FaMAF-UNC Topología - 2012

Práctico 1

Espacios Topológicos

1. Sean $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n) \in \mathbb{R}^n$. Verificar que las siguientes aplicaciones son distancias en \mathbb{R}^n .

$$\bullet d(x,y) = \max_{1 \le i \le n} |x_i - y_i|.$$

$$\bullet d(x,y) = \max_{1 \le i \le n} |x_i - y_i|.$$

$$\bullet d(x,y) = \sum_{i=1}^{n} |x_i - y_i|.$$

• $d(x,y) = \left(\sum_{i=1}^{n} (x_i - y_i)^2\right)^{1/2}$, llamada distancia usual o euclídea (Sugerencia: usar la desigualdad de Cauchy-Schwarz).

Para cada una de estas distancias en \mathbb{R}^2 graficar B(0,1).

2. Consideremos $C[a,b] = \{f : [a,b] \to \mathbb{R} : f \text{ es continua}\}$. Probar que

$$d(f,g) = \int_{a}^{b} |f(t) - g(t)| dt$$

es una métrica en C[a,b]. Ver en un gráfico qué mide esta distancia.

3. Dado un espacio métrico (X,d) y $A \subset X$ no vacío, definimos el diámetro del subconjunto A como

$$\operatorname{diam}(A) = \sup_{a,b \in A} d(a,b).$$

Por otro lado, dado $x \in X$, la distancia de x al conjunto A se define como

$$d(x,A) = \inf_{a \in A} d(x,a).$$

Finalmente, si $B \subset X$, también no vacío, definimos la distancia entre A y B como

$$d(A,B) = \inf_{a \in A, b \in B} d(a,b).$$

Probar que:

- (a) $x \in \bar{A}$ si y sólo si d(x,A) = 0.
- (b) La designaldad $d(A,B) \le d(A,C) + d(C,B)$ puede no valer (dar un ejemplo). Sin embargo, se verifica que $d(A,B) \le d(A,C) + \operatorname{diam}(C) + d(C,B)$.
- (c) Existen A, B tales que d(A,B) = 0 y $A \cap B = \emptyset$.
- (d) $|d(x,A) d(y,A)| \le d(x,y)$, lo cual implica que, fijado A, la función $d_A: X \to \mathbb{R}$ definida por $d_A(x) = d(x,A)$ es continua.
- **4.** Hallar todas la topologías en $X = \{a, b\}$ y $X = \{a, b, c\}$.
- **5.** Sea X un conjunto. Probar que las siguientes son topologías en X.
 - (a) $\tau = \{A \subset X : A^c \text{ es finito}\} \cup \{\emptyset\}.$

FaMAF-UNC Topología - 2012

- (b) $\tau = \{A \subset X : A^c \text{ es numerable}\} \cup \{\emptyset\}.$
- (c) $\tau_{x_0} = \{A \subset X : x_0 \in A\} \cup \{\emptyset\}$, donde x_0 es un punto fijo en A.
- (d) $\tau_{-x_0} = \{A \subset X : x_0 \not\in A\} \cup \{X\}.$
- **6.** Sean I_a el intervalo $(-\infty, a)$ y D_a el intervalo (a, ∞) .
 - (a) Probar que $\tau_i = \{I_a : a \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\}$ y $\tau_d = \{D_a : a \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\}$ son topologías en \mathbb{R} .
 - (b) Si en τ_i y τ_d hacemos variar $a \in \mathbb{Q}$, ¿las familias resultantes son topologías en \mathbb{R} ?
- 7. Consideremos en \mathbb{N} la topología τ formada por el conjunto vacío y los conjuntos $E_n = \{n, n+1, n+2, \ldots\}, n \in \mathbb{N}$.
 - (a) Encontrar los puntos de acumulación de $A = \{4, 13, 28, 37\}$.
 - (b) Determinar los subconjuntos cerrados (\mathbb{N}, τ) .
 - (c) Determinar la clausura de los conjuntos $\{7,24,47,81\}$ y $\{3,6,9,12,\ldots\}$.
 - (d) Determinar aquellos subconjuntos de \mathbb{N} que son densos en \mathbb{N} .

8. Supremo e ínfimo de topologías. Probar que:

- (a) La intersección de una colección arbitraria de topologías en un conjunto X es una topología en X.
- (b) La unión de dos topologías en *X* no necesariamente es una topología.
- (c) Para cualquier colección de topologías en *X*, hay una única topología en *X*, denominada *ínfimo* (resp. *supremo*) tal que es la más fina (resp. la menos fina) de todas las topologías en *X*, menos finas (resp. más finas) que todas las de la colección dada.
- **9.** Sean X un espacio topológico, $A, B \subset X$. Probar que:
 - (a) $A^{\circ} \cup B^{\circ} \subset (A \cup B)^{\circ}$.
 - (b) $A^{\circ} \cap B^{\circ} = (A \cap B)^{\circ}$.
 - (c) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
 - (d) $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$.
 - (e) $\bar{A} = A \cup Fr(A)$.
 - (f) $A^{\circ} = A \operatorname{Fr}(A)$.
 - (g) $(X-A)^{\circ} = X \overline{A}$ y $\overline{X-A} = X A^{\circ}$.
 - (h) $\operatorname{Fr}(A^{\circ}) \subset \operatorname{Fr}(A)$ y $\operatorname{Fr}(\bar{A}) \subset \operatorname{Fr}(A)$.
 - (i) En los puntos (a), (d) y (h) dar ejemplos donde no se cumpla la igualdad.
 - (j) $\operatorname{Fr}(A \cup B) \subset \operatorname{Fr}(A) \cup \operatorname{Fr}(B)$.
 - (k) Un conjunto es cerrado si y sólo si contiene a su frontera, y es abierto si y sólo si es disjunto con su frontera.
- **10.** Dar ejemplos de subconjuntos de \mathbb{R}^2 tales que
 - (a) Fr(A) = A.
 - (b) $(\operatorname{Fr}(A) \cup \operatorname{Fr}(B)) \operatorname{Fr}(A \cap B) \not\subset \operatorname{Fr}(A \cup B)$.
- **11.** Sean *X* un espacio topológico, $Y \subset X$ y $A \subset Y$. Probar que:
 - (a) A es cerrado en Y si y sólo si existe un cerrado F en X tal que $A = F \cap Y$.
 - (b) Si $a \in A$, B es un entorno de a en Y si y sólo si existe un entorno U de a en X tal que $B = U \cap Y$.
 - (c) Si $(\bar{A})_Y$ es la clausura de A en Y, entonces $(\bar{A})_Y = \bar{A} \cap Y$.
 - (d) ¿Qué relación existe entre $(A^{\circ})_Y$ y A° y entre $(Fr(A))_Y$ y Fr(A)?
- **12.** Probar que el conjunto de semiplanos abiertos de \mathbb{R}^2 forma una sub-base de la topología usual de \mathbb{R}^2 . ¿Qué topología generan en \mathbb{R}^2 el conjunto de rectas paralelas a los ejes coordenados?

FaMAF-UNC Topología - 2012

- **13.** Consideramos a \mathbb{R} con la topología τ generada por los conjuntos $C_a = \{x \in \mathbb{R} : x \geq a\}$.
 - (a) ¿Cuáles son los abiertos en esta topología? ¿Cuáles son los cerrados?
 - (b) Dar la clausura e interior de los siguientes conjuntos:

```
\{a\} \cup (c,d), \text{ si } a \notin (c,d); [a,b]; \{x \in \mathbb{R} : x > a\}; \{x \in \mathbb{R} : x > a\} - \mathbb{N}.
```

- (c) Probar que (\mathbb{R}, τ) es separable, N_1 , Lindelöff, pero que no es N_2 .
- **14. Topología del orden.** Sea X un conjunto ordenado por una relación < antirreflexiva (es falso x < x). La *topología del orden* tiene como sub-base a los conjuntos de la forma $\{x : x < a\}$ o $\{x : a < x\}$ para algún $a \in X$.
 - (a) Probar que la topología del orden es la mínima topología en la cual el orden es continuo. Es decir, si $a,b \in X$ con a < b, entonces existen entornos U de a y V de b tales que si $x \in U, y \in V$ se tiene que x < y.
 - (b) ¿Cuál es la topología del orden de \mathbb{R} ?
 - (c) Sea *X* un conjunto ordenado e *Y* un subconjunto de *X* (hereda el mismo orden). Probar que la topología del orden de *Y* puede no ser la topología relativa de *X*.
- **15.** Sea $X = \mathbb{R}$ y sea τ la topología que tiene como base a la familia de todos los intervalos de la forma [a,b) (con $a,b \in \mathbb{R}$). Probar que:
 - (a) Los miembros de la base son simultáneamente abiertos y cerrados.
 - (b) El espacio (X, τ) es separable, N_1 pero no es N_2 .
 - (c) Si A es un subconjunto de \mathbb{R} y $\ell(A)$ denota el conjunto de puntos límites de A, entonces $A-\ell(A)$ es numerable.
 - (d) Todo subespacio de (X, τ) es separable.
- **16.** ¿El conjunto de los números irracionales con la topología usual es separable?
- 17. Sea $X = \mathbb{R} \times \mathbb{R}$ y sea τ la topología generada por los conjuntos de la forma $A \times B$, con A = [a,b) y B = [c,d). Probar que:
 - (a) (X, τ) es separable.
 - (b) (X, τ) contiene un subespacio cerrado que no es separable.
 - (c) (X, τ) no es Lindelöff, pues admite un subespacio cerrado que no es Lindelöff.
- **18.** Definimos en \mathbb{R}^2 el *orden lexicográfico*: (a,b) < (c,d) si a < c o a = c y b < d. Sea τ la topología del orden en \mathbb{R}^2 .

Analizar cuáles son los abiertos en esta topología y decir si es T_2 .

Considerar el conjunto $X = [0,1] \times [0,1]$ con la topología inducida por el orden lexicográfico. Determinar la clausura de los siguientes conjuntos:

- (a) $\{(1/n,0): n \in \mathbb{N}\};$
- (b) $\{(1-1/n,1/2): n \in \mathbb{N}\};$
- (c) $\{(x,0): 0 < x < 1\}.$