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1. INTRODUCTION

Iu this paper we study a two-phase Stefan Problem in one space dimnension. The initial
temperature of the material is equal to zere, in both phases. We impose a flux-boundary
condition on z = 0 and x = 1, where the Auxen (g and f) are functions of time.

The classical Stefan Problem (g < 0, f < 0) is well studied in the Literature (e.g. [1],
[2]). Here we will treat the case (g 2 0, f < 0) that corresponds to supercooling liguid. The
existence and unigueness for this problem is proved in [3], where a class of free-bonndary
problems for the heat equation in one space dimension was analyzed, releasing the sign
restrictions on the data and the letent heat usually reguired in the Stefan Problem In
the next sections we relate the possibilitir of continuing the solution for arbitvanly large
time intervals to the signof Q(t) = a+ [;(f(7) — g(r))dr. Problems of this kind also have
been studied by other authors in conection with the freezing of a supercooling liquid. A
one-phase Stefan Problem with initial temperature h{z) and a fux equals to zeroon =0
was studied in [4]. In (5], » one-phase Stefan problem with initial temperature equal to
zero and the Hux g{t) on r = 0 was comsidered. In [6] we analyzed o two-plase Stefan
prablem where the lquid is initially at & temperature wiz) and the solid is initially at a
temperature ¢(xz). We imposed a Hux equids to zero on both sides £ = 0, ¢ = 1, aud
we chose the sign of the functions ¢ and  corresponding to a supercooling liguid or an
owrheated solid, A complete exposition of the results on the possibility of contiming the
solution for arbitrarily large time intervals can be found in [7] and [8, Chap. 1],

In Section 2 we give the preliminaries corresponding to the deseription of the problom.
In Section 3 we consider the cnse of a flux with a detennined sign,

2. TWO-PHASE STEFAN PROBLEM

Let us consdder Problem (P) which consist on finding (T, 5,17, V] such that:
(i) T>0.
(i) =€ C{j0,T)), s € CVY(D, T)); Geaft)<lforf<t<T,

(iii) T{x, ) s a function, bounded in 0 < 7 < 5(#), 0 < ¢t < T, and conlimwons on the same
region, except perhaps at the peinls (0,0) and (s(0),0}.
Ue(z,t) is & continuous function in 0 <z < 5(2), 0t < T.
Uge, Uy are continuons fanctions in 0 < z < s{1), 0 < 1 < T.
Similar conditions are imposed on the function V.

(iv) The following conditions are satisfied:
Use =Tk =0 n Df={(z,t):0<z<as(t), O<t<T} (1)

Vee =¥ =10 in Df = {(z, )i s{t) <2z <1, 0<t<T), {2)
5(0) = a, {3)
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Ulz,0)=0, 0O0<=z<a, {4)
Vir,0) =0, a<zl, (5)

U0, =g(t), 0<t<T, (6)
Vil t)=4{#), 0O<t<T, (7)
Uis(t), 1) =0, D<t<T, (8)
V{s(t),1) =0, 0<t<T, (9
Va(s().0) = Uls(t),t) = (1), D<t<T, (10)

where 0 < a < 1 and the functions f and g are piecewise continuous an every interval
(0,2), ¢ > 0.

Moreover, if the solution exists, then three Cases can occur [3, Thm. §].
(A) The problem has a solution with arbitrasily lacge T,

(B} There exisls a constant Tz > () such that liminf, 5, s(t) =0, ar Biap, o, #lf) =
1.

{C) There exists a constant Te > 0 such that liminfp. s(#) > 0, limsup,—g.3(t) < 1
and limsup, g |8{t)] = oc.

A first simple result is Lemria 1 below. Define

i
Q) =a +j; (f(r) = o)) (1)

Lemma 1. If(T,s, U, V) solve (1)-(10), then

I

i ot}
stj=a+ 1; {fir) — gl ))dr — i Uz, thdr — Viz,t)dz. (1%}

ait)
Proaf. Consider Green's identity

_[ fm{ZLu = ul*z)dzdr = -LD. [(ug2 — uze)dr + usdz],

where [ denotes the heat operator and L* its adjoint. Formula (12) is obtained by setting
z=1and we= U, u =V respectively, and adding both equations. Other relationships of
the same kind eonld he obteined using higher-order polynomials for =. [

In the following section we will study the non-classical case, e, f <0, 9 2 0.



B2 I C. V. Tarner

3. OVER-COOLED LIQUID IN CONTACT WITH CLASSICAL SOLID

The next Propositions give an apriori estimate for the functions 8,0 and V.

Proposition 1. If (T,s,U, V) is a solution of Problem (F), then:

(i) U<0inD¥, V<0inDy,

(#) U.=20in DY, V:<0in Dy,

{ii)  s(f) i o decreasing function i (0,T),

(iv)  Q(f) <s(t), t>0,

(v) Q) is a decreasing function in (0,T).

Proof. Since U, {0,#) = g(t) = 0, U can not have a maximum on z =0, then 7 € 0 in DY,
Uning the same maxinmun principle for V, we get V < 0 in DY, Since U and V have a
maximum on 7 = s(t) we obtain Ux(s(t),t) = 0 and V;(s(2), ) < 0. Now, nsng the sbove
estimations in (10), we conclude that 5(#) < 0,0 <t < T. {iv) is obtained replucing (1) in
(12). (v} follows from (11). T

Remark. The temperature of the liquid is less or equal than zero so it iz over-couled,
meanwhile the salid is at its usunl temperature.

We proceed to characterize Cases (4} (B) {C) depemding on the value of Q{t).

Proposition 2. If (T,s,U, V) s a solution of Problem (P), and G{t) = mip, gro,olai7]),
then U(z,t) = Git)(z — a) in DY,
Proof, Notice that G is differentiable a.e., because G is an inereasing function. Define a
function
Wiz, t)= Gtz —a), (r,t)€D={(zt) 0<r<a lct< T},
This function satifies the following problem in Dt
Wee=W,20, m D,
Wiz,0) =0, D<ax<a,
Wia,t)=0, D<t<T,
Wo0,8)=G(t), 0<t<T
By comparing W with I7 and using the maximwm principle we obtain the thesis. [

We will assumne for the next propositions that f and g satisfy the following conditions:
gy s Ke ™ 130, K>0, (13)
fe)=Le ¥, t>0, L<0, (14)
where 0 < b < = /6. Next, we have the following Propesitions:
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Proposition 3. If (T,s U, V) is a solution of Problem (P} for cvery € > 0 then this
solution saiisfies the following properties

(i) liMgeee Uz, t) =0, uniformly in 1.

(i) limt—ae Viz,t) = 0, uniformly in =,

Proof. Compare U with the function Z(z,1) = —K(2/b)sin(2x /3 + bz)e~*"* in DY with
K > 0and 0 < b < w/6. Then Z(z,t) < U(z,t). And (i) follows from hims—.o; Z{z,2) = 0.
We can prove (ii) for ¥ in the same way, by using en adequate 2. (|

Our next aim will be to look for some conditions on f and g giving an aprior charac-
tesization of Cases (A), (B), (C).

Proposition 4. Case (B) = Q(Ts) < 0.

Proaf. Letting ¢t — Tg in (12) we obtain the following equation,

1
Q(Ta) = f V(z, Ta)dz.

Then Q(Te) < 0 is proved nceording Lo Proposition 1. []

Proposition 5. Lef (T,5, 07, V) be ¢ solution of Problem (P). Denote
8T = t]i_n;}laf_ﬂ =0, de(0,=T}), d<l—a and = €(01), z=>=0
If the solution (T, 8, U, V) salisfies
Ulat) ~d, )< =2 and V{s{t)+dt)> -2 = (0,T),

then
it) = —k, for some k=0,

Proof. We can use u similar technique as in [6, Lem, 2.5}, beennse the proof is independont
of U, {0,1) and V;{1,{). Let £ > 0. Consider the anxliary functions

W.{:,!]nl—:f-_!‘-q{f““'f“'}, at)-—d<a<aft), 02taT g

-4
Wz, f) = T—(l—er=) sy <x<sft)+d, 0<t<T e
where A4;,4;, b and ¢ are constants to be determined. Using the meodmuwm principle in
the appropriate tegions to compare W with 7 and W3 with ¥, we get

—.lq.z _-‘1.] [

L T i
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'ﬂith A]_ = {ﬂ, 1} such that Ai E ma:r.{z;.d}, i 2 — iy = — i:[:.f“‘-r_ﬂ i{f}, J‘ig 2 mak,{ihd}
and ¢ < 0 arbitrary. Therefore,

da,+12{ 1
ddjo, — l—egin’

Then by analyzing this ss a function of o, we obtain

a}z2-k D<i<T, forsome k>0 [

Coraollary. If Case (C) occurs, the isotherm [T = —1 exists and reaches the free boundary
eti="T¢.

Propasition 8. If f — g € L}, o), then Core (A) = Q) >0, 1 > 0.

Proof. Leiting { — oo in {12) and using Proposition 3, we oblain the result. [

Lemma 2. Suppose by < T, led lim, ., s{t) > 0, and

Qite) = a+ L () o(=)dr > 0. (15)

If we define o funchion i as

(1) = { max{z € [0,3()] : U(z,1) € -1}
me) = 0 of Wz tj>-1,V¥ze [ﬂrﬂ{”]q

then
limsup i) < :H_J.:III a{t). (16}

Proof. (The proof is the same as the ane in [5, Lem. 2.3). We repeat it briefly for sake
of completeness). Notice first that lim,_., s(1} exists because of Proposition 1 (ifi). Using
Proposition 1 (i) we obtain

v<—1  in [0,

“1<U20 in  (q(t),s(2)-

Define 5 = lLimsup, ., #{t). Then there exists {t,} such that ¥, — &, and
5= limy oo 7{tn) = limn—se Na. Replacet = t, in (12) so that s(ty) = Q(tn)+7a. Then
I.i.m;-.r. 3(!} > Q{fn} 45> l.i.ﬂlﬂ-'ilp'...g‘ I‘il{ﬂ (]
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Proposition 7. Case (C) = Q(Te) < 0.

FProof. Suppose ({T¢) = 0. Then, by using Lemma 2, the free-boundary should be sepa-
rated from the isoterm 7 = -1, contmdicting the hypothesis. 0

Proposition 8, If Q(f) > 0 for cvery £ > 0, then we have Case [A).

Proaf. If we had Case (B), @ should be negative or gero st some point Ty, contradicting
the hypothesis. If we had Case (C}, Q{T:) < 0, from Proposition 7, contradiciing the
hypothesiz. []

Remarks.

(1) Notice that, for @ < 0 it is impossible to charactenize Cases (B) or (C} only by the
value of @; they also depend on the flux (g, f). We can prove that, when ) < 0
onc can find functions (f, ¢} that give Cese (B) and others that give Case (C). This
contrasts with the one-phase Stefan Problem.

{ii) In the same way, we can obtain results for the case g < Oand f > 0 (i.e., an overheated
solid in contact with a liquid at its wsal temperaturne).
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