σ -Cálculo para sistemas de dos niveles

Mecánica Cuántica, G.A. Raggio

Para un sistema cuántico de dos niveles, i.e. el espacio de Hilbert $\mathfrak{H}=\mathbb{C}^2$ es bidimensional, se tiene:

Teorema: Todos los trios $\boldsymbol{\sigma} = (\sigma_1, \sigma_2, \sigma_3)$ de operadores autoadjuntos que satisfacen

$$[\sigma_j, \sigma_k] = 2i \sum_{\ell=1}^3 \epsilon_{j,k,\ell} \sigma_\ell$$

son unitariamente equivalentes; vale decir dados dos trios $\boldsymbol{\sigma}^{(1)} = (\sigma_1^{(1)}, \sigma_2^{(1)}, \sigma_3^{(1)})$ y $\boldsymbol{\sigma}^{(2)} = (\sigma_1^{(2)}, \sigma_2^{(2)}, \sigma_3^{(2)})$ hay un operador unitario U tal que $U^*\sigma_j^{(1)}U = \sigma_j^{(2)}$ para j=1,2,3. Además, hay una base ortonormal de \mathfrak{H} tal que

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $\sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

Usaremos las siguientes definiciones para vectores $\mathbf{a} \in \mathbb{C}^3$:

$$\overline{\mathbf{a}} = (\overline{a_1}, \overline{a_2}, \overline{a_3}) ;$$

$$\mathbf{a} \cdot \mathbf{b} = \sum_{j=1}^{3} a_j b_j , \langle \mathbf{a}, \mathbf{b} \rangle = \overline{\mathbf{a}} \cdot \mathbf{b} ,$$

$$|\mathbf{a}| = \sqrt{\langle \mathbf{a}, \mathbf{a} \rangle} , \mathbf{a}^2 = \mathbf{a} \cdot \mathbf{a} = \langle \overline{\mathbf{a}}, \mathbf{a} \rangle ;$$

$$(\mathbf{a} \wedge \mathbf{b})_{\ell} = \sum_{j,k=1}^{3} \epsilon_{j,k,\ell} a_j b_k , \ell = 1, 2, 3 .$$

En lo que sigue suponemos dado un terceto σ ; las propiedades que se listan no dependen de la elección de una base ortonormal.

1.

$$\sigma_j \sigma_k = \delta_{j,k} \mathbf{1} + i \sum_{\ell=1}^3 \epsilon_{j,k\ell} \sigma_\ell$$
.

2. Para $\mathbf{a}, \mathbf{b} \in \mathbb{C}^3$:

a)
$$(\mathbf{a} \cdot \boldsymbol{\sigma})(\mathbf{b} \cdot \boldsymbol{\sigma}) = (\mathbf{a} \cdot \mathbf{b})\mathbf{1} + i(\mathbf{a} \wedge \mathbf{b}) \cdot \boldsymbol{\sigma};$$

b)
$$\mathbf{a} \wedge (\mathbf{b} \wedge \boldsymbol{\sigma}) = (\mathbf{a} \cdot \boldsymbol{\sigma})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\boldsymbol{\sigma}$$
;

c)
$$[\boldsymbol{a} \cdot \boldsymbol{\sigma}, \boldsymbol{b} \cdot \boldsymbol{\sigma}] = 2i(\boldsymbol{a} \wedge \boldsymbol{b}) \cdot \boldsymbol{\sigma};$$

d)
$$[\boldsymbol{a} \cdot \boldsymbol{\sigma}, \boldsymbol{\sigma}] = -2i(\boldsymbol{a} \wedge \boldsymbol{\sigma})$$
:

e)
$$(a \cdot \sigma)\sigma(b \cdot \sigma) = \{(a \cdot \sigma)b + (b \cdot \sigma)a - i(a \wedge b)\} 1 - (a \cdot b)\sigma$$
.

3. Todo operador A de \mathcal{H} en \mathcal{H} puede escribirse univocamente como

$$A = a_o \mathbf{1} + \mathbf{a} \cdot \boldsymbol{\sigma}$$
;

en tal caso,

$$a_o = \frac{1}{2}tr(A)$$
, $\mathbf{a} = \frac{1}{2}tr(A\boldsymbol{\sigma})$.

Decimos que al operador A le corresponde el 4-vector $(a_o, \mathbf{a}) \in \mathbb{C}^4$ y escribimos $A \approx (a_o, \mathbf{a})$. Se tiene $0 \approx (0, \mathbf{0})$ y $\alpha \mathbf{1} \approx (\alpha, \mathbf{0})$ para $\alpha \in \mathbb{C}$.

- 4. Si $A \Leftrightarrow (a_o, \mathbf{a}) \vee B \Leftrightarrow (b_o, \mathbf{b})$ entonces, $A^* \Leftrightarrow (\overline{a_o}, \overline{\mathbf{a}}) \vee AB \Leftrightarrow (a_ob_o + \mathbf{a} \cdot \mathbf{b}, a_o\mathbf{b} + b_o\mathbf{a} + i(\mathbf{a} \wedge \mathbf{b}))$.
- 5. det(A) -que es independiente de la base ortonormal elegida para calcular la matriz asociada con A- está dada por

$$det(A) = a_o^2 - \mathbf{a}^2 .$$

- 6. $A \Leftrightarrow (a_o, \mathbf{a})$ es normal, i.e. $A^*A = AA^*$, si y solo si $\overline{\mathbf{a}} \wedge \mathbf{a} = \mathbf{0}$, si y solo si $\overline{\mathbf{a}} = e^{i\alpha}\mathbf{a}$ con α real, si y solo si $\mathbf{a} = e^{-i\alpha/2}\mathbf{c}$ donde α es real y $\mathbf{c} \in \mathbb{R}^3$.
- 7. $U \approx (u_o, \mathbf{u})$ es unitario si y solo si $(u_o, \mathbf{u}) = \lambda(v_o, -i\mathbf{v})$ con $|\lambda| = 1, v_o \in \mathbb{R}, \mathbf{v} \in \mathbb{R}^3$ y $v_o^2 + |\mathbf{v}|^2 = 1$. Se tiene $det(U) = \lambda^2$.
- 8. $P \approx (p_o, \mathbf{p})$ es un *proyector* distinto de 0 y distinto de 1, i.e. $P^2 = P$ pero $0 \neq P \neq 1$, si y solo si $p_o = 1/2$ y $\mathbf{p}^2 = 1/4$.
- 9. $P \approx (p_o, \mathbf{p})$ es un proyector ortogonal distinto de 0 y distinto de 1, i.e. $P^2 = P = P^*$ pero $0 \neq P \neq 1$, si y solo si $p_o = 1/2$, $\mathbf{p} \in \mathbb{R}^3$ y $|\mathbf{p}| = 1/2$.
- 10. Si $A \approx (a_o, \mathbf{a})$, los autovalores de A son los números

$$\lambda_{\pm} = a_o \pm \sqrt{\mathbf{a}^2} \; ,$$

donde la raiz cuadrada compleja se define como más le guste.

a) Si $\mathbf{a}^2 \neq 0$ entonces A es diagonalizable y con la misma definición de la raiz cuadrada, poniendo

$$P_{\pm} = \frac{1}{2} \mathbf{1} \pm \frac{1}{2\sqrt{\mathbf{a}^2}} \mathbf{a} \cdot \boldsymbol{\sigma} ,$$

se tiene $P_{\pm}^2 = P_{\pm}$ y

$$A = \lambda_+ P_+ + \lambda_- P_- \; , \;\; P_- + P_+ = \mathbf{1} \; , \;\; P_- P_+ = P_+ P_- = 0 \; .$$

- b) Si $\mathbf{a}^2 = 0$ entonces el operador N asociado con el 4-vector $(0, \mathbf{a})$ es nilpotente, i.e. $N^2 = 0$; y ni N ni A son diagonalizables salvo cuando $\mathbf{a} = \mathbf{0}$.
- 11. Si $A \approx (a_o, \mathbf{a})$, entonces

$$e^A \approx \left(e^{a_o} \cosh(\sqrt{\mathbf{a}^2}), \frac{e^{a_o} \sinh(\sqrt{\mathbf{a}^2})}{\sqrt{\mathbf{a}^2}} \mathbf{a}\right) ,$$

con la definción de la raiz cuadrada que más le guste, incluso en el caso $\mathbf{a}^2 = 0$ tomando el correspondiente límite de las funciones hiperbólicas.

Si $B \Leftrightarrow (b_o, \mathbf{b})$ es autoadjunto, entonces

$$e^{iB} \approx \left(e^{ib_o}\cos(|\mathbf{b}|), \frac{ie^{ib_o}\sin(|\mathbf{b}|)}{|\mathbf{b}|} \mathbf{b}\right).$$