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D A TARZIA AND C ¥V TURNER
The one-phase supercooled Stefan problem

Abstract: We soasider the sipeccooled one-phase Stefan problem with convective
boundary condition at cae fixed fuee. We analyse the relation between tha hea:
cransier coeleient and the possivility of continuing the solution far arhitrariiy largs

time intervals.

1, Introduction.

The classical one-dimensional Stefan problem has Seen studied since 1831 see [L1]}
it models conductive heat transfer on either side of a phase boundacy in pure material
o1 the assummptions (i) that the camperature ac the phase boundary 5 consbasne, say
zero, (i) taac there i & release of latens heal ab the boundary o solidification, and
an uptake on meltiog, aad {iii} that the material on Lhe solid and liuicl sicles of the
phaze boundary has negalive and positive temperabure, cespratively.

VWith these zssamptions the problem has a weak farziacion and a global solution
is wnown to exist {47, IF she data are such thak just one phase beoundary exists the
probiem has aiso been shown to be well-pased in the classical sense [3.7]

But if zhe inisial and/or boundary daca violaie he sign requirement (i}, ben, iF
the lieuid is supercooled or the solid is superbented, a saikion atill may exist, at
lease formally, but <he result is generally enly local in cime and finite time Blow-un
can easiiy ocour [8))

[n this paper we consider this kind of problem in the foliowing setbing:

Problem I

Find #(y, 7} the tempecuture and r{r) the free-boundary such that:
rir} is Lipschitz continuous far = = 0;
Firy is continuous for T > 0:
#y.7) is continuous for v > Dand DSy = il
8.0y, 7], Oyy(y, 7} aze continuous for v > D apd 0 < i < rirh
0,(y,7) is continuous for = > 0.0 <y < w{rh
rir) and #(y, v) obey the conditions:



fr=ady, OD<y<rr), Daramn
Mrirlr)=0 daram
kdy(r(ey i = —phile), Daram
D i =R(0 ) —girl] Dxrn
By =8y} 0<y<h
rill =&

The paramebers are
o= ;5:; material thermal diffusivicy (m®fs)
& = macerial thermal conduetivity {KJ39C 7 m)
p = materiai donsity {Kg/m?}
& = Intent heat of melticg (A J/Kq)
5 = fuid to material sucface heat teansiar cosficiant {(HJs°Cim?)
@l7} = ambient fuid tempecature (9C)
e = specilic heat (& S0/ Kg),

The melting front at thme T is ri7) while 8]y, 7} is the tenperature ac position i
angd time .

It is known that & solution to Probleen [ exista 1], for suitabls ry ‘sufictently
small’, This probiem is often reforred Lo s a mathemarical echeme far the feaezing
of a supercosiad liquid (although thiz simple scheme for such a nen-equilibriurn
phenonienon is far from being sabistactory)[10].

The freezing of a superconied liquid is due ko convective hoas sransfer from a A
with ambieot temperazure g(r) dowing across the face = (1.

This problem has bean studied in [2),13][6] and [12].

The adimensional problem is obtained by the foilewing zransforms

i ¥ b ke
& ach?
om0 = fowr) o = S0

Theo the variasles {1, 5, 2} satisty the problem:

Proolem I1:

(1L} 222 = 2, in Dg:

(1.2} 8i0) = 1;

(1.3) afs(t).8) =0, 0 < { < T
vlad zofs(t) ) = ~5f2), D2t 2 T
(L3) e M =wizh 0z <l

(L6) 2(0,¢) = z(0.t) — G0, Dt < T
where 3= [} is s adimensional paramerer, and
Do={{z,t)0 cr<st)dct<T}
e fiRpethy
Gity = 77 {T t
2. The one-phase supercooled Stefan problem
In Lhis section we consider the following hypotheses
gl <0 dcrogl and Gl =0 ¢=0
and the compatibilicy condition
20 = B} - Gio}).
The first simpie properties of the solucion of {1,1}-{1.6} are summarized in the
following proposition :
Proposition 2.1, IF(77 8.2) is a solution of Probiem I1, then
B2 0in Oy
w) ) <0 im0 o
i) Gt} €0, glz) 2 GI0) = maxeso G2, then 7 = GLE) {a D,
il = 0 chenzg = Din Dy,
vy G > 0" >0 then 2 >0 in Dy
vl

'0 ! Pl ¢ '3
2.0 5[ [] +§.={s)] -] *E‘ +j£ i1 +1?rj-;|.:n)dz-!-fu AC() dr

EILH
—f {1+ Oz)zlz, d}dx
[

Proof. o
The proof is abtained by using the maximum principie and Green's ideotity,

Remark 1: [n the following sections we denote
i :
2.2) Qi) = L+3-= [ {1 -'-3:)@[2}&::+fn 3G {r)dr
ey
If@il) = 0, s(x) is Hélder continuous for = = 1 and G{t} 8 4 piecewise continuous

on every interval i0,¢), t > 0, this problem possess one solution for suitable T
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“sufficiently smell” (see (1, 5], (6] where uaiqueness and continuous dependence are
also discussed),
[:j\-fnreuver. if @ solution exists, then three cases can ocour {ses [6], Theorem & and
2).

(A) The peoblen: kas a solution with arbitrarily large T,

{B) There exists a constant T > 0 such that fine g (1) = 0.

{C} There axists a constant Te > dauch tl:.u‘ 1°m‘ st} > Gand lir_? Bt = —no.

0,1 E=rTe ‘

We -‘_-hj‘-“ investigate the cceurrence of these cases in conection with the behavier
OE. the iritial deta v, the adimensional temperature & of the external 2uid and the
adimensional eoefficient 3, (see [12]).

Dur next aim will be to look for same conditions ca @, O and 5 giving au a priori
caracterization of cases {A}, (B) and {C).

Pr&posiﬁion 22 G <0 wlz) > G(0) and che solution {T, 3,2} of Problem [I
is case (B), then Q{Ty) = 0,

Proof. Secting ¢ —+ T in (2.3} and using the boundedness of 2 obtained in Fropo-
sition 2.1 we conciude she resuit, O

Proposition 2.3, IT (T.s,2) is a solysion of problem P IT, and the initial and
boundary data satisfy she following hypotheses:

ez > Mz -1}, €€l DM,

W oM
(ij it exists & time Ty such thar Q(Tg) = 0 then the solzion (Tg.s, 2} is case
Pm.:!;'. First we prove chat s{z. f) Mz — iy Thia is easiiy followed from the
maxizium priaciple appiled to w =z — M{r - 1).
) We r‘r.'pia.I:e thig inequalily In (3.1} for & = Taq, then 2(Tq) satisfies (he Tollowing
imequality

[ r
3(Ta) L*.'J — M) ~3(Tg) |

2

Bll—M 4+ M
[—2’—-] +85%(Ta ! < 0.

#)
B

The quadratic form ia brackess has coefficients | — A > 0 and ZI=MIEM - o
then $(Tg} =0. O * I
Propogition 2.4. Suppese thal, tg < T and limyay, 5(t) > 0. i satisfes the
Aypotheses w) of Proposition 2.1, Moreovar Q) > 0 for all ¢ < t;. Then if we
dafine a function a
) ([ max{z £ [0,5(1)|'ziz, 8] < -1}

b z(z ) >~ p e (0, s(8)
than it foillows .
Gel TR I
Amoat) < llj'l'& sit)

Proof. “The proof is similar thac of Proposition 2.3 in 2],

a4

Proposition 2.5. Let (T.5.2) be a solution of Problem I[I suck tha
Sp = inlgmraft) » 0. IF there exist two constants d € (0, 5r), @ & [0 1)
such that Md > =, and

sisft) —dit) > -5y, DSt T

then fnf1 .

i Tl L — &nj
- it Sl 4

i) = =

Proof. 4 is the same that of the Lemma 2.4 in (2] (See alzo [6]). C

Proposition 2.6. Ler be (T 5,2} & soiution of Probiem Il and 4 sabisies the fy-
petheses of Proposition 2,1 4v), then If the solution is case (C), then Q(Te) < 0.
Proaf. Suppose (T} > 0, then from the Proposition 2.5 the isotherm z = =1 is
separaked from the (ree-boundary, Using the Propesition 2.5 & 7as a lowsr bound,
which contradicts the case (Q). O

Caorollary 2.7. If{T, 3, 2) i5 a solution of Problem [1 and w, 7 satisfy the fallowing
hppotheses:
iz 2 M{z-1). 1<z
GG = M, 0<M <L
wiwlr) 20, DL g1,
And the solution is case (C), thea Q(Te) < 0.

Progf. 1t follows from Proposicions 2.3 and 2.6, 0

%1;

Proposition 2.8. Let (T, s 2z} be a solution of Problem [T, @ and & satisfy the
following hypotheses:

il 2 Miz-1), M»0 022

G o LHD, ok

If the seiution is case (A), then Q(t} = 0, ¢ > 0. Moreover, if Gt) > —M. (M >
0}, %t >0, thea case {A) implies thae Q(f) » 0,%¢t =» 0.

Praof. This proof can be seen in [12].
3. Asymptotic behavior of the solution

Proposition 3.1, Let [T5.2) be a solution of Problem Il of case {4) under the
hypotiwses of Proposition 2.9 and (iii) of Proposition 2.1. Moreover, we assume
that the limic of Gt) when t — oo exises. 7 we deoote Qo = limy— 0 @t} and
Soo = AMpesaa $(2), than 5., is givan by
; —1+ 1+ 250
(3.1) g i
i
47



Proof, The exizience of the limit of G(t) when t — oo and & £ L0, 5¢) assure
that limy e GE) = 0.

We denote z, che lim:t of » when ¢ tends to infinicy. The existenee ol lify e (T, £}
is due ta Propogsition 2.1 and [8,Caapter 6 |, The funclion 2., satisfes: 2 =0in
{0,550, ZoaiSo) = I 2, {0} = 32 (D). then Zofz) = 0,0 <7 < 5.

Taking limik when ¢ — oo in {2.3). then

o [143722] g =0

That means that 5., & (0, L} i the roor of the above vavation, that is 3.1
Moreaver, we have 5., < 1 sincs

S0 Sl e= 1+ 2300 < {1+ 812 ¢= 2 = 2= < 0.

By taking limit when £ — oo in {2,3) the last inegualivy bolds always due to the
following expresion

o
We-2-= -zJ.-' (1 dzyplxydr = 28|G|, < 0
[
where ||l = —_}::DG(T:dr T

4 The oxygen-comsumption problem

As in (8] we are interested in the dependence on she heat Lransfer cosficient A or ]
adimensicnal coefficient S.IF in Problam [1 we pecform the classical bransformacion

aie} ralt)
i &} =f {./’ - :ia,t}ida} dy
v b

then we oblain the foilowing oxygen-comsumption problem,
Proolem [I
Uy =2 =1,
S{U} = 1.
w{s{t),8) = walsft), ) =0, 2xm
ufz,0)=Hiz), 0=2z<i:
U0, £ = H'{0) = B0, ) - H(0) = [|&G]vs,

where

n Iy;

{0,

I |
H(r;:f [ {1+ le)) dody
From now on, in this section, we consider the following hypotheses for w
—l<p(zr 20, 5z <L,

48
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zaen
Hizi»002c< L HFiz) <02 GETI»00<3 <1,

YWe now address the quescion of how the saluiian to Problem 111 depends upon
c

Proposition €.1. The solution (T, 5, u) of Probiem I depends monotonicaily on
G In pacticular of (T, 5w, 1 = 1,2 are the solutions for G| and G respeciively,
and iF G() < Goit), then s:(t] < sa{t) and uy (.t} £ ugir &) whatever they are
barh dafired,

Frgaf. Thia is seen by considering the differenee
w{z, i) = uglx, ) — wiz.

#r the points where chey are both defined.

Let 4% = supft > 0lugf0,8) > w{0,¢)} and £** = sup{t > Dlss(4) > sy(2)}. Let
us suppoge bhat both ¢ and t*° are fnite, By definition v satisfies che following
arobien

Uew = u, & S 00, 5p0t)), 0 € 00 6%
sz, 0 =5
via(t), i) = wlayfe} e} = 0

ualll t) = S0 e) + (1l e = |G:] 1]

ladrm 1 04 g 67,

In order ko prove that t° and £ are different, (et u3 snppose that they are equal,
then

al s (t") = 5287
B) §(17) > saft’}
o} (g (), 8°) = ualm (7207} = ua(sy(e”) %) = 0
Mlorever ug [0, 8] > 1w {0, t) far & < %, then

w000, <t
and

w{si(t), &) = ua{ai(e), ¢} > 0.
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Since v has she minimum value zero at (s:(t*),¢*).the minimum principie to v in
L we gel vz (20070, 07 ) < Dowhiek s a consradiction by {a) to

U (o817 = g8 (8710 £7) = e (), 2] = O

Then £~ &£ t*7,

Claim 2 : ¢* < ¢* is impossible:

On D, ¢, s1(t) < s5{2), wheace ol (8),8) > 0. By defiuition w(0,8) > 0 foe t < =
and v(0,£") = 0. Thar impiies vi9,t*) is 2 minimum vaive up o bime t* whence
wp(0,£%) > 0, which contradiols

pet0. 87 = Fin0, %)+ (

=26 e =G e < 0

ICalLe —1'G:

Claim 3 @ £*° < t* is impossible since:

Ler be t'_' < 1, and sicee (0.2} > 0, v{syie) 8) = wris(1),8) > 0, for ¢ <
L "'f"* poink {s(¢'"), £*) is a minimum point for v bocause vls(t*"),t*) =
a8 4T = w0 ) =0

By Lthe corner minimum principle

el {8 ), 8 < D
which contradicis

e (B T = s (et 00 =0,

Thus the propasition is proved. ©
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