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1 Introduction

Consider a linear, one dimensional, constant coefficienta, dispersive system
in one dependent variable, for example the linear Korteweg de Vries equation
ug +ugre = 0, Monochromatic (single frequency) elementary solutions of the
K.d.V. equation are of the form w(z,1) = ae'**~=%_ where the constants a, k
and w = —k° are the amplitude, the wave number and the wave frequency re-
spectively. Now consider a modulated version of the monochromatic solution,
that is a solution of the K.d.V_ equalion which is locally monochromatic, but
which has the property that over long distances or large periods of time the
amplitude, the wave number and the wave frecuency can vary. Namely, try
a formal expansion for the solution given by:

u(z,t) = a.lx,7)e?, with 8 = 18(x, 7), x = ez, 7 = €, and ¢ the ratio of
a typical period to the time scale of the modulations, wheze we can define k
and w as slowly varying parameters by: k=8, =0, and w = -, = -0 .

Then substituting this form for the solution in the K.d.V. equation one
obtains al dillerents order of € the following modulation equations:

k; +w, = 0, (conservation of waves), v = Q(k), ( the dispersion relation),
and (a?),+((e;)a?), = 0, (the transport equation), where ¢, = <L (the group
velocity) is the velocity with which the wave number, k, and the amplitude,
a, propagate. In the non-linear case the solutions are no longer sinusoidal as

1This rescarch was performed in part while the author was at MIT. Par
tially supported by CONICET and Universidad Nacional de Cordoba. Repiblica
Argentina
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in the prior example but the existence of periodic solutions in 8 = kz — wt
can be shown explicitly in the simpler cases. The main non linear effect
- is not the difference in the functional form, but rather the appearance of
amplitude dependence in the dispersion relation. Superposition of solutions
is not available to generale more general solutions, but modulation theory
can still be applied. Now the equalions for the amplitude and the wave
number are coupled.

For a very simple-example in a nenlinear case, consider the equation for
the modulation of a solution without oscillations (zero phases) (i.e: just
mean level) of the equation u, + (f{u)); + ttpee =0

u_‘_“ﬁ(X1T}+E“1|:X!T)+"'1 (1.1)
Then the Modulation Equation is

This equation can be solved exactly by characteristics (sce [W1]) and it is
well known that — for general initial data — multiple values develop after a
finite time if f'(3) # constant . :

The question of what happens with the solution of the underlying dis-
persive equation afler the Modulation Equations break down is generally
open.

The goal of this work is to study the corresponding phenomena of oscil-
latory behavior of solutions of difference approximations, that are dispersive
and to understand, for the general non-linear case what happens with the
solution of a dispersive system when the modulaled equations break down.

In Section 2 we give some details about the resolution of the breakdown
for the linear and non-linear cases.

In Section 3 we consider dispersive difference systems.

In Section 4 we show some numerical experiments.

2 Breakdown

It is well know that solutions of non-linear hyperbolic equations, in one space
variable, generally break down after a finite elapse of time (even for smooth
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initial data) and multiple values arise. It is also known that Lhe solutions of
these equations can be continued beyond the tire of the breakdown as single
valued weak solutions in the inlegral sense of a conservation law. These
solutions in the integral sense contain discontinuities { the mathematical
representation of shock waves); they are uniquely determned by their initial
data provided that the discontinuities are consirained to satisfy an entropy
condilion .

Since in many of the inleresting cases the modulation equations are a set
of non-linear hyperbolic evolution cquations in the wave parameters, even lor
smooth initial data the solulivns eventually cease to make sense as smooth
single value functions. However, the introduction of shocks as described
ahove, is not apprapriate in this case.

For some 7 = 7, a singularity in the derivatives arises at some y = .
and beyond that time attempls at continuing the solution produce multiple
values near ¥ = x.

The linear case can be easily underastood.

A multiple valued solution of the modulation equations simply means
that where there used to be a single phase, now there are several, in fact the
multiple valued solution of the modulation equations is a perfectly acceptable
solution (in the linear case) provided we reinterpret it adecuately.

Namely, assume we start al time ¢ = 0 with a single phase wave
& = 1
u=agsinlly + Cfe), &g =dgly) ond 3= :{é{x) (2.1)

Then, il the Modulation Fguations for a and # (with initial values a4 and éu,
respectively) develop the multiple values (e;,6;) , 1 < j < n, we have

u~ Y ajsinb;. (2.2)

The only difficulties arise along the lines (causties) in space-time (x, 7) where
7, the number of phases, changes. There a local expansion accounting for
the transition is needed (and possible). All of this can be justified rigorously
uging the Fourier Transform representation of the solutions.

Physically the sitnation described above can be understood quite eas-
ily. Although the initial configuration might have a single wave locally in
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each region of space, places “far apart” will generally have completely differ-
enl wavelengths and amplitudes. As different wavelengths move at different
speeds (due to the dispersive characier of the equations), eventually waves
from wide aparl regions in the initial conditions may come together. But
because Lhe system is linear, these different waves do not interact, and to get
the full solution we need only superpose them.

For nonlinear syslems the arguments in the prior paragraph almost also
apply, excepl for the last sentence. Now the waves inleract as they approach
each other, and it is generally not clear what this inleraction may produce
— except in the case of completely integrable systems.

From the considerations above it seems safe to conclude that the break-
down in the solutions of the Modulation Equations is related to the appear-
ance of new oscillation frequencies in the solulion of the p.d.e.

For completely integrable systems the situation is much betler under
stood and it is somewhal similar to that described above for lincar systems.
Basically, in this case, through the multiple phase Modulation Equations, we
know and can describe accurately and precisely how different phases interact,
For example: in the case of the KdV equation for f = 3u?, using the work
in [FFMcL] one can describe what happens as (1.2) breaks:

(i) First a new phase appears and a region in space-time arises where the
solution u must be described in terms of the one phase modulation equations.
This is true for all reasonable functions f — not just for f = 3u®, as we can
always do one phase modulation using the results in [W1], [K], [GP].

(ii) When the one phase modulation equations break down, then an ad-
ditional phase appears. The solution ¥ must now be described in terms of
the two phase modulation equations.

The process continues. Each time a break in the n-phase modulation
equations occurs, a new phase is added to solve the problem. We recall
that the n-phase modulation equations for (1.2), derived in [FFMcL], are a
sysiem of first order hyperbolic equations in (2n + 1) parameters' which in
fact can always be reduced to a Riemann Invariant form. These results are
confirmed by the work of Lax, Levermore, and Venakides in small dispersion
problems. [V1],[V2],[V3],[V4],[Lel],[LLe1]

lie.: one mean level, n wavenumbers and n amplitudes,
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Even in this case there are strong differences in behavior with the Linear
case. To begin with: in the linear case the sequence in the number of phases
at any given point is generally n=1, 3, 5,... and not n=0, 1, 2,... as here. Fur-
thermore, in the linear case no new oscillations are created: they are simply
redistributed in space. If at any given time several phases are encountered
someplace, it is because in the initial condilions those same frequencies were
somewhere — even if not together — and have moved into the same region
of space. On the other hand, nonlinear interactions can and do generale new
phases. In fact, when we start with (1.2), no oscillations are present initially
(n = 0). Nevertheless, after some time oscillations appear (n > 0).

3 Dispersive Difference Systems

A similar problem to the one described in the prior section appears when
one looks at the behavior of semi-discrele dispersive systems. For example,
consider the finite difference approximation to the Burgers equation

u + (u?); =0, {3.1)

given by the semi-discrete dispersive scheme

g 1
ty + Eﬂ(uii-l -} ,)=0. (3.2]

T'his leads to the interpretation of the oscillations appearing in nuner
cally dispersive algorithms (approximating non-linear hyperbolic p.d.e.s) as
modulated waves, where the wave frequencies and wave numbers are large
and the modulations aceur over O(1) distances and tirnes.

The oscillatory nature of the solutions of dispersive dillerence seheines
was discovered , accidentaly, by von Neumann [Nv] in 1914 in the course of
a calculation of campressible flows with shocks in one space dimension, em-
ploying centered difference schemes. The solutions contained, as expected,
a shock but they also contained post-shock oscillations o the mesh scale.
Von Neumann conjectured that these mesh-scale oscillalions were to he in-
terpreted as the heat energy produced by the irreversible action of the shock
wave and that as Ax, At — 0, the solutions of the difference equations would
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converge weakly to exact disconiinuous solutions of the equations governing
the flow of compressible fluids. If the equation w; + (3u?). = 0 is a guide

to the equations of compressible flow, then there is reason to doubt the va-
 lidity of von Neumann’s conjeture. For more on this see [GL], [La2] and
[La3]. * To see how (3.2) approximates (3.1) in the limit & — 0 interpret
uy(t) = u(nh,t). Using Taylor expansions then one obtains

e+ (e + S (R (@)eee 0, (33)

an equation very much like aa non-linear K. d .V, equation. From this the
dispersive nature of the approximation becomes clear. Note however, that
the dispersive terms are nonlinear in (3.3).

4 Numerical experiments

We describe here some numerical experiments for the difference scheme (3.2).
We solve the equation using an Adams Bashforth methed, that adjusts the

step size and order so as to control the local error per unit step.

It is clear from all the previous sections that one of the basic points of cur
program relates to the analysis of functions (the solutions of the nonlinear
dispersive systems) which are locally oscillalory (say quasiperiodic) in terms
of some phases and amplitudes. The qu-.a.sl.ilun is, given the funclions (say, as
output of a numerical algorithm for solving the nonlinear dispersive system),
how can we recover these phases and amplitudes?

Basically we have a function u = u(z,1; €) for which we postulate a rep-
resentation of the form- '

u=Y gzl 0o, (4.1}

with® i, = —p_, and a, = a_, for real u. The presumption is that |, |— 0

3 “Unfortunately” the scheme considered in this reference is very special, Le. : it is
integrable, so thatl results like those in [FFMcL], [LL1), [V1], ctc. presumably apply to
it, but this is far from being the genersl case.

3For example, for a single phase wave: v =n, ¢, = v and # = ;li.:a; for a two phase
wave: v = (n m) with ¢, = niy + mg; ete.
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aufficiently fast as | ¥ |[— co. Now, given u, how do we recover the amplitudes
a, and phases ,7 One way to do it is the following:

After we compute u(z,t,) for some ¢, we divide the x interval in small
windows (we are interested in the local wave number), and use a discrete
Fast Fourier transform (FI'T) in that portion of u. From that we can see
which & is most important in thal region and then we can associate that k to
the mean point of that interval. In this fashion we obtain information about
the wave number k as a function of x and t.

First we applied this algorithm to the linear case, where Lthe resulls are
known.

To this end, we solved the wave equation u, + w, = 0 with the following
scheme tip + g7 (Upg1 — Ug-q) = 0, and initial data u(z) = sin(300cos(2rz)),
so that e = ﬁ

For this problem the equation for the wave number is &k, 4w, = 0, where
sin(k), and the shock first forms at time ¢t = 0.1, at z = 0.11 and
z = 061. Tn figure # 1, # 2 and # 3 we can see the evolution of the
breakdown, coincedent with Lhe one expected.

W

We are slill working with the non-lincar case. Lots of subtleties and
interesting fenomena scem to take place.

3till we were able to study some phenomena of escillatory behavior of the
solutions of difference approximations like (3.2) and

. 1
Un + ﬁ{ﬂmzumpi — Un-1Up-2) = 0, (4.2),

which has Lhe advantage over (3.2) of preserving the total energy Xu? (so
that unbounded solutions do not arise).

These equations are semi-discrete, ie. continuous in time, discrete in x.
We observed that the cquations (3.2) and (4.2) have solutions that oscillate
with a wave length O(h), ie. on the mesh scale.

For example for (3.2) with u{z,0) = sin(2rz) we propose the following
form of the solution after the Lime of breakdown :

un(£) = Baft) + (1) 7(t), (4.3)

where 3, = G(nh, 1) and 4, = y(nk,1). If we use Taylor's series for v and
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B and replace them in (3.2) we obtain the following system for 4 and fF(at
leading order) :

Be+ (B +77):=0,

Te— (2161): = u'

Wetook §=1forz <0, 8= ~1forz > 0and v = 0 everywhere
as an approximation for initial data that model the behavior inmmediatelly
after a discontinuity starts forming in the solution of (3.1) —shock—, leading
to “breakdown™ in the solution of (3.2) (as an approximation to (3.1)) and
appearance of oscillations. We solved the system using characteristics and
Riemman invariants. A rarefaction wave arises and there are no breakdowns.

The solution is (for 2 < 0 only, for z > 0 use the symmetry z — —z,
BBy

Blzt)=1, z<-2

Ble, 1) = 51+ /14 () + (1= ‘\1"'{51'5 B, —2<z<0

¥z, t) =10, Tz <=2

1 1 § 1:%5
o) =0 — L+ M= {1+ D, —2se<0

See figure # 4 and compare the solution above with the actual numerical
data. The description seems qualitatively correct. The differences can be
attributed to the fact that away from the breakdown point we took constant
data while in figure # 4 this is not true.

In the case described above the point where the shock in (3.1) would
appear is produced is a mesh point. The case in which the shock does not lie
on a mesh point presents a totally different behavior: there are no oscillations,
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This can easily be understood, and in this case (3.2) allows [or discontinuous
solutions (a jump from u, =~ a to u, = —a causés no large time derivatives
in (3.2).)

If we change the initial data to u(z,0) = sim(2xz) + ¢, then the Jocation
of the shock is not fixed, the velocity of that point iz 2e. Now when the
shock passes through a mesh point it will produce the maximun number of
oscillations. See figure # 5.

For the scheme (4.2) we proposed solutions of period 3. We modulated
those solutions and we observed two differents kinds of behavior depending
on whether the shock laid on the grid or not. In the former case the solution
presented a shock and in the latter a rarefaction. See figures # 6 and # 7.
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