 8.10] concerning about the fusion rules of module
categories over a finite group.

2 Preliminaries and notation

Throughout the paper k will denote an algebraically closed field of characteristic zero. All
vector spaces will be considered over k. For any Abelian category A we shall denote by Aop

the opposite Abelian category, that is objects are the same but arrows are reversed. If A is
an algebra we shall denote by AM the category of finite-dimensional left A-modules.

If H is a Hopf algebra we shall denote by SH its antipode. If K,S are left H -comodule
algebras with coaction given by λK,λS we shall denote by H

K MS the category of (K,S)-
bimodules V equipped with a left H -coaction δ : V → H⊗V such that δ is a morphism of
(K,S)-bimodules, that is

(k · v · s)(−1)⊗(k · v · s)(0) = k(−1)v(−1)s(−1)⊗k(0) · v(0) · s(0),

for all s ∈ S, k ∈ K,v ∈ V .
If H is a Hopf algebra, H0 is the coradical. If (K,λ) is a left H -comodule algebra and

H0 is a Hopf subalgebra, K0 = λ−1(H0⊗kK) is a left H0-comodule algebra.

2.1 Tensor categories

A tensor category over k is a k-linear Abelian rigid monoidal category. Hereafter all tensor
categories will be assumed to be over a field k. A finite tensor category [6] is a tensor
category such that it has only a finite number of isomorphism classes of simple objects, Hom
spaces are finite-dimensional k-vector spaces, all objects have finite lenght, every simple
object has a projective cover and the unit object is simple. All functors will be assumed to
be k-linear.
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Tensor product of bimodule categories over Hopf algebras

2.2 Quasi-triangular Hopf algebras

Let H be a Hopf algebra. A quasi-triangular structure on H is an invertible element
R ∈ H⊗kH such that

(�⊗id)(R) = R13R23, (id⊗�)(R) = R13R12, (2.1)

R1h(1)⊗R2h(2) = h(2)R
1⊗h(1)R

2, for all h ∈ H. (2.2)

It is well known that (SH ⊗id)(R) = R−1 = (id⊗SH )(R). For the inverse of R we shall
use the notation R−1 = R−1⊗R−2.

If (H,R) is a quasi-triangular Hopf algebra the category Rep(H) is braided with braiding
given by cX,Y : X⊗kY → Y⊗kX, cX,Y (x⊗y) = R2 · y⊗R1 · x for all X,Y ∈ Rep(H), x ∈
X,y ∈ Y . The inverse of c is given by c−1

X,Y (x⊗y) = R−1 · y⊗R−2 · x for all X,Y ∈ Rep(H),
x ∈ X,y ∈ Y .

3 Representations of tensor categories

Let C be a tensor category. A left representation of C , or a left module category over C
is an Abelian category M equipped with an exact bifunctor ⊗ : C × M → M, that we
will sometimes refer as the action, natural associativity and unit isomorphisms mX,Y,M :
(X ⊗ Y )⊗M → X ⊗ (Y⊗M), �M : 1⊗M → M such that

mX,Y,Z⊗M mX⊗Y,Z,M = (idX ⊗ mY,Z,M) mX,Y⊗Z,M (aX,Y,Z ⊗ idM), (3.1)

(idX ⊗ lM)mX,1,M = rX ⊗ idM. (3.2)

A left module category M is exact [6], if for any projective object P ∈ C the object P⊗M

is projective in M for all M ∈ M. A right module category over C is an Abelian category M
equipped with an exact bifunctor ⊗ : M × C → M equipped with isomorphisms m̃M,X,Y :
M⊗(X⊗Y ) → (M⊗X)⊗Y , rM : M⊗1 → M such that

m̃M⊗X,Y,Z m̃M,X,Y⊗Z(idM⊗aX,Y,Z) = (m̃M,X,Y ⊗idZ) m̃M,X⊗Y,Z, (3.3)

(rM⊗idX)m̃M,1,X = idM⊗lX. (3.4)

A (C, C′)-bimodule category is an Abelian category M with left C -module cate-
gory and right C′-module category structure together with natural isomorphisms {γX,M,Y :
(X⊗M)⊗Y :→ X⊗(M⊗Y ),X ∈ C, Y ∈ C′,M ∈ M} satisfying certain axioms. For details
the reader is referred to [9, Prop. 2.12]. A (C, C′)-bimodule category is the same as left
C � C′op-module category. Here � denotes Deligne’s tensor product of Abelian categories
[4]. For a bimodule category M we shall denote by

{

ml
X,Y,M : (X ⊗ Y )⊗M → X ⊗ (Y⊗M : X,Y ∈ C,M ∈ M

}

and
{

mr
M,X,Y : M⊗(X⊗Y ) → (M⊗X)⊗Y : X,Y ∈ C,M ∈ M

}

the left and right associativity isomorphisms respectively.
If M is a right C -module category then Mop denotes the opposite Abelian category with

left C action C × Mop → Mop, (M,X) �→ M⊗X∗ and associativity isomorphisms m
op
X,Y,M =

Author's personal copy
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m−1
Y ∗,X∗,M for all X,Y ∈ C,M ∈ M. Similarly if M is a left C -module category. If M is a

(C, D)-bimodule category then Mop is a (D, C)-bimodule category. See [9, Prop. 2.15].
A module functor between left C -module categories M and M′ over a tensor category

C is a pair (T , c), where T : M → M′ is a functor and cX,M : T (X⊗M) → X⊗T (M) is a
family of natural isomorphism such that for any X,Y ∈ C , M ∈ M:

(idX ⊗ cY,M)cX,Y⊗MT (mX,Y,M) = mX,Y,T (M) cX⊗Y,M, (3.5)

�T (M) c1,M = T (�M). (3.6)

We shall denote this functor by (T , c) : M → M′. Sometimes we shall denote the family of
isomorphisms cT to emphasize the fact that they are related to the functor T .

Let M1 and M2 be left C -module categories. The category whose objects are mod-
ule functors (F , c) : M1 → M2 will be denoted by FunC(M1, M2). A morphism between
(F , c) and (G, d) ∈ FunC(M1, M2) is a natural transformation α : F → G such that for any
X ∈ C , M ∈ M1:

dX,MαX⊗M = (idX⊗αM)cX,M. (3.7)

Two module categories M1 and M2 over C are equivalent if there exist module functors
F : M1 → M2 and G : M2 → M1 and natural isomorphisms idM1 → F ◦ G, idM2 →
G ◦ F that satisfy (3.7).

The direct sum of two module categories M1 and M2 over a tensor category C is the
k-linear category M1 × M2 with coordinate-wise module structure. A module category is
indecomposable if it is not equivalent to a direct sum of two non trivial module categories.
Any exact module category is equivalent to a direct sum of indecomposable exact module
categories, see [6].

If M, M′ are right C -modules, a module functor from M to M′ is a pair (T , d) where
T : M → M′ is a functor and dM,X : T (M⊗X) → T (M)⊗X is a family of isomorphisms
such that for any X,Y ∈ C , M ∈ M:

(dM,X⊗idY )dM⊗X,Y T (mM,X,Y ) = mT (M),X,Y dM,X⊗Y , (3.8)

�T (M) c1,M = T (�M). (3.9)

If M, M′ are (C, D)-bimodule categories, a bimodule functor is the same as a module func-
tor of C � Dop-module categories, that is a functor F : M → M′ such that (F, c) : M → M′

is a functor of left C -module categories, also (F, d) : M → M′ is a functor of right D-
module categories and

(idX⊗dM,Y )cX,M⊗r Y F (γX,M,Y ) = γX,F(M),Y (cX,M⊗idY )dX⊗lM,Y , (3.10)

for all M ∈ M, X ∈ C , Y ∈ D.

3.1 Tensor product of bimodule categories

Let C, C′, E , E ′ be tensor categories. If M is a (C, E )-bimodule category and N is an (E , C′)-
bimodule category, the tensor product over E is denoted by M �E N . This category is a
(C, C′)-bimodule category. For more details on the tensor product of module categories the
reader is referred to [7, 9].
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Tensor product of bimodule categories over Hopf algebras

If M is a (C, E )-bimodule category and N is a (C, E ′)-bimodule category then the cat-
egory FunC(M, N ) has a structure of (E , E ′)-bimodule category, see [9, Prop.3.18]. Let us
briefly describe both structures. Let us denote

⊗l : E × FunC(M, N ) → FunC(M, N ),⊗r : E ′ × FunC(M, N ) → FunC(M, N )

the left and right actions. If X ∈ E , Y ∈ E ′, F ∈ FunC(M, N ) and M ∈ M, then

(

X⊗l
F

)

(M) = F(M⊗X),
(

F⊗r
Y

)

(M) = F(M)⊗Y.

The module structures are the following. Let X,X′ ∈ E , M ∈ M and let cF
X′,M : F(X′⊗M) →

X′⊗F(M) be the module functor structure of F . Then cX⊗l
F

X′,M : (X⊗F)(X′⊗M) →
X′⊗(X⊗F)(M) is defined as the composition

F
((

X′⊗M
)⊗X

) F(γX′,M,X)−−−−−−→ F
(

X′⊗(M⊗X)
)

cF
X′,M⊗X−−−−→ X′⊗F(M⊗X).

The associativity ml
X,X′,F : (X⊗X′)⊗l

F → X⊗l
(X′⊗l

F ) is the natural isomorphism

F
(

M⊗(

X⊗X′)) F(mr
M,X,X′ )−−−−−−→ F

(

(M⊗X)⊗X′),

for any X,X′ ∈ E , M ∈ M. Also the map

cF⊗r
Y

X,M : (F⊗r
Y

)

(X⊗M) → X⊗(

F⊗r
Y

)

(M)

is defined by the composition

F(X⊗M)⊗Y
cF
X,M

⊗idY−−−−−→ (

X⊗F(M)
)⊗Y

γX,F(M),Y−−−−−→ X⊗(

F(M)⊗Y
)

.

Proposition 3.1 [9, Thm. 3.20] If M is a (E , C)-bimodule and N is a (C, E ′)-bimodule then
there is a canonical equivalence of (E , E ′)-bimodule categories:

Mop �C N 	 FunC(M, N ). (3.11)

3.2 The center of a bimodule category

The following definition was given in [8].

Definition 3.2 If M is a C -bimodule category the center of M is the category ZC(M)

whose objects are pairs (M,φM) where M ∈ M and {φM
X : X⊗M → M⊗X : X ∈ C} is a

family of natural isomorphisms such that

mr
M,X,Y φM

X⊗Y = (

φM
X ⊗idY

)

γ −1
X,M,Y

(

idX⊗φM
Y

)

ml
X,Y,M, (3.12)

for all X,Y ∈ C , M ∈ M. A morphism between two objects (M,φM), (N,φN) in Z C(M)

is a morphism f : M → N in M such that (f ⊗idX)φM
X = φN

X (idX⊗f ) for all X ∈ C .

Lemma 3.3 [9, Lemma 7.8] If M is a C -bimodule category the center ZC(M) is a Z(C)-
bimodule category .
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Let us briefly explain the left and right actions that we shall denote them by ⊗l and ⊗r

respectively. For any X ∈ C , M ∈ M define

(X, cX)⊗l

(

M,φM
) = (

X⊗M,φX⊗M
)

and

(

M,φM
)⊗r (X, cX) = (

M⊗X,φM⊗X
)

where

φX⊗M
Y = γ −1

X,M,Y

(

idX⊗φM
Y

)

ml
X,Y,M(cYX⊗idM)

(

ml
Y,X,M

)−1
, (3.13)

φM⊗X
Y = mr

M,X,Y (idM⊗cYX)
(

mr
M,Y,X

)−1(
φM

Y ⊗idX

)

γ −1
Y,M,X, (3.14)

for all Y ∈ C .

3.3 Module categories over Hopf algebras

Assume that H is a finite-dimensional Hopf algebra and let (A, λ) be a left H -comodule al-
gebra. The category A M is a representation of Rep(H). The action ⊗ : Rep(H) × A M →
A M is given by V ⊗M = V ⊗kM for all V ∈ Rep(H), M ∈ A M. The left A-module struc-
ture on V ⊗kM is given by the coaction λ. When A is right H -simple, that is, it has no
non-trivial right ideal H -costable, then the category A M is exact. Reciprocally, if M is an
exact indecomposable module category over Rep(H) then there exists a left H -comodule
algebra A right H -simple with trivial coinvariants such that M 	 A M as Rep(H)-modules,
see [1, Theorem 3.3].

Definition 3.4 If (A, ρ) is a right H -comodule algebra then (Aop, ρ̄) is a left H -comodule
algebra, where Aop denotes the opposite algebra and ρ̄ : A → H⊗A is defined by ρ̄(a) =
SH (a(1))⊗a(0), where ρ(a) = a(0)⊗a(1) for all a ∈ A. We shall denote this left H -comodule
algebra by Ā.

Lemma 3.5 There is an equivalence (A M)op 	 Ā M as left Rep(H)-modules.

Proof Define (F, c) : (A M)op → Ā M by F(M) = M∗ for any M ∈ A M. If f ∈ M∗,m ∈
M,a ∈ A then (a · f )(m) = f (a · m). For any X ∈ Rep(H), M ∈ (A M)op the maps cX,M :
F(X⊗M) → X⊗F(M) are the identities. One can easily verify that this functor defines an
equivalence of module categories. �

Proposition 3.6 [1, Prop. 1.23] If A and A′ are right H -simple left H -comodule algebras,
there is an equivalence of categories

FunRep(H)(A M, A′ M) 	 H
A′ MA. (3.15)

We shall explain briefly the proof of this Proposition. Any module functor (F, cF ) :
A M → A′ M is exact [6], thus there is exists an object P ∈ A′ MA such that F(M) =
P⊗AM . The object P has a left H -comodule structure given by

λ : P → H⊗kP, λ(p) = cF
H,A(p⊗1⊗1),

for all p ∈ P .
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For any finite-dimensional Hopf algebra H we shall denote by diag(H) the left
H⊗kH

cop-comodule algebra with H as the underlying algebra structure and comodule
structure:

λ : diag(H) → H⊗kH
cop⊗kdiag(H), λ(h) = h(1)⊗h(3)⊗h(2),

for all h ∈ H . The category H M is a Rep(H)-bimodule category with obvious structure.
The proof of the following result is easy and omitted.

Lemma 3.7 There is an equivalence of Rep(H)-bimodule categories

H M 	 diag(H)M.

4 Tensor product of bimodule categories over Hopf algebras

Let A,B be finite-dimensional Hopf algebras. A (Rep(B),Rep(A))-bimodule category
is the same as a left Rep(Acop⊗B)-module category, see [4, Prop. 5.5]. Thus any exact
(Rep(B),Rep(A))-bimodule category is equivalent to the category S M of left S-modules,
where S is a finite-dimensional right Acop⊗B-simple left Acop⊗B-comodule algebra, see
[1, Thm. 3.3]. The main purpose of this section is to understand the tensor product of
(Rep(B),Rep(A))-bimodule categories.

Set πA : A⊗B → A, πB : A⊗B → B the algebra maps

πA(x⊗y) = ε(y)x, πB(x⊗y) = ε(x)y,

for all x ∈ A,y ∈ B . If S is a left Acop⊗B-comodule algebra the actions of the tensor cate-
gories Rep(A), Rep(B) are as follows. If M ∈ S M, X ∈ Rep(B), Y ∈ Rep(A) then

X⊗M = X⊗kM, M⊗Y = Y⊗kM,

where the left action of S is:

s · (x⊗m) = πB(s(−1)) · x⊗s(0) · m, s · (y⊗m) = πA(s(−1)) · y⊗s(0) · m,

for all s ∈ S,x ∈ X,y ∈ Y,m ∈ M . We state the following lemma that will be useful later.

Lemma 4.1 For any h ∈ A⊗B

πB(h(1))⊗πA(h(2)) = πB(h(2))⊗πA(h(1)). (4.1)

We shall give to the category B
K MS the following Rep(A)-bimodule category structure.

If X,Y ∈ Rep(A), P ∈ B
K MS then

X⊗l
P = P⊗S(X⊗kS), P⊗r

Y = Y⊗kP.

Here the left S-module structure on X⊗kS is given by:

s · (x⊗t) = πA(s(−1)) · x⊗s(0)t, (4.2)
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for all s, t ∈ S,x ∈ X. The object X⊗l
P belongs to the category B

K MS with the following
structure:

r · (p⊗x⊗t) · s = r · p⊗x⊗ts, δ1(p⊗x⊗s) = p(−1)πB(s(−1))⊗p(0)⊗x⊗s(0),

for all x ∈ X, r ∈ K,s, t ∈ S,p ∈ P . The object P⊗r
Y belongs to the category B

K MS with
the following structure:

r · (y⊗p) · s = πA(r(−1)) · y⊗r(0) · p · s, δ2(y⊗p) = p(−1)⊗y⊗p(0),

for all r ∈ K,s, t ∈ S,p ∈ P , y ∈ Y . We shall denote the category B
K MS with the above

described Rep(A)-bimodule category by M(A,B,K,S) to emphasize the presence of this
extra structure.

Proposition 4.2 The category M(A,B,K,S) is a Rep(A)-bimodule category.

Proof The map δ1 : X⊗l
P → B⊗kX⊗l

P is well defined. Indeed, if x ∈ X, s, t ∈ S,p ∈ P

then

δ1(p · t⊗x⊗s) = p(−1)πB(t(−1)s(−1))⊗p(0) · t(0)⊗x⊗s(0)

= p(−1)πB(t(−1)s(−1))⊗p(0)⊗πA(t(0) (−1)) · x⊗t(0) (0)s(0)

= p(−1)πB(t(0) (−1)s(−1))⊗p(0)⊗πA(t(−1)) · x⊗t(0) (0)s(0)

= δ1
(

p⊗t · (x⊗s)
)

.

The third equality follows from (4.1). It can be proven by a straightforward computation
that both objects X⊗l

P , P⊗r
Y are in the category B

K MS . Let X,Y ∈ Rep(A), P ∈ B
K MS ,

define

ml
X,Y,P : (X⊗kY )⊗l

P → X⊗l(

Y⊗l
P

)

,

mr
M,X,Y : P⊗r

(X⊗kY ) → (

P⊗r
X

)⊗r
Y

by

ml
X,Y,P (p⊗x⊗y⊗s) = p⊗y⊗1⊗x⊗s, mr

M,X,Y (x⊗y⊗p) = y⊗x⊗p,

for all x ∈ X,y ∈ Y,p ∈ P, s ∈ S. One can verify easily that both maps belong to the cat-
egory B

K MS and they satisfy axioms (3.1), (3.2) and (3.3), (3.4) respectively. The maps
γX,P,Y : (X⊗l

P )⊗r
Y → X⊗l

(P⊗r
Y ), γ (y⊗p⊗x⊗s) = y⊗p⊗x⊗s are morphisms in the

category B
K MS and they satisfy the requirements of [9, Prop. 2.12], hence M(A,B,K,S)

is a Rep(A)-bimodule category. �

Theorem 4.3 Let K,S be two right Acop⊗kB-simple left Acop⊗kB-comodule algebras. The
equivalence (3.15) establishes an equivalence

M(A,B,K,S) 	 FunRep(B)(S M, K M)

of Rep(A)-bimodule categories.
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Proof Define Φ : M(A,B,K,S) → FunRep(B)(S M, K M) by

Φ(P )(N) = P⊗SN,

for all P ∈ B
R MS , N ∈ S M. We shall define on the functor Φ structures of left and right

Rep(A)-module functor. The natural isomorphisms cX,P : Φ(X⊗l
P ) → X⊗l

Φ(P ) are de-
fined by

(cX,P )N : (P⊗S(X⊗kS)
)⊗SN → P⊗S(X⊗kN),

(cX,P )N(p⊗x⊗s⊗n) = p⊗x⊗s · n,

for all N ∈ S M, p ∈ P , x ∈ X, s ∈ S, n ∈ N . The natural isomorphisms dP,Y : Φ(P⊗Y ) →
Φ(P )⊗Y is defined by

(dP,Y )N : (Y⊗kP )⊗SN → Y⊗k(P⊗SN), (dP,Y )N(y⊗p⊗n) = y⊗p⊗n,

for all p ∈ P , y ∈ Y , n ∈ N . It is easy to prove that the maps cX,P , dP,Y are well-defined and
make the functor Φ a left and right Rep(A)-module functor, respectively. �

Using the previous Theorem, equivalence (3.11) and Lemma 3.5 we obtain:

Corollary 4.4 Let K be a right Acop⊗kB-simple left Acop⊗kB-comodule algebra and L a
right Bcop⊗kA-simple left Bcop⊗kA-comodule algebra. There is an equivalence of Rep(A)-
bimodule categories:

LM �Rep(B) K M 	 M(A,B,K,L).

Recall that L is the opposite algebra of L with left Acop⊗kB-comodule structure l �→
(S −1

A ⊗SB)(τ (l(−1)))⊗l(0) where l �→ l(−1)⊗l(0) is the left Bcop⊗A-comodule structure and
τ : B⊗kA → A⊗kB is the map τ(b⊗a) = a⊗b.

Keep in mind that K,S are finite-dimensional left Acop⊗kB-comodule algebras. Using
the map πB : A⊗kB → B the algebras K,S are left B-comodule algebras, thus S is a right
B-comodule algebra:

S → S⊗kB, s �→ s(0)⊗S −1
B

(

πB(s(−1))
)

, (4.3)

for all s ∈ S. Hence it makes sense to consider the co-tensor product S�BK . It is clear that
S�BK is a subalgebra of S⊗kK . The following result is [2, Lemma 2.2]. We shall give the
proof for the sake of completeness.

Lemma 4.5 S⊗kK is a left B-comodule with coaction ρ : S⊗kK → B⊗S⊗kK given by

ρ(s⊗k) = πB(s(−1))πB(k(−1))⊗s(0)⊗k(0),

for all s ∈ S, k ∈ K . Moreover (S⊗K)coB = S�BK .

Proof Let
∑

s⊗k ∈ S�BK . Abusing of the notation, from now on we shall omit the sum-
mation symbol. Then

s(0)⊗S −1
B

(

πB(s(−1))
)⊗k = s⊗πB(k(−1))⊗k(0).
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Thus we deduce that

πB(s(0) (−1))⊗s(0) (0)⊗S −1
B

(

πB(s(−1))
)⊗k = πB(s−1)⊗s(0)⊗πB(k(−1))⊗k(0).

Then

ρ(s⊗k) = πB(s(0) (−1))S −1
B

(

πB(s(−1))
)⊗s(0) (0)⊗k = 1⊗s⊗k.

Now, let s⊗k ∈ (S⊗K)coB then

1⊗s⊗k = πB(s(−1))πB(k(−1))⊗s(0)⊗k(0).

From this equality we deduce that 1⊗s(0)⊗S −1
B (πB(s(−1)))⊗k is equal to

πB(s(−1))πB(k(−1))⊗s(0) (0)⊗S −1
B

(

πB(s(0) (−1))
)⊗k(0).

Then s(0)⊗S −1
B (πB(s(−1)))⊗k = s⊗πB(k(−1))⊗k(0), so s⊗k ∈ S�BK . �

Define the map λ : S�BK → A⊗kA
cop⊗S�BK by

λ(s⊗k) = SA

(

πA(s(−1))
)⊗πA(k(−1))⊗s(0)⊗k(0),

for all s⊗k ∈ S�BK .

Lemma 4.6 (S�BK,λ) is a left A⊗kA
cop-comodule algebra.

Proof Let us prove first that λ is well-defined. Let s⊗k ∈ S�BK , then
s(0)⊗S −1

B (πB(s(−1)))⊗k = s⊗πB(k(−1))⊗k(0), hence

s(0) (0)⊗s(0) (−1)⊗S −1
B

(

πB(s(−1))
)⊗k(−1)⊗k(0)

= s(0)⊗s(−1)⊗πB(k(−1))⊗k(0) (−1)⊗k(0) (0).

Therefore

s(0) (0)⊗SA

(

πA(s(0) (−1))
)⊗S −1

B

(

πB(s(−1))
)⊗πA(k(−1))⊗k(0)

= s(0)⊗SA

(

πA(s(−1))
)⊗πB(k(−1))⊗πA(k(0) (−1))⊗k(0) (0).

Thus SA(πA(s(−1)))⊗πA(k(0) (−1))⊗s(0)⊗πB(k(−1))⊗k(0) (0) is equal to

SA

(

πA(s(0) (−1))
)⊗πA(k(−1))⊗s(0) (0)⊗S −1

B

(

πB(s(−1))
)⊗k(0).

Using (4.1) we get that SA(πA(s(−1)))⊗πA(k(0) (−1))⊗s(0)⊗πB(k(−1))⊗k(0) (0) is equal to
SA(πA(s(−1)))⊗πA(k(−1))⊗s(0) (0)⊗S −1

B (πB(s(0) (−1)))⊗k(0). Hence λ(S�BK) ⊆
Acop⊗A⊗S�BK . It follows straightforward that λ is an algebra map. �

Lemma 4.5 implies that the category S�BK M is a Rep(A)-bimodule category. In
what follows we shall study the relation between this Rep(A)-bimodule category and
M(A,B,K,S).
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Let F : S�BK M → M(A,B,K,S), G : M(A,B,K,S) → S�BK M be the functors de-
fined by

F (N) = (S⊗kK)⊗S�BKN, G(P ) = P coB, (4.4)

for all N ∈ S�BK M, P ∈ M(A,B,K,S). This pair of functors were considered first in [5],
see also [2]. The (K,S)-bimodule structure on F (N) is given as follows:

k′ · (s⊗k⊗n) · s ′ = ss ′⊗k′k⊗n, for all s, s ′ ∈ S, k, k′ ∈ K,n ∈ N.

Define the map δ : F (N) → B⊗kF (N) by

δ(s⊗k⊗n) = πB(k(−1))πB(s(−1))⊗s(0)⊗k(0)⊗n,

for all s ∈ S, k ∈ K,n ∈ N . It follows from (S⊗K)coB = S�BK that δ is well-defined. Also
F (N) ∈ M(A,B,K,S), details are left to the reader. The action of S�BK on G(P ) is given
by

(s⊗k) · p = k · p · s, for all s⊗k ∈ S�BK.

Proposition 4.7 The functors F , G are left and right Rep(A)-module functors.

Proof First we shall prove that F is a module functor. Let N ∈ S�BK M and X ∈ Rep(A).
Define

cX,N : (S⊗kK)⊗S�BK(X⊗kN) → (

(S⊗kK)⊗S�BKN
)⊗S(X⊗kS)

by cX,N (s⊗k⊗x⊗n) = 1⊗k⊗n⊗x⊗s, for all x ∈ X, s ∈ S, k ∈ K,n ∈ N . �

Claim 4.1 The map cX,N is well-defined.

Proof of claim First observe that for any x ∈ X,s, t ∈ S we have that

x⊗st = s(0) · (SA

(

πA(s(−1))
) · x⊗t

)

. (4.5)

Recall that the action of S on X⊗kS is given in (4.2). Let s ′⊗k′ ∈ S�BK , x ∈ X, s ∈ S,

k ∈ K,n ∈ N . Then

cX,N

(

(s⊗k) · (s ′⊗k′)⊗x⊗n
) = cX,N

(

s ′s⊗kk′⊗x⊗n
) = 1⊗kk′⊗n⊗x⊗s ′s

= 1⊗kk′⊗n⊗s ′
(0) · (SA

(

πA

(

s ′
(−1)

)) · x⊗s
)

= s ′
(0)⊗kk′⊗n⊗SA

(

πA

(

s ′
(−1)

)) · x⊗s

The second equality follows from (4.5). On the other hand the element
cX,N (s⊗k⊗SA(πA(s ′

(−1))) · x⊗(s ′
(0)⊗k′) · n) is equal to

= 1⊗k⊗(

s ′
(0)⊗k′) · n⊗SA

(

πA

(

s ′
(−1)

)) · x⊗s

= s ′
(0)⊗kk′⊗n⊗SA

(

πA

(

s ′
(−1)

)) · x⊗s.

This finishes the proof of the claim. �
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Clearly cX,N is a (K,S)-bimodule homomorphism and also a B-comodule homomor-
phism. Equations (3.5) and (3.6) are satisfied. Thus (F , c) is a module functor.

If N ∈ S�BK M and Y ∈ Rep(A) define

dN,Y : (S⊗kK)⊗S�BK(Y⊗kN) → Y⊗k

(

(S⊗kK)⊗S�BKN
)

by dN,Y (s⊗k⊗y⊗n) = πA(k(−1)) · y⊗s⊗k(0)⊗n for all s ∈ S, k ∈ K,n ∈ N,y ∈ Y . It fol-
lows from a straightforward computation that the maps dN,Y are well-defined isomorphisms
in the category M(A,B,K,S) and they satisfy (3.8), (3.9). Hence (F , d) is a module func-
tor.

Now, let us prove that G is a module functor. Let P ∈ M(A,B,K,S), X,Y ∈ Rep(A).
Set c′

X,P : (P⊗SX⊗kS)coB → X⊗kP
coB the map defined by

c′
X,P (p⊗x⊗s) = SA

(

πA(s(−1))
) · x⊗p · s(0),

for all p⊗x⊗s ∈ (P⊗SX⊗kS)coB . Define also d ′
P,Y :: (Y⊗kP )coB → Y⊗kP

coB by

d ′
P,Y (y⊗p) = y⊗p, for all y⊗p ∈ (Y⊗kP )coB.

One can easily prove that (G, c′) is a module functor of left Rep(A)-module categories and
(G, d ′) is a module functor of right Rep(A)-module categories. �

5 Tensor product of module categories over a quasi-triangular Hopf algebra

In this section H will denote a finite-dimensional quasi-triangular Hopf algebra. We shall
describe the tensor product of module categories over Rep(H).

5.1 Module categories over a braided tensor category

First, let us recall some general considerations about the tensor product of module cate-
gories over a braided tensor category. Let C be a braided tensor category with braiding
cX,Y : X⊗Y → Y⊗X for all X,Y ∈ C . Let M be a right C -module. Then M has a left C -
module structure C × M → M given by Y⊗rev

M := M⊗Y for all Y ∈ C , M ∈ M and the
associativity constraints mrev

X,Y,M : (X⊗Y )⊗rev
M → X⊗rev

(Y⊗rev
M) are given by

mrev
X,Y,M = mM,Y,X(idM⊗cX,Y ),

for all X,Y ∈ C , M ∈ M. This category is indeed a left C -module category, see [9,
Lemma 7.2], that we shall denote by Mrev. Equipped with these two structures M is a
C -bimodule category. For details see [9, Prop. 7.1].

Remark 5.1 In particular if M is a right C -module and N are left C -module then M is a
bimodule category using the reverse right action, and the tensor product M �C N is a left
C -module category.

If M is a C -bimodule category then the center Z C(M) has two left Z(C)-module struc-
tures: the one denoted by ⊗l explained in Sect. 3.2 given by (3.14) and the reverse action of
the right action ⊗r presented in (3.13). Both right actions give the same module category.
This result will be useful later.
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Proposition 5.2 There is an equivalence of left Z(C)-module categories between (ZC(M),

⊗rev
r ) and (Z C(M),⊗l ).

Proof Define (F , d) : (Z C(M),⊗1) → (Z C(M),⊗rev
r ) the module functor as follows. The

functor F on objects is the identity, that is F (M,φM) = (M,φM) for any (M,φM) ∈
Z C(M). If (X, cX) ∈ Z(C) define

dX,M : (X, cX)⊗l

(

M,φM
) → (

M,φM
)⊗r (X, cX), dM,X = φM

X .

The maps φM
X are morphisms in the category Z C(M). Indeed, we must prove that for all

X,Y ∈ C , M ∈ M
(

φM
X ⊗idY

)

φX⊗M
Y = φM⊗X

Y

(

idY ⊗φM
X

)

. (5.1)

Using (3.12) one can see that the right hand side of (5.1) equals to

mr
M,X,Y (idM⊗cYX)φM

Y⊗X

(

ml
Y,X,M

)−1
, (5.2)

and the left hand side of (5.1) equals to

mr
M,X,Y φM

X⊗Y (cYX⊗idM)
(

ml
Y,X,M

)−1
. (5.3)

Follows from the naturality of φ that the expressions (5.2), (5.3) are equal. Let us prove now
that the functor (F , d) is a module functor. Equation (3.5) amounts to

(

φM
Y ⊗idX

)

φY⊗M
X ml

X,Y,M = mr
M,Y,X(cX,Y ⊗idM)φM

X⊗Y , (5.4)

for all X,Y ∈ C , M ∈ M. Equation (5.4) can be checked by a direct computation. �

5.2 Tensor product of module categories over a quasi-triangular Hopf algebra

Let H be a finite-dimensional quasi-triangular Hopf algebra with R-matrix R. Any left
Rep(H)-module category is a Rep(H)-bimodule category as explained in the beginning
of Sect. 5.1. Given two left H -comodule algebras K,S our aim now is to describe the left
Rep(H)-module category over the tensor product K M �Rep(H) S M using the left module
category FunRep(H)(S M, K M) and Proposition 3.6.

Proposition 5.3 Let K,S be two left H -comodule algebras. The category H
K MS is a left

Rep(H)-module.

Proof Define ⊗ : Rep(H) × H
K MS → H

K MS by

X⊗P := P⊗S(X⊗kS),

for all X ∈ Rep(H), P ∈ H
K MS . Here the left action of S on X⊗kS is given by the coaction

of S. The object P⊗S(X⊗kS) ∈ H
R MS with structure given by

δP (p⊗x⊗s) = p(−1)R
2s(−1)⊗p(0)⊗R1 · x⊗s(0),

r · (p⊗x⊗s) = r · p⊗x⊗s, (p⊗x⊗s) · l = p⊗x⊗sl,
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for all p ∈ P , r ∈ K , s, l ∈ S. Follows straightforward that these maps are well defined.
Clearly P⊗S(X⊗kS) is a (K,S)-bimodule and δP is a K-module morphism. The associa-
tivity isomorphisms

mX,Y,P : P⊗S(X⊗kY )⊗kS → (

P⊗S(Y⊗kS)
)⊗SX⊗kS

are given by

mX,Y,P

(

p⊗(x⊗y)⊗s
) = (

p⊗R−1 · y⊗1
)⊗(

R−2 · x⊗s
)

,

for all p ∈ P,x ∈ X,y ∈ Y, s ∈ S. The maps mX,Y,P are well defined morphisms in the
category H

K MS . Indeed, let l ∈ S then

mX,Y,P

(

p⊗l(−1) · (x⊗y)⊗l(0)s
) = p⊗R−1l(−1) · y⊗1⊗R−2l(−2) · x⊗l(0)s

= p⊗l(−2)R
−1 · y⊗1⊗l(−1)R

−2 · x⊗l(0)s

= p⊗l(−1)R
−1 · y⊗l(0)⊗R−2 · x⊗s

= p · l⊗R−1 · y⊗1⊗R−2 · x⊗s

= mX,Y,P (p · l⊗x⊗y⊗s).

This proofs that mX,Y,P is well-defined. The proof that mX,Y,P is a (K,S)-bimodule mor-
phism is straightforward. Let us prove that mX,Y,P is a comodule map. If ˜P = P⊗S(Y⊗kS)

then δ
˜P (mX,Y,P (p⊗(x⊗y)⊗s)) equals to

p(−1)J
2r2s(−1)⊗p(0)⊗J 1R−1 · y⊗1⊗r1R−2 · x⊗s(0),

for any p ∈ P , x ∈ X, y ∈ Y , s ∈ S. Here R = R1⊗R2 = J 1⊗J 2 = r1⊗r2. On the other
hand (idH ⊗mX,Y,P )δP (p⊗(x⊗y)⊗s) is equal to

= p(−1)R
2s(−1)⊗mX,Y,P

(

p(0)⊗R1
(−1) · x⊗R1

(2) · y⊗s(0)

)

= p(−1)R
2s(−1)⊗p(0)⊗r−1R1

(2) · y⊗1⊗r−2R1
(1) · x⊗s(0)

= p(−1)R
2s(−1)⊗p(0)⊗R1

(1)r
−1 · y⊗1⊗R1

(2)r
−2 · x⊗s(0).

The third equality follows from (2.2). Both terms are equal if and only if

J 1R−1⊗r1R−2⊗J 2r2 = R1
(−1)r

−1⊗R1
(2)r

−2⊗R2,

and this follows by (2.1). The associativity of m follows from the Yang-Baxter equation:
R12R13R23 = R23R13R12. �

We shall denote the category H
K MS with the structure of left Rep(H)-module category

explained in Proposition 5.2 by M(R,K,S) to emphasize the fact that the R-matrix is in-
volved in the module category structure.

Theorem 5.4 Let K,S be two right H -simple left H -comodule algebras. The equivalence
(3.15) establishes an equivalence

M(R,K,S) 	 FunRep(H)(S M, K M)

of Rep(H)-modules.
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Proof Define (Φ, c) : M(R,K,S) → FunRep(H)(S M, K M) by

Φ(P )(N) = P⊗SN

for all P ∈ H
K MS , N ∈ S M. The natural transformations cX,P : Φ(X⊗P ) → X⊗Φ(P ) are

defined by

(cX,P )N : (P⊗S(X⊗kS)
)⊗SN → P⊗S(X⊗kN),

(cX,P )N(p⊗x⊗s⊗n) = p⊗x⊗s · n,

for all X ∈ C , P ∈ M(R,K,S), N ∈ S M, x ∈ X,p ∈ P,n ∈ N,s ∈ S. The functor (Φ, c) is
a module functor and is an equivalence of module categories. �

Corollary 5.5 There is an equivalence of left Rep(H)-modules:

(S M)op �Rep(H) K M 	 M(R,K,S). (5.5)

5.3 Fusion rules for Rep (kG)-modules

Let G be a finite group. Using the equivalence (5.5) we can give another proof of [9, Corol-
lary 8.10] concerning about the tensor product of indecomposable exact module categories
over Rep(kG). The Hopf algebra kG is quasi-triangular with trivial R-matrix 1⊗1.

For any subgroup F ⊆ G and ψ ∈ Z2(F,k
×) the twisted group algebra kψF is a right

kG-simple left kG-comodule algebra. Let Fi ⊆ G be subgroups and ψi ∈ Z2(Fi,k
×) for

i = 1,2. Let S ⊆ G be a set of representative classes of the double cosets F2�G�F1. For
any s ∈ S define Fs = s−1F1s ∩ F2 and ψs ∈ Z2(Fs,k

×) the 2-cocycle defined by

ψs(x, y) = ψ1

(

sxs−1, sys−1
)

ψ2(x, y),

for any x, y ∈ Fs .

Proposition 5.6 [9, Corollary 8.10] There is an equivalence

kψ1 F1 M �Rep(kG) kψ2 F2 M 	
⊕

s∈S

kψs Fs M. (5.6)

Proof Let V ∈ kG
kψ2 F2

M
kψ1 F1

with coaction given by δ : V → kG⊗V . Then V = ⊕

g∈G Vg

where Vg = {v ∈ V : δ(v) = g⊗v}. For any s ∈ S define

V(s) =
⊕

g∈F1sF2

Vg,

thus V = ⊕

s∈S V(s) and each vector space V(s) is a subobject of V in the category
kG
kψ2 F2

M
kψ1 F1

.
The subspace Vs carries a structure of kψs Fs as follows. For any h ∈ Fs , v ∈ Vs define

h � v = h · (v · shs−1
)

.

Define the functor F : kG
kψ2 F2

M
kψ1 F1

−→ ⊕

s∈S kψs Fs M, F (V ) = ⊕

s∈S Vs and for any s ∈ S

the vector space Vs has the action of kψs Fs as explained before. The functor F is indeed a
module functor.
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Let V ∈ kG
kψ2 F2

M
kψ1 F1

and assume that V = V(s) for some s ∈ S. It is not difficult to see
that

(X⊗V )(s) = X⊗V = V ⊗
kψ1 F1

(X⊗k kψ1F1)

for any X ∈ Rep(kG), hence

F (X⊗V ) = ⊕f ∈F1Vsf ⊗kψ1 F1(X⊗k kψ1F1)

as vector spaces. Define cX,V : F (X⊗V ) → X⊗k F (V ) by

cX,V (v⊗x⊗f ) = f · x⊗v · f,

for any x ∈ X,v ∈ V,f ∈ F1. It follows from a straightforward computation that the
map cX,V is well-defined and (3.5), (3.6) are satisfied. Now, define G : ⊕

s∈S kψs Fs M →
kG
kψ2 F2

M
kψ1 F1

as follows. If W ∈ kψs Fs M for some s ∈ S then

G(W) = (kF1⊗kkF2)⊗kψs Fs W.

The right action of kψs Fs on the tensor product kF1⊗kkF2 is

(x⊗y) · f = ψ1

(

x−1, sf s−1
)

ψ2(y, f ) s−1f −1sx⊗yf,

for all x ∈ F1, y ∈ F2, f ∈ Fs .
For any x,f ∈ F1, y,g ∈ F2, w ∈ W define

g · (x⊗y⊗w) = ψ2(g, y) (x⊗gy⊗w),

(x⊗y⊗w) · f = ψ1

(

f,x−1
) (

xf −1⊗y⊗w
)

,

δ(x⊗y⊗w) = ysx ⊗(x⊗y⊗w).

Equipped with these maps the object G(W) is an object in the category kG
kψ1 F2

M
kψ2 F1

. �

6 Applications for computing the Brauer-Picard group

6.1 The Brauer-Picard group of a tensor category

Let C1, C2 be finite tensor categories. The following definitions were given in [7].

Definition 6.1

(a) An exact (C1, C2)-bimodule category M is invertible if there are bimodule equivalences

Mop �C1 M 	 C2, M �C2 Mop 	 C1.

(b) The Brauer-Picard groupoid BrPic is the 3-groupoid whose objects are finite tensor
categories, 1-morphisms from C1 to C2 are invertible (C1, C2)-bimodule categories, 2-
morphisms are equivalences of such bimodule categories, and 3-morphisms are iso-
morphisms of such equivalences. Forgetting the 3-morphisms and the 2-morphisms and
identifying 1-morphisms one obtains the groupoid BrPic. The group BrPic(C) of auto-
morphisms of C in BrPic is called the Brauer-Picard group of C .
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6.2 Invertible module categories over a braided tensor category

Let C be a braided tensor category. Any left C -module category is a C -bimodule category
using the reverse action as explained in Sect. 5.1.

Definition 6.2 We shall say that an exact C -module category M is invertible if there is a
bimodule equivalence

Mop �C M 	 C.

The group of invertible C -module categories will be denoted by InvMod (C).

Proposition 6.3 Let C be a tensor category. There is an isomorphism of groups BrPic (C) 	
InvMod (Z(C)).

Proof Denote by Z : Bimod (C) → Mod (C) the center functor. As a consequence of [9,
Thm. 7.13, Lemma 7.14] and Proposition 5.2 this functor restricts to an isomorphism of
groups. �

6.3 Invertible Rep (H)-bimodule categories

In this section we study the tensor product of invertible module categories over the repre-
sentation categories of Hopf algebras using the tools developed in the previous sections.

Let H be a finite-dimensional Hopf algebra. Recall that if M is a Rep(H)-bimodule
category, then there exists a left H⊗kH

cop-comodule algebra K , right H⊗kH
cop-simple

with trivial coinvariants such that M 	 K M as Rep(H)-bimodule categories.

Theorem 6.4 Let K,S be left H⊗kH
cop-comodule algebras right H⊗kH

cop-simple with
trivial coinvariants. Assume also that

(i) S⊗kK is free as a left S�HK-module,
(ii) the module category S�H K M is exact, and

(iii) S M, K M are invertible Rep(H)-bimodule categories.

Then, there is an equivalence of Rep(H)-bimodule categories

S M �Rep(H) K M 	 S�H K M. (6.1)

Proof By Corollary 4.4 there exists an equivalence of Rep(H)-bimodule categories

S M �Rep(H) K M 	 M(H,H,K,S).

Since invertible bimodule categories are indecomposable, then the category M(H,H,K,S)

is an indecomposable bimodule category. Consider the functor F : S�H K M →
M(H,H,K,S) explained in (4.4). Since S⊗kK is free as a left S�HK-module then F is
full and faithful. The full subcategory of M(H,H,K,S) consisting of objects F (N) where
N ∈ S�H K M is an exact submodule category and since M(H,H,K,S) is indecomposable,
F must be an equivalence, see [11, p. 91]. �

The left H⊗kH
cop-comodule algebra diag(H) can be thought as a coideal subalgebra in

H⊗kH
cop. The map ι : diag(H) → H⊗kH

cop given by ι(h) = h(−1)⊗h(2) is an injective co-
module algebra map. Let Q be the coalgebra quotient (H⊗kH

cop)/(H⊗kH
cop)diag(H)+.

Author's personal copy



M. Mombelli

Corollary 6.5 Let K,S be left H⊗kH
cop-comodule algebras right H⊗kH

cop-simple with
trivial coinvariants such that conditions (i) and (ii) of Theorem 6.4 are fulfilled and
S M �Rep(H) K M 	 Rep(H). Then, there is an isomorphism of H⊗kH

cop-comodule alge-
bras

S�H K 	 Enddiag(H)

(

H⊗kH
cop�QV

)

, (6.2)

for some V ∈ QM. Moreover

(S�HK)coH⊗kH cop = EndQ(V ). (6.3)

Proof By Theorem 6.4 the module categories S�H K M, diag(H)M are equivalent. It follows

from [1, Lemma 1.26] that there exists an object P ∈ H⊗kH cop M diag(H) such that

S�HK 	 Enddiag(H)(P ).

The left H⊗kH
cop-comodule structure on Enddiag(H)(P ) is given by λ : Enddiag(H)(P ) →

H⊗kH
cop⊗k Enddiag(H)(P ), λ(T ) = T(−1)⊗T(0) where

〈α,T(−1)〉T0(p) = 〈

α,T (p(0))(−1)S −1(p(−1))
〉

T (p(0))(0), (6.4)

for any α ∈ (H⊗kH
cop)∗, T ∈ Enddiag(H)(P ), p ∈ P .

There is an equivalence of categories H⊗kH cop M diag(H) 	 QM. The functors Ψ :
H⊗kH cop M diag(H) → QM, Φ : QM → H⊗kH cop M diag(H) defined by

Ψ (M) = M/
(

H⊗kH
cop

)

diag(H)+, Φ(V ) = (

H⊗kH
cop

)

�QV,

M ∈ H⊗kH cop M diag(H), V ∈ QM give an equivalence of categories. The left H⊗kH
cop-

comodule structure on (H⊗kH
cop)�QV ,

δ : (H⊗kH
cop)�QV → H⊗kH

cop⊗k(H⊗kH
cop)�QV

and the right diag(H)-action are given by

δ(h⊗t⊗v) = h(1)⊗t(2)⊗h(1)⊗t(1)⊗v, (h⊗t⊗v) · x = hx(1)⊗tx(2)⊗v,

for all x ∈ H,h⊗t⊗v ∈ (H⊗kH
cop)�QV . This proves isomorphism (6.2). Isomorphism

(6.3) follows from Enddiag(H)(P )coH = EndH
diag(H)(P ). �

Corollary 6.6 Assume H is pointed. Let K,S be left H⊗kH
cop-comodule algebras as in

Corollary 6.5. Assume also that

(S�HK)0 = S0�H0K0. (6.5)

Then S0 M, K0 M are invertible Rep(H0)-bimodule categories.

Proof By Corollary 6.5 there exists an object V ∈ QM such that

S�HK 	 Enddiag(H)

(

H⊗kH
cop�QV

) 	 Homk

(

V,H⊗kH
cop�QV

)

.

Let us explain the second isomorphism. The space Homk(V ,H⊗kH
cop�QV ) is a left

H⊗kH
cop-comodule via T �→ T(−1)⊗T(0) such that for all α ∈ (H⊗kH

cop)∗

〈α,T(−1)〉T0(v) = 〈

α,T (v(0))(−1)S −1(v(−1))
〉

T (v(0))(0),
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for all v ∈ V . Recall that we are identifying diag(H) with the coideal subalgebra
ι(diag(H)) ⊆ H⊗kH

cop. There is an isomorphism H⊗kH
cop 	 Q⊗k diag(H) of right

diag(H)-modules and right Q-comodules [12, Thm. 6.1].
Define φ : Enddiag(H)(H⊗kH

cop�QV ) → Homk(V ,H⊗kH
cop�QV ), ψ : Homk(V ,

H⊗kH
cop�QV ) → Enddiag(H)(H⊗kH

cop�QV ) by

φ(T )(v) = T (1⊗v), ψ(U)(h⊗v) = (h⊗1) · U(v),

for all v ∈ V , h ∈ diag(H). One can readily prove that φ and ψ are one the inverse of each
other and they are comodule morphisms. Thus, there are isomorphisms

(S�HK)0 	 Homk

(

V,H⊗kH
cop�QV

)

0
	 Homk(V0, ˜P),

where ˜P = {∑h⊗v ∈ H⊗kH
cop�QV : h ∈ H0⊗kH0}. Since there is an isomorphism ˜P 	

diag(H0)⊗kV0 then

Homk(V0, ˜P ) 	 Enddiag(H0)(˜P ),

which implies that the bimodule categories (S�H K)0 M, diag(H0)M are equivalent. By hypoth-
esis (6.5) the bimodule categories S0�H0 K0 M, diag(H0)M are equivalent. Using Theorem 6.4
we get that both categories S0 M, K0 M are invertible Rep(H0)-bimodule categories. �

Let H be a pointed Hopf algebra such that the coradical is the group algebra of an Abelian
group G. Corollary 6.6 tells us that to find invertible Rep(H)-bimodule categories we have
to look at those comodule algebras K such that K0 = kψF where F ⊆ G is a subgroup,
ψ ∈ Z2(F,k

×) is a 2-cocycle such that the Morita class of the pair (F,ψ) belongs to the
Brauer-Picard group of Rep(kG) that has been computed in [7].

Remark 6.7 In general there is an inclusion (S�HK)0 ⊇ S0�H0K0. Equality is not true for
arbitrary comodule algebras, however (6.5) seems to be fulfilled in many examples of co-
module algebras over pointed Hopf algebras such that the bimodule categories are invertible.

6.4 The Brauer-Picard group of Rep(G)

In this section we compare the product of the Brauer-Picard group of the category of repre-
sentations of a finite Abelian group G obtained in [7] and the product (6.1).

Let G be a finite Abelian group. The group O(G ⊕ ̂G) consists of group isomorphisms
α : G ⊕ ̂G → G ⊕ ̂G such that 〈α2(g,χ),α1(g,χ)〉 = 〈χ,g〉 for all g ∈ G,χ ∈ ̂G. Here
α(g,χ) = (α1(g,χ),α2(g,χ)).

Theorem 6.8 [7, Corollary 1.2] There is an isomorphism of groups

BrPic
(

Rep(G)
) 	 O(G ⊕ ̂G).

Let α ∈ O(G ⊕ ̂G) and define Uα ⊆ G × G the subgroup

Lα = {(

α1(g,χ), g
) : g ∈ G,χ ∈ ̂G

}

.

and the 2-cocycle ψα : Lα × Lα → k
× defined by

ψα

((

α1(g,χ), g
)

,
(

α1(h, ξ), h
)) = 〈

α2(g,χ)−1, α1(h, ξ)
〉〈χ,h〉.

It was proved in [7] that the bimodule categories kψα Lα M are invertible.
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Proposition 6.9 There is an equivalence of Rep(kG)-bimodule categories

kψα Lα�kGkψβ
Lβ

M 	 kψαβ
Lαβ

M.

Proof It follows directly from Theorem 6.4. �

Remark 6.10 The product in BrPic(Rep(G)) for a non-Abelian group G remains as an
open problem. As pointed out by the referee to describe the elements and the product in
BrPic(Rep(G)) one might have to use the description given in [3, Corollary 3.6.3].
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