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Data assimilation is the process of feeding a partially unknown prediction model with available
information coming from observations, with the objective of correcting and improving the modeled
results. One of the most important mathematical tools to perform data assimilation is the Kalman
filter. The Kalman filter is esentially an algorithm of prediction-correction type that is optimal
in the sense of minimizing the trace of the covariance matrix of the errors. Unfortunately the
computational cost of applying the filter to large scale problems is enormous, and the programming
of the filter is highly dependent on the model and the format of the data involved. The first
objective of this paper is to present a set of Fortran 90 modules in order to implement reduced
rank square root versions of the Kalman Filter, adapted for assimilation of a very big amount
of variables. The second objective is to present a Kalman filter implementation whose code can
be independent from model and observations, and as easy as possible for the user. A detailed
description of the algorithms, structure, parallelization and examples of use are given.

Categories and Subject Descriptors: G.3 [Mathematics of Computing]: Probability and Statis-
tics—Time Series Analysis; G.4 [Mathematics of Computing]: Mathematical Software— Algo-
rithm design and analysis; J.2 [Computer Applications]: Physical Sciences and Engineering—
Earth and atmospheric sciences

General Terms: Algorithms, Performance

Additional Key Words and Phrases: large scale problems, data assimilation, Kalman filter

1. INTRODUCTION.

The Kalman filter is a set of mathematical equations that combine information
coming from a model output and observations, producing a better estimation (or
analysis) of the dynamical system. Essentially, it implements a predictor-corrector
type estimator that is optimal in the sense that it minimizes the estimated error
covariance under some hypotheses. The state and the covariance matrix of forecast
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errors are predicted (using the model), and when there are observations, a correction
step is performed (see [Welch and Bishop 2001]).

The filter is named after Rudolph E. Kalman, who in 1960 published his paper
describing a recursive solution to the discrete-data linear filtering problem [Kalman
1960]. The Kalman filter has been extensively applied in motion prediction (see
[Azuma and Bishop 1994]), parameter estimation (see [Charalambous and Hibey
2001] and [Annan et al. 2005]), navigation and global positioning systems (see [Kim
and Iltis 2002]), improvement of species concentrations in chemical transport models
(see [Zhang et al. 1997], [Zhang et al. 1999], [van Loon et al. 2000], [Flemming et al.
2001], [Serafy et al. 2002] and [Segers 2002]), image treatment (see [Ertiirk 2002]
and [Kuo et al. 2002]), improvement of oceanographic models (see [Allen et al. 2002]
and [Hoteit et al. 2004)), etc.

The size of the problem to face can be a restriction to the application of the
Kalman filter. For example, in a chemistry transport model we could assimilate
20 species concentrations in a grid of 50 x 50 x 20 cells, that is, the state vector
would have n = 108 entries, so we should have a computer able to manage matrices
of size n x n, and operate with them. The most expensive part of the Kalman
algorithm is the prediction of the covariance matrix of forecast errors, where we
have to apply the tangent linear model 2n times. In complex models, a time step
could take a few seconds, therefore a Kalman filter step is impossible to implement,
and new techniques have been developed for large scale problems like reduced rank
square root methods and ensemble methods based in Monte-Carlo estimations (see
[Brown and Gaston 1995], [Chin et al. 1995], [Pham et al. 1998], [Segers et al.
2000], [Hoteit et al. 2001], [Hoteit et al. 2002], [Evensen 2003], [Asif 2004], [Hoteit
and Pham 2004], [Treebushny and Madsen 2005], [Chen et al. 2005] and [Hanea
et al. 2005]). According to the application, covariance matrices may have a sparse
structure, which could simplify some array operations and speed up execution (for
example, for observations the covariance matrices are usually taken diagonal). The
user must decide whether or not to use reduced rank methods according to the
complexity of the model.

Another common problem is related to implementation difficulties. Every time
the filter is applied, the model needs to be called many times. Therefore the model
source code has to be rearranged. Noise has to be added to generate samples. An
interface is needed between the incoming observations and the data produced by
the model. After the assimilation step the model has to begin with the produced
analysis, and the complete implementation is full of subtle things related with the
model and the observations. The major obstacle is that models are like black boxes,
where the user changes configuration files, not the code itself. The source code of
the model should not be changed unless the user knows exactly what is being done.

This paper proposes a modular assimilation environment in Fortran 90. It means
that observations, model and assimilation are separated one from another. For
example, if the observation stations change the location, there is no need to modify
the main code, but only a module related with them. If we need to change the
model, there is no need to transform all the code, but only the module related
with the model. If we want to change the Kalman filter version, a change in the
module related with the assimilation will suffice. This will allow the user to make
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minimum changes in all the codes around a modelling system (model, data formats,
libraries, configuration files) in order to avoid programmer bugs. The choice of the
language was made because a big number of large scale models are written either in
Fortran 77 or in Fortran 90 (even when it is possible to mix languages, some users
prefer not to do it). The modules can handle single and double precision and use
the BLAS/LAPACK libraries for the matrix operations. For the case of choosing
parallelization the libraries BLACS, SCALAPACK and MPI are used.

This paper also proposes the implementation of a reduced rank square root en-
semble Kalman filter taking advantage of the Fortran language for the matrix-vector
manipulation needed specially in 2D or 3D models. An example of a 3D system
is presented. Comparisons of the model solution against the true and assimilated
solution are given. Notice that the assimilation modules are prepared to include
other versions of the filter, like the complete extended Kalman filter and the ensem-
ble Kalman filter (useful for small and medium scale problems), and the RRSQRT
Kalman filter (useful for large scale problems) as it will be shown later.

There are some available filtering packages that already implement the Kalman
filter. Some of them are:

(1) STSA (The Time Series Analysis Toolbox for O-Matrix): this toolbox is a
collection of O-Matrix functions for performing time series and statistics re-
lated analysis and visualization. It has capabilities for ARMA and ARFIMA,
Bayesian, non-linear and spectral analysis related models. Time series filtering
functions and spectral analysis functions are provided. Random number gen-
erators are included for both time series, and general statistical analysis. It is
a commercial package using the O-Matrix language. See [STSA ].

(2) BFL (Bayesian Filtering Library): this library provides an application indepen-
dent framework for inference in Dynamic Bayesian Networks, that is, recursive
information processing and estimation algorithms based on Bayes’s rule, such
as Extended Kalman filters, particle filter, etc. It is written in C++. For
details see [BFL |.

(3) KALMTOOL: it is a set of MATLAB tools for state estimation for nonlinear
systems. The toolbox contains functions for Extended Kalman filtering as well
as for two new filters called the DD1 filter and the DD2 filter. The toolbox
specifically addresses the problem of not having observations available at all
sampling instants. See [KALMTOOL ].

(4) Bayes++ Bayesian Filter Classes: Bayes++ is an open source library of C++
classes. These classes represent and implement a wide variety of numerical
algorithms for Bayesian Filtering of discrete systems. The classes provide tested
and consistent numerical methods and the class hierarchy explicitly represents
the variety of filtering algorithms and system model types. See [BAYES++ |.

(5) COSTA: it is an open source project designed to provide a free toolbox for
data assimilation for models conforming to the COSTA interface. The current
available implementations are: data assimilation methods (ensemble, reduced
rank square root, ensemble square root and COFFEE methods) and parameter
estimation methods (simplex, conjugate gradient and LBFGS methods). This
package is prepared for parallel computing. For details and documentation
please refer to [COSTA |.
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(6) PALM: this project aims to provide a general structure for a modular imple-
mentation of a data assimilation system. An assimilation algorithm is split
up into independent units. The package uses C, Fortran and MPI allowing
portability. Today, PALM software is used in an operational way in the French
Operational oceanography project MERCATOR. See [Buis et al. 2003].

(7) ESMF (Earth System Modeling Framework): Developed by the team centered
at NCAR, ESMF is an open source software for building climate, numerical
weather prediction, data assimilation, and other Earth science software appli-
cations. Some of the features of this package are: Fortran 90 and (partial)
C/C++ interfaces, portability, MPI and OpenMP support, a large set of test,
infrastructure and superstructure for coupling and building Earth system com-
ponents. See [ESMF ], [Collins et al. 2005] and [Hill et al. 2004].

Some of the packages cited above have the problem that are commercial or are
programmed in a high-level language. However, the list also presents highly sophis-
ticated projects that have methods and implementations like parallelism, interfaces
with other languages, modularity and portability.

The aim of the package presented in this paper is to have not only the features
of parallelism, portability, and modularity, but mainly ease of use. The only things
the user needs to code are the basic things related to the model and observations
(like setting the number of observations, covariance matrices, model propagation,
etc). Derived types could have been defined in the modules, but the idea was to
keep the programs at the maximum level of simplicity to simplify the task of the
user. The parallel version is just an additional module, and the user does not need
to worry about communicators, array distribution or parallelization strategies.

The paper is structured as follows: in Section 2 a mathematical background
is presented, with a brief explanation of the implemented methods. Section 3 is
devoted to explain some versions of the Kalman filter. Section 4 refers to the
design of the package, Section 5 shows a sample application and finally Section 6 is
dedicated to the conclusions.

2. MATHEMATICAL BACKGROUND.

Let us define the following entities:

n = dimension of the model state (variables we want to assimilate), (1)
p = number of observations (usually p < n), (2)
x* = true state,x® € R", (3)
f = background (or forecast) model state, x* € R, (4)
x® = analysis model state,x* € R", (5)
y = vector of observations,y € R?, (6)
H = observation operator, H : R" — RP, (7)
H = tangent observation operator, H : R" — RP?, (8)
R = observation error covariance matrix, R € RP*?, (9)
Pf = background (or forecast) error covariance matrix, Pf € R"*",  (10)
P? = analysis error covariance matrix, P € R™*", (11)
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X = expected value of x. (12)

The pair (xf, Pf) gives a previous knowledge (or background) of the system state
with an estimation of the error. It can be obtained, for example, by a model. The
pair (y,R) provides the observations with an estimation of the observation errors.
They can be obtained, for example, from measurement stations. The objective is
to generate a new pair (x®, P?) where the analysis x? is as close as possible to the
true state in the r.m.s. sense.

Assuming that we have:

—mnon-trivial errors: Pf and R are positive definite matrices,

—unbiased errors: the expectation of the background and observation errors are
zero, that is, xf —xt =y — H (xt) = 0,

—uncorrelated errors: observation and background errors are mutually uncorre-
lated, that is, (xf — xt) (y — H (xt))" =0,

then it can be proved (see [Bouttier and Courtier 2002]) that the analysis defined by
corrections to the background, which depends linearly on background observation
departures and has a minimum variance estimate, is:

x*=x'+K (y - H (x)), (13)
where K is called the gain matrix and it is defined by:
K = P'H” (HP'H” +R) . (14)
This is called the BLUE (Best Linear Unbiased Estimator).
The covariance matrix for analysis errors is given (for any K) by:
P2 = (I- KH)Pf (I1- KH)” + KRK”, (15)
and if K is the optimal least-squares gain, the expression is reduced to:
P = (I - KH)Pf. (16)

In practice, the user does not know K exactly and the formulation (16) can lead
to an erroneous gain matrix, so it is convenient to work with the analysis error
covariance matrix defined by (15).

The problem of finding the pair (x*, P?) is equivalent to the minimization of the
following functional:

Jx) =x-x)"PT (x—x) +(y— Hx) R (y— H(x). (17)

For the evolution in time of the whole system, we need a model to propagate the
state vector and the forecast error covariance matrix in order to be able to apply the
BLUE, and get a better approximation of the true state. Suppose that we have a
model M;_,;4+1 : R™ — R™ that takes forward the state vector from time step [ to
time step /41, and also suppose that the tangent linear model M;_,;;4; : R® — R”
is available. Assuming the hypotheses for the BLUE, and the following ones:

—forecast errors: the model error M;_,;11 (xlt) —x! 1 is unbiased with known model
error covariance matrix Q;,
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—uncorrelated analysis and model errors: the analysis error x* —x} and the model
error My—i41 (x§) — xf,; are mutually uncorrelated,

we can prove (see [Bouttier and Courtier 2002]) that the optimal way (in the least
square sense) to assimilate sequentially the observations is given by the Kalman
filter algorithm:

X[ = Mg (xf), (18)
P, = M 1 PiM/, +Q, (19)
K = Pl HY, (H Pl HT + Rl+1>_1’ (20)
X4 = le+1 +Kip [yir — Hi (le+1)] ) (21)
P, = (I-KiyHiy) Pl (T- K Hi)' +
+K1+1Rz+1KlT+1- (22)

The subscripts represent time evolution.

The equations (18)-(19) are the prediction part of the filter, whereas the equations
(20)-(22) are the correction in order to minimize the variance of the analysis. As
it is, the filter can be applied to small and medium problems, but it presents some
problems regarding implementation for large scale problems:

—Storing: for atmospheric applications, we can have n ~ 10% and a full error
covariance matrix of size n xn may be in excess of a teraword (see the assimilation
system at the Data Assimilation Office [Lyster et al. 2003] as an example).

—Too many model evaluations: the equation (19) requires 2n evaluations of the
tangent linear model. In some cases the tangent version of the model is obtained
by an automatic differentiation package, or it is computed using two evaluations
of the model. Therefore, the propagation of the forecast error covariance matrix
costs too much.

—Matrix-vector manipulation: normally, the large scale models represent the sys-
tem state as 3D matrices, so a transformation matrix—vector is needed to apply
one filter step, and then a transformation vector—matrix to continue the propa-
gation in time.

—Non-linearities: the extended Kalman filter (18)-(22) makes a linearization of the
model, but this linearization has shown to be invalid in a number of applications
(see [Evensen 1994; 1997]).

The next section is devoted to explain the main algorithms that are used in the
assimilation modules.
3. VERSIONS OF THE KALMAN FILTER ALGORITHM.
3.1 EKF (Extended Kalman Filter).
The algorithm (18)-(22) without the time subscripts (for simplicitiy) is as follows:

xf = M (x?), (23)
Pf = mP2M7” + Q, (24)
K = P'H” (HP'H” +R) ", (25)
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x® = xI + K (y—H (xf)) , (26)
P2 = (I-KH)Pf(1-KH)" + KRK”. (27)

3.2 RRSQRTKF (Reduced Rank Square Root Kalman Filter).

The covariance matrices have good properties because they are symmetric and
(semi) positive definite. Therefore they can be factorized and it is possible to
compute the square root (for example, via the Cholesky decomposition, or the
SVD). Whereas in some contexts the square root of a matrix P means P'/2, from
now on we will say that a matrix S is a square root of a matrix P if it holds P = SS7.
Compared with standard Kalman filtering algorithms, square root algorithms are
known for their superior numerical properties (see [Bierman 1977] and [Kaminski
et al. 1971]). “They are also more numerically robust than non-square-root forms
because they are less susceptible to rounding errors and prevent the error covariance
matrices from becoming negative definite” (see [Brown and Gaston 1995]). In [Paige
1985] the author suggests general representations of covariance matrices in linear
filtering in which the covariance and information matrices are implicitly defined.
He also develops numerically reliable algorithms (see also [Kourouklis 1977]).

Stability problems can be reduced using the square root form of covariance ma-
trices, but we could have storing and timing difficulties. The solution for this is to
take a square root covariance matrix with less columns. That is, given a covariance
matrix P:

P =887, SecR™" — P~SS”, SeR™™, (28)

where m < n. With this formulation we still have the symmetry and semi positive
definiteness of the covariance matrices. The integer m is usually called the number
of modes.

Let us define:

m, = number of modes of the analysis error covariance matrix, (29)
my = number of modes of the forecast error covariance matrix, (30)
mg = number of modes of the model error covariance matrix, (31)
m, = number of modes of the observation error covariance matrix, (32)
S® = square root covariance matrix of analysis errors, S € R™*™, (33)
Sf = square root covariance matrix of forecast errors, St € R"*™7 (34)
S™ = square root covariance matrix of model errors, S™ € R"* ™4, (35)
S° = square root covariance matrix of observation errors, S° € R™*™, (36)

Then, covariance matrices in the Kalman filter algorithm (23)-(27) can be trans-
formed in terms of the reduced rank square root as follows:
sfst’ ~ Pf ~ MS2s2TMT + smsmT = [MS® | s™] [Ms? | s™]T —
st ~ [MS? | s™], (37)

1

_ -1
K = P'H" (HP'H' +R) '~ $'s"'H” (HS's" H" +5°5°")  —
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8 . Germén A. Torres
1
K ~ s (us)" ([Hs'|s°] [H87|s°]") (38)

saga’ KH)Pf (I-KH)" + KRK”

I—

~ (I-KH)S'st' (1-KH)” + KS°S°TK”
[(
[(

Q

1- KH)S' | KS°] [(I- KH)S | KS°]"

S* ~ [(I-KH)S"|KS°] (39)

Notice that:

—the number of forecast modes my is mg, + my,

—after the assimilation step, the square root of the analysis error covariance matrix
(39) has a larger number of columns, namely, it has m, + mq + m, columns,
and a truncation strategy is needed in order to be able to continue with the
algorithm (in [Treebushny and Madsen 2003] a procedure based on the Lanczos
decomposition algorithm is used, in [van Loon and Heemink 1997], [Segers et al.
2000] and [Segers 2002] a procedure based in the SVD is explained, in [Hoteit
and Pham 2004] a reduced-order extended Kalman filter is proposed).

—generally, the number of observations p is much less than the dimension of the
state space n. In this cases we should take m, = p in order to avoid loss of
information.

Finally, the RRSQRTKF algorithm is:

xf = M (x?), (40)
sf = [MS?|s™], (41)
K - s*(us")" ([as”|s°] [mST|s°]") | (42)
x* = x +K[y-H(x"], (43)
S* = [(I-KH)S"|KS°], (44)
S# «— reduce S? to m, columns, (45)

3.3 ENKF (ENsemble Kalman Filter).

The idea of the ensemble Kalman filter is to represent the error statistics using
an ensemble of model states. Therefore, instead of forecasting the analysis error
covariance matrix using the tangent linear model, the model states are propagated
and the covariance matrix is recovered from them. It is very easy to implement,
and there is no need to propagate full covariance matrices, but only a few model
states (or modes) that contain the information about the system and its statistics.
It captures non-linearities of the model (see [Evensen 1994; 2003]) and a tangent
linear model is not necessary (sometimes not available). The only problem with
this version is that the error in the Monte Carlo sampling decreases proportionally
to1/ V/N where N is the number of modes. The ENKF has been applied succesfully
for several models (in [Allen et al. 2002] it is used in the European Regional Seas
Ecosystem Model ERSEM, [Segers 2002] shows an implementation in the LOTOS
model, in [Annan et al. 2005] an efficient method for parameter estimation and
ensemble forecasting in climate modelling is developed).
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Let us define m the number of members of the ensemble (or number of modes).
The ENKF algorithm explained in [Evensen 2003] is:

Generate (only the first time): € € N (x*,P?), i=1:m, (46)
Propagate: £ = M (fai) +n', nteN(0,Q), i=1:m, (47)
1 m )
Estimate: x' = — i 48
stimate: x° = — ;5 , (48)
1 Ui . . T
; . pf _ £ £\ (of £
Estimate: P _HZ(EL_X)@%_X) , (49)

=1
Gain matrix: K = PFH” (HP'H” +R) ™, (50)
Correct: 2 =¢f + K (y'—H ({”)) , Y eN(y,R), i=1:m, (51)

1 o~ .
Estimate: x® = o ;f , (52)
. a 1 - ai a ai a\ T
Estimate: P :ﬁ;(fz—x)(gz—x) ) (53)

3.4 RRSQRTENKF (Reduced Rank Square Root ENsemble Kalman Filter).

This version of the filter presents a version of the Ensemble Kalman filter, but
considering square root of covariance matrices (see [Whitaker and Hamill 2002;
Tippett et al. 2003]). This method is called EnSR and from now on and for the
rest of the paper it will be identified by RRSQRTENKF . The algorithm (46)-(53)
would be:

Generate (only the first time): £ € A (xa, SaSaT) , i=1:m, (54)

Propagate: £ = M (fai) +nt, nteN (0, SmSmT> , i=1:m, (55)

. T N ki
Estimate: x° = - ;5 , (56)
Estimate: Sf = L ¢ft - xf ..o gfm - xf |, (57)
m - 1 . .
-1
Gain matrix: K = S7 (Hs7)" ([HS' | 5°] [H7 | s°]") (58)
Correct: ¢ =¢M + K (y' — H (¢)),
vieN (y, S°S°T) Ci=1:m, (59)
: PR R l - ail
Estimate: x* = = ;5 , (60)
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1 : :
Estimate: 8% = ———— | ¢3! —x2 ... gam _xa || (61)
m—1 .

Notice that both the ENKF and the RRSQRTENKF algorithms require the
generation of random vectors with a prescribed distribution. This can be done
every time step, but it is better to let the ensemble evolve according to the model
and the observations. From the numerical experiments one can deduce that the
ENKF and the RRSQRTENKF need a time interval until the ensemble members
represent well the dynamical system.

Another remark is that the user could choose the number of columns of the
reduced rank square root covariance matrices equal to the ensemble size. If this is
not the case, the user should add a reduction step as in (45).

4. DESIGN.
4.1 Overview.

The package presented here presents a set of Fortran 90 modules that implement the
Kalman filter adapted for large scale problems. The methods that are implemented
are the Extended Kalman filter (identified as EKF), the Reduced Rank Square Root
filter (identified as RRSQRTKF'), the Ensemble Kalman filter (identified as ENKF')
and the Reduced Rank Square Root Ensemble filter (identified as RRSQRTENKF).
Each method and each necessary task into the assimilation (for example model
and observations) is coded into modules that can be replaced according to the
application.
A list of capabilities is described below:

—Modularity: as mentioned before, each task into an assimilation implementation
is separated one from another. It means that observations, model and assimi-
lation are different entities. For example, if the observation stations change the
location, there is no need to modify the main code, but only a module related
with them. If we need to change the model, there is no need to transform all
the code, but only the module related with the model. If we want to change
the Kalman filter version, a change in the module related with the assimilation
will suffice. This will allow the user to make minimum changes in all the codes
around a modelling system (model, data formats, libraries, configuration files) in
order to avoid programmer bugs.

—Simplicity: there are no derived types of variables defined in the code. It is clear
that derived types of variables are a useful language tool in order to make powerful
codes, but in this case the intention was to determine the global variables and
the specific functions associated to the assimilation. The users are encouraged
to introduce all the new abstract types of variables and all the complexity they
need in those modules that have to be edited, rather than adjust their codes to an
existent structure. The code has been prepared for both an expert programmer
as well as for a medium programmer.

—Language: the modules are programmed in Fortran 90. The choice of the
language was made because a big number of large scale models are written either
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in Fortran 77 or in Fortran 90. Only Fortran standards have been used, and the
code will work with almost any Fortran compiler. It has been succesfully compiled
and executed with the Intel Fortran Compiler, Portland Fortran Compiler, GNU
Fortran and g95, and its MPI wrappers.

—Precision: the modules can handle single and double precision. Some models
have their outputs in single precision, others in double precision, so this is a
useful feature. The switch between these two choices is done changing only one
parameter in the whole code.

—Parallelism: repeated tasks like propagating states (or applying the observa-
tion operator, or the tangent observation operator, or the tangent model) are
parallelized using the master-slave strategy with MPI (Message Passing Inter-
face). In this case a set of independent tasks are sent to the processors. Once the
task is performed, the slave receives a new task from the master. Linear algebra
operations are performed using BLACS (Basic Linear Algebra Communication
Subprograms) and SCALAPACK (Scalable LAPACK). The global matrices are
distributed in a processor grid, then the operation is performed in each processor
over local matrices. Finally, the global matrices are rebuilt from local pieces. The
parallelism is included in a module and the user just needs to call the parallel
routines implemented there avoiding communicators and memory distribution.

5. SAMPLE APPLICATION.

We illustrate the use of our software to solve a problem to assimilate CO concen-
trations in the area of Santiago de Chile. The user manual which accompanies the
software contains a number of other illustrative examples as well as programming
details.

5.1 Assimilation of CO.

The implementation was done using the MATCH model [MATCH ]. The version
of the filter applied was the Reduced Rank Square Root Kalman filter with 50
samples.

A grid of 41 x 41 is considered in the horizontal domain, and 16 levels in the
vertical component. Then, the dimension of the space state is set to 26896. For
the initialization, the model was run for a period of three days considering an
atmosphere free of CO at the beginning. The initial state vector is set to the last
output of the MATCH initial run, adding an error of 100%. The simulation period
was 13 days starting at June 17th, 1999, and ending at June 30th of the same
year, performing an analysis each 3 hours (the time step for observations). The
meteorological fields were generated using the HIRLAM model [HIRLAM | with a
resolution of 0.01 degrees (~ 1 km.) and at 1 hour of time resolution.

The CO emissions were generated by MODEM [MODEM ]. See figure 1.

There are eight monitoring stations located at different positions in Santiago.
The observations are taken from the measuring stations at the surface level, at
intervals of 3 hours, where the analysis step is performed. In figure 1 we show
the eigth monitoring stations and the domain of simulation: (1) Seminario, (2)
Independencia-Recoleta and (5) Parque O’Higgins are in the city center of Santi-
ago; (3) La Florida is in the east and south area; (4) Las Condes - Vitacura is
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monitoring the north-east sector; (6) Pudahuel-Cerro Navia and (7) Cerrillos reg-
ister measurements at the west side of the city; and (8) El Bosque is located at the
south. The error in the observations was set to 30% of the reported value.

CO Modem : winter

;u

'%‘!;

'y

1e-6 1 5 10 20 50 100 200 Te+4
ppb

Fig. 1. Emissions generated by MODEM and stations.

After 100 hours of simulation running assimilation, we obtain the figure 2, where
we can see a comparison of the model, observations, truth and assimilation.

6. CONCLUSIONS.

Due to the constant growth of the efficiency and speed of the computers, the in-
vestigation related to modelization has received a new impulse. New models and
strategies have been proposed requiring more computer power. Therefore, new
ways of improving forecasts can be implemented, as for example, the discrete time
Kalman filter. In the last decades scientists have realized that improving only a
model is not enough to get good forecasts, because always there are errors in the
data. We can have a perfect model, but if the error is in the data, we have nothing
to do. That is why information coming from observations must be used to correct
the model. The idea behind this work is to provide a platform where researchers
(from oceanography, climatology, etc.) can make use of the Kalman filter in their
prediction models in an easy way, changing their source codes as little as possible
in order to add assimilation material.

The package is oriented to large scale problems, although some versions of the
Kalman filters withouth simplifications are also implemented. The modules are
organized to separate tasks one from another. Model, observations and assimilation
are considered as different objects, in which one of them can be changed without
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Fig. 2. Results of the CO assimilation.

altering all the code. Thus, the programming of an implementation is cleaner and
one can avoid a lot of human errors.

Parallelism is implemented using MPI. In case of performing multiple runs of
some operator, we have used the master-slave strategy. Linear algebra operations
are optimized using the BLAS, LAPACK, PBLAS and SCALAPACK libraries.

The treatment of vectors and matrices takes advantage of the language features.
This aspect is very important because most of the models in 3D use 3D matrices to
represent the state in a domain, but the filter needs the representation of the state
as a vector, so an efficient identification matrix/vector is required.

These assimilation libraries can be inserted in any model if observations are
available. There are versions of the filter that do not require the tangent linear
model (sometimes not available), but can capture the strong non linearities present
in a lot of problems, for example, air pollution. These libraries do not deal with
the settings of the covariance matrices because this strongly depends on the model
and received observations. The most difficult part of the assimilation is how to set
the covariance matrices of model and observation errors. The user must know the
modeling system in detail in order to obtain an effective assimilation, and maybe
to improve some parts of the code to gain efficiency in a particular problem.

Numerical tests in 0D, 1D, 2D and 3D have been implemented with satisfactory
results in all the versions of the filter. In 0D, solving the ordinary differential
equation as in the example provided in the user’s manual, one can see how efficient
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the filter is in order to reduce the uncertainties. One can realize that the full Kalman
filter produces discontinuities in the assimilated solution, and that discontinuities
occur when an assimilation step is performed. Instead, the filters based on Monte
Carlo methods (ENKF and RRSQRTENKF) produce smoother solutions. From
the experiments one can see that the ensemble needs a period of time in order
to learn how to represent better the system state. This also can be seen in 0D.
For large scale problems it is impossible to apply the full filter. For the two 3D
problems presented in the examples (see the user’s manual), we have seen real
applications using the proposed package. In the first case we were able to assimilate
CO concentrations in the model MATCH, and in the second case we were able to
assimilate O3 concentrations in the POLAIR3D model. In the last case a detailed
description of how the package has to be implemented in the model is given.

Due to the need of improving models and modularizing the assimilation system
(to get better, easier and cleaner codes), and due to the need of optimized packages
for assimilation of large scale systems, these libraries are a helpful tool for the
modeler, and a start point in order to tune the variables involved in the filter.
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