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Classical Galois Theory and Some Generalizations

In this Lecture I recall what the classical Galois theory consists in.
The elementary concepts of normality and separability are
displayed. I will try to give an epistemological and philosophical
comment on the Galois correspondence and explain why this
abstract development was pertinent.
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Let K ⊆ L be an algebraic field extension. An element l ∈ L is
called algebraic over K when there exists a non-zero polynomial
p(X ) ∈ K [X ] such that p(l) = 0 . The extension K ⊆ L is called
algebraic when all elements of L are algebraic over K .
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The essential question was to find the roots of a polynomial. But
we can also ask what is the meaning of the search for the roots.
This means to set up all possible links between the indeterminates.
There exists in the substance of a polynomial some power of
exploration which is situed in the relation between the coefficients
(that are known) and some symmetrical links between the
unknowns (X in polynomial P(X)).
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An essential element of this theory is the field extension. That
means that an extension of a set of elements provided with the
field structure in a greater set, so that one can dispose roots of a
polynomial, which was not in the basic field.
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But there exists another way to work on the roots and on the links
between these roots.
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Definition:

Let K ⊆ L be an algebraic field extension. A field homomorphism
f : L→ L is called a K -homorphism when it fixes all elements of
K , that is, f (k) = k for every element k ∈ K .
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Important proposition

Let K ⊆ L be an algebraic field extension. Then every
K -endomorphism of L is necessarily an automorphism.
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We shall denote AutK (L) the group of K -automorphism of L. This
structure allows us to work specifically on the links between the
roots.
This analysis of the links between the roots becomes an analysis of
the links between the elements of the field extension.
Now return to the polynomial and recall the following two
important notions.
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Definition:

A field extension K ⊆ L is called separable when
i) the extension is algebraic
ii) all the roots of the minimal polynomial of every l ∈ L are simple.
The concept of separability allows us to suppose the existence of a
structure by which the polynomial gets decomposed into simple
elements.
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Definition:

A field extension K ⊆ L is called normal when:
i) the extension is algebraic
ii) for every element l ∈ L the minimal polynomial of l over K
factors entirely in L[X ] into polynomials of degree 1.
Every polynomial that has at least one zero in L, splits in L. There
is a close connection between normal extensions and splitting fields,
which provides a wide range of normal extensions. I recall the
definition of a splitting field : a polynomial p(X ) ∈ K [X ] splits in
L[X ] when it can be expressed as a product of linear factors over L.
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Definition:

A field extension K ⊆ L is called a Galois extension when it is
normal and separable. The group of K -automorphisms of L is
called the Galois group of this extension and is denoted by
Gal [L : K ].
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I would like to make some remarks on the notion of Galois
extension. Normality and separability are complementary
properties. From a philosophical point of view Galois extension sets
up a place for roots of a given polynomial and also provides a
possibility of linking each root with any other by a set of relations
that form a group (of automorphisms). We get a set of roots and
a block of roots with a set of their mutual links. That means that :
(1) we assume a structure of field extension, in which all roots are
given;
(2) roots are presented by their relations. In a certain sense a field
extension given by adjunction of a root pulls the set of all other
roots with their mutual relations. In order to solve a polynomial
equation one needs a new “place”, which is given by a field
extension. Such an extension is of “operational” character.
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Galois correspondence

Given an intermediate field extension K ⊆ M ⊆ L consider the
Galois group Gal [L : M] = AutM(L) of those automorphisms of L
that fix M. Given a subgroup G ⊆ Gal [L : K ] denote
Fix(G ) = {l ∈ L|∀g ∈ G ; g(l) = l}; Fix(G ) is a subfield of L.
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The great idea and the thesis of Galois theory is to consider
elements fixed by Galois group. It is a way to focus on the set of
roots and, more precisely, to select some block of roots. Making an
extension (normal and separable) means a “local” introduction of
set of roots. Adjunction of roots (it is a field extension) allows one
to disregard the fixed basic field and make permutations of the
new adjoint roots.
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Definition:

A Galois connection between two posets A,B consists in two order
reversing maps
f : A→ B, g : B → A
a ≤ g(f (a)), b ≤ f (g(b))
∀a ∈ A, ∀b ∈ B
Viewing A and B as categories and f , g as contravarinat functors
this is just the usual definition of adjoint functors.
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Proposition:

Let K , L be fixed and consider a Galois field extension of the form
K ⊆ M ⊆ L. Maps
{M|K ⊆ M ⊆ L} −→ {G |G ⊆ Gal [L : K ]}
and
{M|K ⊆ M ⊆ L} ←− Fix({G |G ⊆ Gal [L : M]})
constitute a Galois connection.
Fix(Gal(M)) = M ⊆ Fix(Gal [L : M]).
Indeed,
G ⊆ Gal(Fix(G ))
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Galois theorem

Let [K : L] be a finite dimensional Galois extension. In this case,
the adjunction is a contravariant isomorphism. Moreover, for every
intermediate field extension K ⊆ M ⊆ L we have
dim[L : M] = card(Gal [L : M])
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Algebra on a field

An algebra A on a field K is a vector space on K provided with a
multiplication that makes it into a ring and that satisfies
k(aa′) = (ka)a′, for all a, a′ in A. The idea is to generalize the
Galois theory, which was initially developed for field extensions, to
a more general case of K -algebras .
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Proposition

Let K be a field and p(X ) be a polynomial. Then the following
conditions are equivalent:
(i) p(X ) is irreducible;
(ii)ideal 〈p(X )〉 generated by p(X ) is maximal;
(iii) K -algebra K [X ]/p(X ) is a field.
The structure of algebra allows one to extend the operation of
vector space that gives one back the field structure.
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I want to make some remarks on the role played by the
polynomials. Galois’ original intention was to treat the problem of
solving polynomial equations by studying coefficients of a
polynomial. These coefficients belong to the basic field. When we
work in an extension field we act upon the roots. In this case we
dispose of the whole permutation group AutK (L) that we can
apply to the roots. That shows that in order to find roots of a
given polynomial one needs an extension of the basic field. The
polynomial formulation of Galois theory brings this theory into a
structural setting. The irreductibility property allows one to
present K [X ]/〈p(X )〉 as a field.
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When we consider a maximal ideal 〈p(X )〉 its maximality implies
that the quotient K [X ]/〈p(X )〉 is a field.
And this quotient gives one an extension of K (a) with a root of
the polynomial.
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The formulation in terms of algebra is the following.
Let K be a field, A be a K -algebra, 0 6= a ∈ A be an algebraic
element with the minimal polynomial p(X ) of degree n. The
K -subalgebra K (a) ⊆ A generated by a is isomorphic to

K (a) ∼= K [X ]
〈p(X )〉

∼= {k0 + k1X + ...kn−1X n−1 | ki ∈ K}
The properties of the K -algebra allow one to dispose of a
supplementary structure besides the field structure. A problem
concerning the notion of field extension was to find the best
structure allowing for “horizontal” extensions. Like fields algebras
allow for splitting. Splitting is a way to obtain all simple roots of a
given polynomial. Given an algebra one can restrict and extend
scalars.
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Let K ⊆ L be a field extension. Every L-algebra B is trivially a
K -algebra by restriction of the scalar multiplication to the elements
of K . On the other hand every K -algebra A yields an L-algebra
L

⊗
K A where the algebra multiplication is determined by

(l ⊗ a)(l ′ ⊗ a′) = (ll ′ ⊗ aa′)
and the scalar multiplication is given by
l(l ′ ⊗ a) = (ll ′)⊗ (aa′)
for all l , l ′ ∈ L and a, a′ ∈ A
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These constructions extend to functors
L− Alg −→ K − Alg ,B → B ′

K − Alg −→ L− Alg ,A→ L
⊗

K A
The latter functor is the left adjoint of the former.
We observe that the extension of scalars is made through the
tensor product. Algebra gives a better vision of the decomposed
polynomial and of the scalar extension. It gives a way to enlarge a
polynomial structure independently of unknowns. This new
introduction of algebra reflects the spirit of Galois’ idea; it enlarges
what I would like to call an observational structure of roots.
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Two propositions

Proposition 1:
Let K ⊆ L be a field extension and A be a K -algebra. Then the
following isomorphism holds:
HomK (A, L) ∼= HomL(L

⊗
K A, L)

Proposition 2:
Let K ⊆ L be a field extension and p(X ) ∈ K [X ] a polynomial.
Then the following isomorphim holds
L

⊗
K

K [X ]
〈p(X )〉

∼= L[X ]
〈p(X )〉

On the right side the polynomial is viewed as a polynomial with
coefficients in L.
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Split algebra

A Galois extension of fields is an algebraic field extension K ⊆ L
such that the minimal polynomial p(X ) ∈ K [X ] of each element
l ∈ L factors in L[X ] into factors of degree 1 with distinct roots.
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Definition:

Let K ⊆ L be a field extension and Abe a K -algebra . The
extension L splits the K -algebra A when
(i) A is algebraic over K
(ii) the minimal polynomial p(X ) ∈ K [X ] of every element of A
factors in L[X ] into factors of degree 1 with distinct roots.
The K -algebra A is called an étale K -algebra when it is split by the
algebraic closure of K.
Recall that an algebra A on a field K is a vector space provided
with a multiplication, which makes it into a ring and which
satisfies k(aa′) = (ka)a′ for all elements k ∈ K , a, a′ ∈ A.
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Theorem

Let K ⊆ L be a field extension of finite dimension m and A be a
K -algebra of finite dimension n. Then the following conditions are
equivalent :
(i) the extension L splits the L-algebra of A ;
(ii) the following map called the Gelfand transformation is an
isomorphism of K -algebra:
Gel : L

⊗
K A −→ LHomL(L

N
K A,L);

l ⊗ a→ (f (l ⊗ a)) where f ∈ HomL(L
⊗

K A, L)
(iii) the following map is an isomorphism of L-algebras:
L

⊗
K A −→ LHomK (A,L)

l ⊗ a→ (lg(a)); where g ∈ HomK (A, L)
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Theorem (continued)

(iv) ]HomL(L
⊗

K , L) = n
(v) ]HomK (A, L) = n
(vi)L

⊗
K A is isomorphic to Ln as an L-algebra

(vii)∀x ∈ L
⊗

K A, x 6= 0,∃f ∈ HomL(L
⊗

K A, L) such that
f (x) 6= 0
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Theorem (continued)

There are various relatively simple proofs of this theorem. I prefer
to begin with a comment on (iv) and then explain the idea of
Gelfand transformation.
The theorem provides for a sort of translation of the structural
situation of Galois theory into the terms of Grothendieck’
interpretation of this theory.
This theorem is essential for understanding the notion of Galois
correspondence. The tensor product is related to the set of maps
from the product in the basic field into this basic field. We deal
here with a twofold duality.
The tensor product makes an A-algebra K into a L-algebra. It
gives a way to preserve the algebra structure through its extension.
Now we can present the second Galois generalization.
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Recall

Let me recall that given a group G whose composition law is
written multiplicatively , a left G -set is a set X provided with a left
action of G G × X → X , (g , x)→ gx
1x = x , g(g ′x) = (gg ′)x
A morphism
f : X → Y of left G -sets respects the action of G , that is,
f (gx) = g(f (x).
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Galois theorem

Let K ⊆ L be a finite dimensional Galois extension of fields. Let us
write Gal [L : K ] for the group of K -automorphisms of L and
Gal [L : K ]− Setf for the category of finite Gal [L : K ] - sets . Let
us also write SplitK (L)f for the category of those finite dimensional
K -algebras which are split by L. The functor on SplitK (L)f ,
represented by L, factors through the category Gal [L : K ]− Setf :
HomK (−, L) : SplitK (L)f −→ Gal [L : K ]− Setf
A→ HomK (A, L)
with Gal [L : K ] acting by composition on HomK (L). This
factorization functor is a contravariant equivalence of categories.
In the last part of this talk I shall explain the meaning of this
theorem.
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I have presented you some results of the generalization of Galois
theory through the Category theory. This generalization is made in
the Grothendieck spirit but without the Scheme theory.
Our starting point is the category SplitK (L). We use the concept
of algebra which extends the operational possibilities of the field,
and among these algebras we consider those that are split by L.
We begin with a category of split algebras, which provides a
decomposition of polynomials. A split algebra can be extended and
put in correspondence with double-maps through the Gelfand
transform. An essential feature of this structure is the fact that it
maintains so called object extensions and morphism extensions.
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The Galois theorem says that there exists a functor, which is a sort
of translator from one category to another, a map specifically
adapted for categories. The Galois correspondence is functorial in
the sense that it goes from the category of fields to the category of
groups. Now we have a category of algebras, which replaces a
category of fields.
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What is important is the fact that this functor HomK (−, L) factors
through the category Gal [L : K ]− Setf . We see here a Galois
group playing a new role: it determines an action on a set, and
thus turns itself into a G -set. Since the functor HomK (−, L) is
representable it determines the given Galois-group-set
Gal [L : K ]× HomK (A, L)→ HomK (A, L)
(f , g)→ g ◦ f
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Epistemological and philosophical remarks

The above theorem shows two possible ways of generalizing the
classical Galois theory. First, one generalizes this theory through
the category SplitK (L). Second, one generalizes it through the
functor HomK (−, L). It turns out that all properties of split
algebras can be translated into the language of functors. Such a
translation involves the category of G -sets with G equal to
Gal [L : K ]. The analysis now aims at the decomposition of
algebras through a Galoisian extension. This approach can be
furhter applied to structures of other types.
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Classical infinitary Galois theory

Proposition 1:
Let K ⊆ L be a Galois extension of fields. Let K ⊆ M ⊆ L be a
finite dimensional intermediate Galois extension. The canonical
restriction morphism
pM : Gal [L : K ]→ Gal [M : K ]
f → f |M is a topological quotient by the equivalence relation
determined by the subgroup Gal [L : K ] ⊆ Gal [M : K ].
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Classical infinitary Galois theory

Proposition 2:
Let K ⊆ L be a Galois extension of fields. For every finite
dimensional intermediate extension K ⊆ M ⊆ L the Galois group
Gal [L : M] = {f ∈ Gal [L : K ]∀m ∈ Mf (m) = m} is an open and
closed subgroup of Gal [L : K ]
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Theorem

Let K ⊆ L be an arbitrary Galois extension of fields.
Correspondences
K ⊆ M ⊆ L→ Gal [L : M]
G ⊆ Gal [L : M]→ Fix(G )
induce a contravariant isomorphims between the lattice of arbitrary
extensions K ⊆ M ⊆ L and the lattice of closed subgroups
G ⊆ Gal [L : K ].
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Commentary

This theorem is a reformulation of the Galois correspondence in the
framework of topology. The introduction of the topology allows
one to treat an arbitrary extension.This new possibility has internal
and external meaning.
I want to try to explain the significance of the construction of the
new topology. The projection defined in the proposition induces a
quotient and then the discrete topology in the quotient.
Gal [L : M] is a closed subgroup. We know that the subgroups
Gal [L : M] ⊆ Gal [L : K ] constitute a fundamental system of open
and closed neighborhoods of IdL.
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Commentary (continued)

In the situation of the theorem we dispose the proposition
IdL ∈ Gal [L : N] ⊆ Gal [L : M]. This entails that Gal [L : M] is an
open and closed subgroup of Gal [L : K ].
It is worth to notice that we use elementary properties of
topological groups. Every subgroup of a topological group
containing an open subgroup is itself open, and every open
subgroup is closed.
Inside the Galois correspondance it is useful to see that the group
operation is translated into the language of topological maps that
preserve the initial inclusions. The projective limit is a way to
consider in general the groups variation. In addition to the refined
preservation of the inclusive structure we get the construction of
correspondence beyond its polynomial significance. That is the
external meaning.
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Commentary (continued)

Let us now consider some features of the proof of the above
theorem. Fix(G ) is a field. Consider a closed subgroup
G ⊆ Gal [L : K ]. If K ⊆ L is a Galois extension Fix(G ) ⊆ L is also
a Galois extension. On the other hand we have
G ⊆ Gal [L : Fix(G )] ⊆ Gal [L : K ]. Since a subgroup of a Galois
group of the automorphisms of the extended field on the field of
the fixed elements by Gal is the same group, we have
G = Gal [L : K ],K = Fix(G ) and so G = Gal [L : Fix(G )].
The inverse correspondence is obtained similarly.
Thus we dispose an arbitrary Galois extension of a given field. The
intermediate subextensions are finitary and hence classical.
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Infinitary Galois group

Here is another generalization: we will define the Galois group of
an arbitrary Galois extension K ⊆ L. Such a group is a topological
group, which is discrete when the extension is finite.
This latter generalization amounts to the introduction of topology;
this topology allows one to treat the infinity.
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Proposition

Let K ⊆ L be a Galois extension of fields. In the category of
groups, Gal [L : K ] = limMGal [M : K ] where M runs through the
poset of finite dimensional Galois extensions K ⊆ M ⊆ L and for
M ⊆ M ′, the corresponding morphism Gal [M ′ : K ]→ Gal [M : K ],
f → f |M is a restriction.
It is worth to notice that we introduce topology in the Galois
extension by making this extension continue; thus we get a
topological Galois group.
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Definition

The topological Galois group of extension K ⊆ L is the group
Gal [L : K ] provided with the initial topology for all the propositions
Gal [L : K ]?limMGal [M : K ]→ Gal [M : K ], f → f |M where M
runs through the finite dimensional Galois subextensions
K ⊆ M ⊆ L and Gal [M : K ] is provided with the discrete topology.
Such a topology can be obtained as follows.
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Proposition

Let K ⊆ L be a Galois extension of fields. The field L is the set -
theoretical filtred union of the subextensions K ⊆ M ⊆ L where
K ⊆ M is a finite dimensional Galois extension. The topological
Galois group is thus a cofiltred projective limit in the category of
topological groups of a diagram consituted of discrete finite groups
: such a group is called a profinite group.
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Commentary

We can observe how the topology introduced on one side ot the
correspondence (field extension) is transferred to the other side
(Galois group).
We need this transfer for preserving the Galois correspondence in
the topological framework. It is a bit difficult to see what this
topology is. Let me explain this.
On one side of the correspondence we have to go over all
extensions continuously and find a topological structure for this
continuous variation. The same should hold for the Galois groups.
What the gain consists in ?
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Proposition

Let L be a Galois extension of fields. The subgroup
Gal [L : M] ⊆ Gal [L : K ], for K ⊆ M ⊆ L, which is a finite
dimensional Galois subextension, constitute a fundamental system
of open and closed neighborhoods of IdL.
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Lemma

Let K ⊆ L be a Galois extension of fields. The topology of the
Galois group Gal [L : K ] is the initial topology for all maps
evl : Gal [L : K ]→ L; f → f (l) where l runs through L and the
codomain L of evl is provided with the discrete topology.
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Corollary

By analogy with the usual description of opens in Algebraic
Geometry I give the following corollary.
Let K ⊆ L be a Galois extension of fields. For every
f ∈ Gal [L : K ], the subsets
VM(f ) = {g ∈ Gal [L : K ] | g |M= f |M g} ⊆ Gal [L : K ]
for K ⊆ M ⊆ L running through the arbitrary finite dimensional
subextensions constitute afundamental system of neighborhoods of
f .
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Definition

Let G be a topological group. A topological G -space is a
topological space provided with a continuous action of G ; a
morphism of topological space is a continuous morphism of G -sets.
A topological G -space is profinite when it is a projective limit,
indexed by a cofiltred poset, of finite discrete topological G -spaces.
projective limits of topological spaces is computed as in the
category of topological spaces, with the corresponding
componentwise action of G .
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Lemma

Let K be a field . Every algebraic K -algebra A is the set-theoretical
filtred union of its finite dimensional subalgebras.
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Lemma

Let K ⊆ L be an arbitrary Galois extension of fields. For every
K -algebra A which is split by L, there is a bijection
HomK (A, L) ∼= limBHomK (B, L)
where the limit is cofiltred and indexed by the finite dimensional
subalgebras B ⊆ A.
Moreover each HomK (B, L) is finite; so the above limit provides
HomK (A, L) with the structure of profinite space.
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Lemma

Let K ⊆ Lbe an arbitrary Galois extension of fields. For every
K -algebra A which is split by L the map
µ : Gal [L : K ]× HomK (A, L)→ HomK (A, L);
g , f → g ◦ f
is a continuous action of the topological group Gal [L : K ] on the
topological space HomK (A, L) when these are proved with the
profinite topologies inherited from the initial topology given above.
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Lemma

Let K ⊆ L be an arbitrary Galois extension of fields. Consider a
homomorphism f : A→ B of K -algebras where A and B are split
by L. The map Γ(f ) : HomK (B, L)→ HomK (A, L) is a
continnuous homomorphism of Gal [L : K ]-sets when HomK (B, L)
and HomK (A, L) are provided with the profinite topology.
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Lemma

Let K be a field and A be an algebraic K -algebra. Let us write
A = colimB where B runs through the finite dimensional
subalgebras of A. For every finite dimensional K -algebra C the
canonical morphism µ : colimBHomK (C ,B)→ HomK (C ,B) is
bijective.
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Lemma

Let G = limi∈I )Gi be a profinite group , expressed as a cofiltred
projective limit of finite discrete groups . Let us assume that the
projections pi : G → Gi are surjective. Denote Gi − Setf the
category of finite Gi -sets and G − Topf the category of dicrete
finite topological G -spaces. For every index i ∈ I there is a functor
γi : Gi − Setf → G − Topf ; X → X
The G -action is given by gx = pi (g)x This functor identifies
Gi − Setf with a full subcategory of G − Topf . Moreover the
category G − Topf is the set theoretical filtred union of the full
subcategories Gi − Setf .
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Theorem

Let K ⊆ L be an arbitrary Galois extension of fields, SplitK (L)
be the category of K -algebras-splits by L, and Gal [L : K ]− Prof
be the category of profinite Gal [L : K ]-spaces. Then the functor
Γ : SplitK (L)→ Gal [L : K ]− Prof ; A→ HomK (A, L) is a
contravariant equivalence of categories.
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Commentary

The latter theorem is similar to the Grothendieck Galois theorem.
It is an infinitary generalization.
The proof uses properties of a functor, which defines an
equivalence. I give here only some descriptive comments on this
theorem.
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Comment (continued)

First of all it is important to dispose of the category Split and the
K -algebras which are split by the field L. It expresses the
possibility of splitting extension. We know by the first Grotendieck
Galois theorem that this splitting property corresponds to the
G -action, where G is the Galois group for the extension under
consideration. It is also important to prove that this action holds
for the profinite spaces (which are topological spaces of a certain
kind). So we get, first, the advantage of working in a topological
framework and, second, the advantage of the Grotendieck’s
category-theoretic generalisation.
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Comment (continued)

Galois groups are automorphism groups of a given extension. It
can be developed in various frameworks. In particular, the classical
theory of coverings maps of locally connected topological spaces
can be described as a Galois theory.
By examining the above four Galois theorems we can specify a
form of mathematical activity that consists in running through one
domain in order to get into another domain. Here we have a
passage from fields to groups and also a topological passage from
the act of extending to the act of controlling this extnesion.
(It should be possible to see the theory of the integral transform as
a Galois theory (Abel-Radon- Norguet- Penrose transform)).
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