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ABSTRACT

A pew theoretical mechaoism 15 developed in which large seale cquarorial Kebvin waves cin modify ther
speed through dispersion and interaction with other large-scale equatorial wives, such as Yaoii or Rosshy mades,
thoough lopographic resonance. This resonanee mechanisn ean prevent the hreaking of a propegeling nonlinesr
Kelvin wave. slnw down ity speed. and concentrate most of 11s enengy 1 large-scale 2onal wavenumbers while
stmulmseously generating large-scale Yanai or Rosshy modes with specific zonal wavelengths, Stmplified reduved
dynamic cqualions tor this resonant interaction are develuped here via suitable asyiprotic expansions of the
equatvral shallow waler equations with topography, Explicit exser solutions for the redueced egostions and
numerical experiments are wilized 0 display explicitly the features of large-scale dispersion and topographic
resoniance for equatorial Kelvin waves mentioned earlier. Two examples of this theory, comesponding o the
bamitopic and first huroelimic modes of the equulonal repesphere. are emphasized

1. Introduction

Large-scale eastward-propagating waves are g dis-
tinctive feature of the intraseasonal Madden—TJulian os-
cillution (Madden and Julian 1972, 1994) of the equa-
tarial troposphere. Current theories attempl to explan
these modes as essentially linear or nonlinear Kelvin
waves of equatorial shallow water models representing
the first haroclinic mode with switable convective pa-
rameterization (Emanue] 1987; Neelin et ul. 1987, Wang
and Xue 1992; Neelin and Yu 1994; Yano et al. 1995)
through either wave—Cisk or cvaporation-wind feedback
mechanisms, which slow down the Kelvin waves. There
are also observations of large-scale westward-propa-
galing waves embedded within eastward-propagating
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super cloud clusters in the western Pacific and a cor-
responding linear theory (Goswami and Goswami 1991)
for eguatonial Yanai or mixed Rosshy gravily waves,
which provides a possible mechanism for this phenom-
enon. Large-scale Kelvin and Yanai waves in the tro-
posphere also have » prominent role in the forcing of
low-frequency oscillations of the equatonal stratosphere
such as the guasi-biennial oscillation (Andrews et al.
1987; Takahashi and Boville 1992),

Here we present @ new theorctical mechanism in
which large-scale equatorinl Kelvin waves cun modily
their speed through large-scale dispersion and interac-
ton with other large-scale equatorial waves, such as
Yunzi or Russhy modes, through topographic resonance,
This resonance mechanism can also gencrale simulta-
neously larpe-scale Yanai or Rossby modes with specilic
wavelengths and prevent the breaking of the nonlinear
Kelvin wave while concentrating most of its energy in
lurge-scale zonal modes. To clearly elucidate the struc-
ture of this new mechanism in the simplest physical
context, here the equarorial shallow water equations
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wilh lopography with an equivalent height generated by
either the barotropic or first harochinic mode of the equa-
torial troposphere are utilized. For dynamics in the equa-
torial troposphere, this reduction from the full vertical
structure o a shallow water model is often done by
Gulerkin projection omto a single vertical mode of the
full primitive equations in pressure coordinates (sec,
e.g., Neelin and Zeng 1997). Recemt EOF apalysis of
observational data in the western Pacific (Milliff and
Madden 1996) provides evidence that the dominant two
modes in eastward-propagating equatonial waves are the
first baroclinic and barowopic modes, respectively. In
this paper the lopography is regarded as crudely mod-
eling large-scale land-sea contrasts. but the authors have
no doubt that the role of topography elucidated here cun
be replaced in similar models by other large-scale in-
homogeneows mechanisms, such as diabatic heating or
evaporation wind feedback with convective parameter-
ization, which accounts for different bulk fluxes for land
and sea (Neelin and Zeng 1997). We plan to develop
these more elaborale applications in the near future. The
reason why the authors believe that these other mech-
anisms will play similar roles as the topography is that
entirely similar behaviors appear in the context of gas
dynamics (Majda ct al. 1988; Celentano 1995; Vaynblat
1996; Shefter 1997), where the coupling of the waves
is through variations in the pas entropy—not an external
enlity such as the topography. The behaviors presented
in this paper, in fzcl, seem to be common Lo any situation
in which nonlinear nondispersive waves resonale with
other waves through variations in the media they prop-
agate in (entropy, humidity, vorticity) or variable co-
efficients (topography). A brief summary and discussion
of the content of the remainder of this paper is presented
next.

Afiter preliminary discussion of the equatorial shallow
water equations in section 2a_ the basic nonlinear res-
onance mechanism of large-scale equatorial waves
through topography is described in section 2b. Through
dn zsymplolic expansion procedure described in derail
in section 5, this topographic resonance mechanism
yields suitable simplified reduced equations for the am-
plitude of interacting large-scale equatonal waves. In
section 2e, these equations are presented with an equiv-
alent height corresponding Lo the barotropic mode. The
simplified equations in this casc arc given by

B e
K, + (Ex—)

Y. =

v¥De® + ¥(e @ and  (1.1)

~ ki1, 9, (1.2)

where K(6, 7) is the umplitude of the Kelvin wave, a
periodic function of 8 and ¥{7) is the amplitude of the
Yanai wave with wavenumber lwo while y represents
the amplitude of wavenumber three topography [the var-
iables 7 and @ arc rescaled shifted varables (ses section
5)]. Thus, the nonlinear Kelvin wave and a specific
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large-scale Yanai wave interact through topographic res-
onance with wavenumber three and these are the only
wavelengths with such resonance. Tn Eq. (1.2} the quan-
tity K1, 7) is the projection onto the first zonal harmonic
of the Kelvin wave amplitude. Without topographic res-
onance, that is, with v = 0, Eg. (1.1) reduces to the
inviscid Burgers equation describing nonlinear Kelvin
waves (Boyd 1980; Ripa 1982); however, completely
different large-scale dispersive phenomena ocour for ¥
# (), which are developed in detuil in section 3, In
scction 2d, we briefly describe the reduced equations
analogous to (1.1) and (1.2), which cccur for an equiv-
alent height corresponding to the first baroclinic mode:
here several large-scale Yanai and equatorial Rossby
waves can interact with the Kelvin wave through equa-
tions with a similar structure as in {1.1) and (1.2).

In section 3, some hasic propertics of solutions of
these reduced asymptotic equations are studied includ-
ing large-scale dispersion and phase modification of the
Kelvin waves and gencration of large-scale Yanai or
Rossby waves. The effect of the mean wind on the res-
onantly interacting waves is presented in section 4,
while the asymplotic derivation of the reduced model
is presented in section 5. The asymptotic procedure uti-
lized in section 5 is based on the method of multiple
scales und follows similar asymptotic procedures 1o
those that two of the authors (Majda and Rosales 1984)
have applied to resonant waves in compressible flow.
For the special case of (1.1) with -y = 00, this procedure
yields a simpler asymptotic derivation of the nonlincar
propagating Kelvin wave than that via strained coor-
dinates (Boyd 1980), which is also differcnt from Ripa's
(1982) elegant Galerkin projection technigue for deriv-
ing the propagation of nonlinear Kelvin waves. In sec-
tion Sh, results of a similar analysis with forcing through
diabatic heating are bricfly discussed, showing that the
identical asymptotic equations are valid in this context.
This fact helps to motivate and justify the use in this
paper of a wave speed for baroclinic Kelvin modes of
roughly 50 m s='. This is the typical wave speed as-
sumed for convective forcing ol the troposphere n sin-
gle-layer models (Gill 1982; Yano ct al. 1995; Milliff
and Madden 1996).

2. The reduced model equations

a. Basic equations. nondimensionalization, and linear
Wavey

The nondimensionalized equations for shallow water
in the equatorial waveguide are given by

o+ (1 + np=hul,+ (1 +5=hIv], =0, (2.1)
W+ un, +vw, + p, —>yv=0 and (22)
v, +ou, + e, + o, =0 (2.3)

Here the 1otal dimensional depth of the fluid is
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where ¢ is the characteristic speed of the linear waves,
¢ is the acceleration of gravity, n is the nondimensional
perturbation of the free surface, and A is the nondi-
mensional topography. The x and y velocities & and v
are nondimensionalized by the characteristic speed ¢,
and the spatial variables by the scale

X

wherz 3 is the linear variation of the Coriolis parameter
with latitude, given by

T

P=re
Here £} = (2a)/24ks is the angular velocity of the

earth, with R = 6378 km the radius. The timescale '
is given by

T =

LS Ee ]

The solutions to the lincanzation of the equations
above can be divided into two groups: a nondispersive
Kelvin wave; and an infinite set of dispersive wavces,
the Rossby, Yanai, and Poincaré waves (Gill 1982). The
Kelvin wave is given by

n = Kix = fle-0a,
= Kx — fe-v,

v =1,

(2.4)
(2.5)
(2.6)

where K is an arbitrary function, The dispersive waves
have the general form

and

o [ 4 g U ey | g =15t o
L il ey wH.{_}J N:_ﬁ_:h‘..l}}}e’ (; . (27
¥ k v
= |—= 4 ] PR S ) g
=l mH_f,hJ m;—-k—'H"U} e £ . [2.8)
and

v = {H (y)eit-ug-1v

(2.9)

where H_(v) s the Hermite polynomial of order i, and
w = Wik) satisfies the dispersion relation

g (w + Eiow* — ki — 1) -
w

2n 0. (2.10)

The solutions with posilive e Lo this cubic equation are
displayed in Fig. I, The case with n = 0 has only two
solutions, corresponding to the Yanai {or mixed Rosshy
gravity) wave; the third solution to the cubic (w = — k)
15 spurious hecause it does not satisfy the omginal equa-
tions. For n == |, the solutions are one Rossby and two
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Fic. 1. Dispersion telation for equatorial waves wilh curves cor-
respanding to the Kelvin, Yanai. and the frst few Rossby and Poincard
wives, Since the dispertion relation iz skew-symmetric, ooly the
upper-half plune w = 0 ix displayed,

Poincaré waves. characterized, respectively, by the in-
equalitics

I + 2n
2

— [nin + 1IN and

@t =

k2

o' = + [n(n + 1}]*
There is a wide-scale separation between the Rosshy
and the Poincaré waves.

h. Resonances between long waves through
ropography

Since the dispersion relations for equarorially rappad
waves (shown in Fig. 1) are fur from self-similar, the
nature of resonant interactions depends strongly on the
order of magnitude of the wavenumbers in play. The
focus here is on very long waves, with spatial periods
comparable to the circumference of the earth, P =
40 000 km,

A Kelvin wave Ki(x — ) can be written as a Fourier
series

Kix — 1) = 2, K(he
f=i

where a = (ALY and L = (¢/8)" is the eguutoriul
Tength scale. A wave with [ = 1, that is, with perind
equal 1o the circumlerence of the earth, has a wave-
number & = @, and all other wavenumbers ure integer
multiples of this. Similarly, esach mode [, of the dis-
persive waves in (2.71—+2.9) has the form

Dy, f) = Deltw=un,
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Tantn 1. Typical speeds. and comesponding unis of leagih, time,
=nd wavenamber

rimz "y L ikm) T il u
0 1500 ¥ 023
100 2100 ] 033
300 sl 5 0487

where jis an imeger and o, = Wija). Tahle 1 displays
approximute vilues of I, 7, and « for typical values of o
As a Kelvin wave interacts with the topography, it
can generate other waves through a three-mode reso-
nance. 10k, &, and &* denote the wavenumbers of the
Kelvin wave, the topography, and the dispersive wave,
respectively, the conditions for resonance are

ke + k= k* and
k= o = W),

(211
(2.12)

where for the Kelvin wave w = & and the topography
is time independent. The resonant mteraction conditions
in 1211 and (2.12) are derived from the delailed as-
ymplotic derivation in section 3. Since all the wave-
numbers have 1o be multiples of e, the nature of the
possible interactions depends on the numerical vilue of
. In the next two subscetions, two wypical cases cor-
responding to the barotropic and first baroclinic modes
of the wopical aimosphere are siudied. 'The baroiropic
and first baroclinie modes have wave speeds given ap-
proximately by ¢ = 300 m 5" and ¢ = S0 m 5 ',
respectively (Milliff and Madden 1996). Here a value
of ¢ = 50 m & ' is utilized o represent the typical wave
speed associated with the response to diabatic hearing
fram convection (Gill 1982 Yano er al. 1995; Milliff
and Madden 1996). This is parily justificd by the dis-
cussion in seelion 5h helow regarding the nonlinear re-
sponse io diabatic heating. The value of ¢ = 150 m s '
is actually more appropriate for the lirst baroclinic mode
ol the dry stmosphere meluding both the troposphere
and stratosphere (Kasahara and Puri 1981). This ex-
ample is not discussed in this paper for brevity.

v, The barotropic mode

Since ¢ is approximately 300 m «77, a typical value
for the baroropic mode, «, is close o .37, In Fig. 2,
we have redrawn the dispersion relations of Iig. 1, fo-
cusing on the longest waves and displaying the grid
corresponding 1o allowable wavenumbers and (Kelvin)
frequencies for this valve of o, Which large-scale dis-
persive waves can resonale with a Kelvin wave via lo-
pography and satisly (2,11) und (2.12)? Since the Kelvin
wave cannot have a positive wavenumber k. smaller
than « > 0.3, from inspection of the dispersion relation
in Fig. 2, il [ollows thal no Rosshy waves can result
Irom the interaction of a Kelvin wave with ropography,
and the only wave that can be generated by the first two
modes of a Kelvin wave is the k = —LI4 ({ = =2}
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Fice. 2. Idispersion refation for equatorial waves that are concen-
Lrated wii 1he barotcupic ede, The gid displayed comespouds te
allowszhic wavenumhers, which follows from measuring the cireum-
fereuce of the curtls in e dimemivial enits cormespoading o the
harotropic made. The ssierisk denates the Yanu mode (£ = —2 n
units of o) that resonates with the £ [ mede of the Kalvin wae
through the £ = 3 mode of the wpopraphy.

Yanai mode, generated by the ! = 1 Kelvin wave, and
the I — 3 mode of the topography.

From the above discussion, reduced dynamic equa-
tions for small-amplitude waves and wpography should
cmerge involving the Kelvin modes and the large-scale
Yanai wave. Such an asymptotic expansion is carried
out in detail in section 3. The resuling equations are

1 _
K, + (;fﬁ) = Yi7le + Yire ¥ and (213

.= —K(l, 7,

where K(6, ) and ¥{7) stand for the Kelvin wave and
the | = —2 mode of Yanai, respectively, 0 = wix 1)
represenits the linear phase of the Kelvin wave (nor-
malized so that it has period 27) and T = e represents
the slow nonlinear fime (where € < | is a nondimen-
sional measure of the amplitude of the ropographic var-
iations). The dependent variahles K and Y ound the slow
time 7 have heen further rescaled in order to normalize
1o one the mteraction cosfficients on the right-hand side,
which depend on the projection of the (zonal) mode [
= 3 of the topography on the (Tongitudinal) irst Hermile
polynomial [see (5.33) and (5.34) below].

Eguation (2.13) for the evolution of the Kelvin wave
is an inviscid Burgers cquution, forced on the nghi-hand
side by the interuction of the Yanai wuve with the w-
pography. The Burgers equation arises because Kelvin
waves are nondispersive, so all modes resonate with
each other. Equation (2.14), om the other hand, 15 #n
ordinary differential equation for the evolution of the
Yanai wave, forced by the interaction of the Kelvin wave
with the wepography. This svstem of equations has very

(2.14)
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distinctive properties, some of which are treared below
i section 3.

d. The firsi baroclinie mode (multiple wave
fntergaction)

The first baroclinic mode associated with convective
heating typically has a charsetenstic speed close w 50
m 577, with values of & around 0,25, Figure 3 showy
the corresponding blowup of the dispersion relation.
More interactions can lake place in this case through
the topngraphic resomance mechanism in (2.17) and
(2.12) than in the barotropic siteation describad shove:
the ! = 1 (k = 0.25) mode of the Kelvin wave can
inleract with the { = 4 (k = —1) mode of the first Rossby
wave through the | = 5 mode of the topography, and
the ! = 2 and I = 4 Kelvin modes can interact with the
I=6(=—135)and | = 0} Yana modes, respecuvely,
through the | = R and [ = 4 modes ol the wpography.
The I = 12 mode of the first Rosshy wave 15 also for-
mally in resonance with the | = 1 Kelvin wave but
requires a signilicant amplitude of & shorl wavelength
(1 = 13) of the topography. which is assumed to be zero
for simpliciry here.

Thus, only the three resonances meationed above are
considered here. The asymplotic procedure [or small
amplitude waves and topography from section 5 for this
case vields the following set of reduced equations:

1
K.+ (;.’F) = y (R{7ie™ + R(7ie ™)
o7 ¢

o (Fme + T (re=)

ATemdm),
Ys.=—7.KQ2,7). and
(2.15)

+ iV (Te™ +
R.=—yK(.7).
Y. = — B 7.

Here the constants , account for the swength of the
varipus lopographic inleraclions.

Clearly, this system of equations represents 2 mild
generalization of the one corresponding to the barotropic
mode with added richness provided by its larger number
ol degrees of freedom.

3. Propertics of the model dynamics

The reduced models discussed in sections 2e and 2d
[or large-scale waves interacting with Kelvin waves via
topographic resonance have a number of distinctive fea-
tures, Some of these properties and their physical im-
plications are developed in this section. In section 3a,
the nature of the guantities conserved by the system ane
discussed. In section 3b, an explicit family of traveling
wave solutions 1s constructed; which indicares that the
lurge-scale dispersion in (2.13), (2.14), or (2.15) can
prevent the breaking of Kelvin waves and signilicantly
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Fi. 3. Dispersion relation for equatomal waves with a 2rid cor
responding 10 the first baraclinie made. In this cise, there ure three
dispersive modes resonuling with Lhe Eelvin wave theough the
pagtaphy

modify (slow down) their speed. In scetions 3c and 3d,
a series of numerical experiments are presented. which
shiw that these traveling wave solutions strongly attract
many initial data with cnough cnergy and that there is
a larger class of attracting solulions, which are oscil-
latory with two periods in time (quasiperiodic). This
situation is similar o that arising the in context of gas
dynamics, when lefi- and righl-going waves interact
through a variable entropy (Shefter 1997). For clanty
in prescentalion, the barotropic case with only two waves
is discussed first and then the extra ingredients from
multiple wave interactions. The latter is done with the
general system

K+ (%xl) =3 IR (De"+ R iDe ] and (3.1

R = -y K, 7, (3.2)

Ir

with the ¥, real, which includes the baroclinic equations
in (2.15) as a particular casc.

a. Conserved guantities and symmerries

The equalions in (2.13) and (2.14) have two main
conserved quantities, the meun ol K and the total energy.
Conservation of the mean follows smraightforwardly
from integrating (2.13) along a periad: it tnkes the form

d

e Kb, ©vdft = 0.

(3.3
dar | )

In particular, this equation tells us that it is sufficient 1o
consider solutions with conslanl zero mean slace a non-
zero mean can be absorbed into the unperturbed depth
of the fluid layer.
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Tor see the form for conservation of energy, multiply
Eq. (2.13) by K and integrate

d

“q s
mj SK(8,7)do 2=[¥PE -1, 7 1 FinkL 2,

2m(V(AK(1, 7 + PRk, 7)),
- —2m(iv1e).

so the energy

E= J K7 d0 + 2al¥1 3.4
P

is conserved while the solution remains smooth. How-
ever, energy may be dissipated at locations where the
Kelvin wave breaks (Majda et al. 1988). Here the de-
tailed physical dissipative and dispersive mechanisms
for breaking Kelvin waves arc not developed since, as
shown below, the equations allow robust traveling wave
solutions without discontinuities.

The equations in (2.13) and (2.14) have an interesting
symmutry: they remain invarianl under the transfor-
mation

K= =K ¥—=7Y. and #— —H

This symmetry is useful for the study of the energy-
preserving waves, as discussed in the remainder of this
section.

Fur the more general multiwave system in (3.1, (3.2),
with (2.13) as a special case. the equation in (3.3) re-
mains uachanged, while the conserved energy becomes

1e k"" i
E= f — dtl + 27 >, IR,
W 2 =1

The symmetry deseribed above ulso remains vahd, with

¥ replaced by R..

(3.5)

b, Traveling wave solurions

The equations in (2.13) and (2.14) have a family of
exact solutions where K is 4 traveling wave. To see this,
an ansuty is utilized in which

K(0, 7) = F(0 = 1), (3.6)

where 5 15 an arbitrury constant. The guuntily 5 repre-
sents the comrection to the linear wave speed for the
Kelvin wave. The Fourier rransform of K takes the form

R = Fe
so the equation for ¥ becomes
V.= —Fer,

with the particular solution

F!
ir) = —g o,
is

Thus Lg. (2.13} becomes the ODE.
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F F aF,
[~s 4 F(:!]F“(:}=E—r'e-= +l_—‘_'e'"-=T15intE],. (3.7)

where for convenience the origin for the phase z = 8
— &7 hus been selected 1o such @ way Lhat £1z) is even
and F, is correspondingly real, With the varable

giz) = fzy - 8,

the equation in (3.7) becomes

) 2,
= — sin(z).
5

—
ra |,

with the solution

:2(—£) _[{',' + cos(zh]":.
8

where € = 1 is a constant of integration. From this
calewlation it fullows Lhat

Ay LA

[k W i
A =5t —;} (C + cosiz)]'".

(2.8
Notice that if C is strictly larger than one, the solution
is smooth, but when € = 1, it develops a corner. In the
latter case, the solution 1s

_ BN
Flzy=x51 3(—7) lcos(z/2M, (3.9
In both sitvarions, the nonlinear breaking of the Kelvin
waves fas been suppressed and from (3.6) and (3.9),
the wave speed has been altered through topographic
resonance.

The value of s follows from equating the first Fourier
mode of the solution to /), and imposing the require-
ment that F have zero mean, For the interesting case
with & corner, it follows that

L[
F = —J' Fiz) cos(z) dz
T Lo

2f 2BN" [T
(——') J cos(z/2) cos(z) dz
™ 5 3

I
I+
|

1l
I

LY ]

o R

e ——

S

S0

F 32
FS:

Yoy’

and

A8, leosiz/ 2. (3.1

Imwlsd

Fizi=s5=

lor I to have zero mean requires
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: b
= gd-=2 =+
0 J:F{wj dz = 273 3"
so that
5
= +i;':'- = 104, (3.1
17\,'3

In the original equations [Eqs. (1.1) and {1.2)]. this non-
linear wave speed is & = F 1044 where v is the -
pographic amplitude cocllicienl. Thus the wave with a
downwurd peak moves more slowly than a linear Kelvin
wave. and the one with the upward peak moves faster
{nofice that these two waves are related by the symmetry
group presented in the previous subsection), The total
cnergy comesponding o this exact solation is readily
computed: its value is
14 32 4

=— =15

0 Kk

The case with > | can be evaluated similarly in
terms of elliptic functions. For a qualitatve result. how-
evel, these solutions are nol necded explicitly; it follinws
dircetly Irom the condition of zero mean thar the so-
lutions with the " +" sign (which have their "peaks”
pointing downward) will be slowed down by the non-
lincur interaction through topographic resonance, Tt 1s
interesting to note that the speed s of the waveling wave
does not depend strongly on its amplitude. To this end,
consider a nearly lincar solution, that is, with © 23 1.
In this case, Eq. (3.8) is well approximated by

) Y €os(z)
Fiz) vc:l(——) Y|l + 2 I
S0
A

F~ 4.:&)
or

g1

! Al

The condition for zero mean of £z} then becomes so
L |

Thus the magnitude of s ranges between 1.04 and 1,
depending on the smplitude of the traveling wave. Since
this range is very short, it is nor the strength of the
waves that determines the nonlinear speed of the Kelvin
wave bul only the amplitude of the topography (which
determines e the scale of the nonlinear lime). This speed
& = =| arises in all numerical experiments presented
in section 3¢, independent of the nature of the nitial
data.

The more general equations in (3.1) and (3.2) admit
similar traveling wave solutions with and without cor-
ners, The analysis is entirely similar to the one above:
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with a traveling Kelvin wave K(f 7) = F() — s7), it
follows that each dispersive wave R (7) oscillales with
frequency fs. The general form of F(2) is

Fe) =2 1 |C + HEDP?,
where Hiz) is a real periodic function with jth Fourier
coefficient

i vF

s

for j positive and € = max{ =11 is an arbitrary constant.
When C = max(—H). the resulling traveling wave has
at least one corner, again the solutions with corners
facing downward move more slowly than a linear Kelvin
Wwave.

A dilfergnee between this general case and the one
with a single dispersive wave, is that the speed of the
waveling wave is not constrained o be close 1o +1. A
way Lo see this 15 W consider the lincanieed equations,

K = wIRine" + R irle ] and

R_= —yKij .
and their family of solutions,

I
K= 2 a cos(f = p7) and R, = T e T
[}

where ecach mode moves independently at speed =+,
Thuos in the nonlinear fraveling waves, a range of speads
should emerge, depending on the strength of the dom-
inant topographic modes, y,.

. Numerical experiments

One might wonder about the significance of the wav-
eling wave solulions of the previous subsection: Do gen-
eral ininal data tend toward these solutions? I not, 1
the behavior of more general solutions in any way sum-
ilar o that of the traveling waves? In this seclion, these
questions are addressed through a few selected numer-
ical experiments.

Solving numerically the Lgs. (2.13) and (2.14), or the
more general (3.1) und (3.2), is a relutively straightfor-
ward task, Here a fractional step procedure is utilized,
solving in one step the lnviscid Burgers equation,

K4 {K) =0

s

and in the other the system of integro—differential equa-
lioms

L]

K = E wIR (et + f-f.,tf};.f w and
-1

K = ~—% J;’{j.. TV
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For the inviseid Burgers eguation, a second-order Go-
dunoy method is used, and the system of integro—dif-
ferential equations is integrated with a sccond-order
Runge-Kuna method coupled with u last Fourier trans-
form. Finally, the lwo [rectional steps are pur together
using the sceond-order procedure of Strang (1968). A
Ciodunov scheme is utilized to tweat the bresking Kelvin
wave solutions that might evolve and dissipate energy
in a conservalive lashion. We do not view this dissi-
pative mechanism for breaking Kelvin waves as the
physically correct ons for modeling equatorial waves:
instead, we regard it as a convenient numerical device
to reveal the robusiness of the traveling waves without
discontinuitics described in section 3b. We speculate
thut hresking Kelvin waves could radiute encrgy into
families of nonresonant modes.

The reduction of complexity in going from the full
system in (2.1), (2.2), and (2.3) to the reduced mode]
(3.1) and (3.2} is so big that the model 15 programmed
in the interpreter language Matluh with a typical run
with around 1M} grid points taking less than a minute
on a workslation. Calculations with far more points were
performed here o obtain greater resolution. Such cal-
culations would have been extremely costly for the full
system. Next the results of four typical experiments are
presented. three for the barotropic, und one for the first
baroclinic mode.

THE BAROTROPIC MODE

The first experiment illustrates quite dramatically the
“altractive”™ mature of the traveling wave solution in
(3.9). Figure 4a shows the initial valuc of K, given hy
an arbitrarily chosen periodic (unction: in this case,

K{8 ) = 0.3[3 cos() + sin(2#) — sin(48)],
the initial valve assigned to Y0 1s
¥y = 0501 + i)

The tolul initial energy of this solution is &£ — 7.5, which
15 larger than the threshold value 1.5 repuried shove in
(3.11}) for the traveling Kelvin wave with a comer (the
solution with a corner has the largest enerpy among
truveling waves). Tn Fig. 4b. we see the solution X at
T = (L5, with a freshly created strong breaking Kelvin
wave. By the time 7 = 5, displuyed in Fig. 4¢, most of
the exira cnergy of the initial data has been dissipated
through the breaking wave, which has also climinuated
all but the longest modes of the solution. Finally, by
the time 7 -~ 501 as in Fig. 4d, a steady state is ap-
proached. This state agrees nearly exactly with the cxuct
traveling wave with a corner in (3.9). which is also
displayed.,

Figore Ja shows the time evolution of the real and
imaginary part of ¥ ), the amplinode of the Yanai wave.
Notice that, since the speed s of the traveling Kelvin
wave is close 1o vne, and this cquals the frequency of
the Yanai wave, the period of oscillation of the latter is
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close 1o 2w Finally, Fig. 3b has the total cnergy as a
[unction of time, showing the fast inital dissipation dus
o Kelvin wave breaking, followed by stabilization at
nearly the exact crrical energy corresponding o the
wave with a sharp corner,

Something entirely similar takes place when the ini-
tial enargy is already below the threshold value: rather
than converging to one of the smeoth traveling wave
solulions in (3.8) with C = 1. most initial data converge,
alier some initinl energy dissipation through Kelvin
wave breaking. ro a quasi-periodic pattern qualitatively
similar to a wraveling wave. As en example, the case is
solved numerically wilh imitial conditions K(8 0) = 0.1
[3 cosid) + 5 sin(26) — sindd&)], O = 0001 + i
with total enerpy £ = 0.675, much below the eritical
E = 1.5, From lig. 6a, this lolal cnergy decays Lo &
final value close o £ — (L123. However, as shown in
Fig. 7, this final state is not strictly a wraveling wave,
bur a quasi-periodic wave, with period close to 2w
Snapshots of K for lour times over a period are depicted:
even though the wave does travel to the left at a spead
close w 1. it deforms as it does so, developing along
the way a corner similar 1o those of the solution with
maximal cnergy. Figure 6h, with the evolution of the
Yuanai wave, confirms that the solution is indeed quasi-
periodic and not strictly periodic, as there is a slow
periodic modulation of the oscillations of the real and
imaginary part ol the wave's amplitude.

Omne may wonder why a nontrivial combination of the
5= +1and s = —1 waves never appears in a guisi-
steady solution. A parlial enswer is provided by the
lollowing example: consider iminial data such that
K4, 0) is odd and ¥(0) is purely imaginary, Such inltial
dafa is invariant nnder the symmetry described in sec-
tion 3a, 5o any wuve with specd +1 must necessarily
be uccompanied by one with speed 1. Figures 8a and
8h show the evolurion of the initial data K08, 0) = sin( ).
¥(0) = 0.50 In Pig. 8a, we see that, unlike the previous
experiments, the crergy decays continuously, without
slabilizing as hefore at some positive valye—it is ap-
parent that the imposed symmetry between right- and
lefr-going waves excludes all coergy preserving solu-
tions, The energy-dissipating breaking Kelvin waves be-
come the most prominent part of the solution as it decays
to zero. Figure 8b shows the evolution of the accom-
panying imaginary part of Y(7) (ils real parl 15 zero),
which clearly displays decay.

d. The baroclinic mode: Multiple waves

The baraclinic case, with multiple wave interactions,
is icher than the barotropic one with only one dispersive
wave, Nevertheless, its solutions are generically not
very differcnl from those with one single resonance he-
cause the largest wavelength of the problem rends 1o
prevail, thus selecting one preferred dispersive wave,
with the others decayving o much smaller levels.

The experiment displayed in Figs. 9a dillustrates this
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Frei, 4. A mumencal eapecment on the barotrope mede displaving convergenee to a traveling wave with & comer, (a) lnitial molile of
the Kelvin wave: K(# ) = 0.3 |3 cos{#) = sini26) — sin(4#)). (h) Profile ot = = (0.5: the Kelvin wave has siegpencd nomlincarly and

develuped 4 shurp discontinuity, (<) By the time 7

5. most of the extra cocrgy an e inirial data has dissipated i the breabing wave. (d}

The Kalvin wave ar © = 5000 has all but converged (o the oxact raveling wave with maximal enerey. Quly & Gny amount af cxma enetgy
still peeds 1w be dissipated at an exteensely small amplipde breaking wave,

phenomenon. Its setup includes the waves discussed in
section 2d: a Kelvin wave, three dispersive waves, the
k = 4 mode of the n = 1 Rossby wave, and the k = 6
and & = 0 modes of the Yanai wave, interacting with
the £ = 1, k= 2, and £ = 4 modes of the Kelvin wave
throngh the ¥ = 3. k = & and & = 4 modes of the
topography, respectively, To prevent bias in the exper-
imenL. the topographic interaction cocllicients 7, have
heen chosen close to one, with values 1, .9, and 0.8,
respectively, and the initial data has the three dispersive
waves with comparable amplitudes: that is,

Kix, 0) = 0.3]3 cos(x) + T sin{Zx) — 3 sin(dx}]
RA0) = Y.(0) = Y,(0) = 0.3(1 + i
Plgure 9a shows thar, as before, the energy decays

and

very rapidly o a final nonzero level where it settles
down, Figure 9b shows that only the Rossby wave with
wavenumber 1 = 4, which interacts with the Kelvin
mode with largest wavelength (e, 27 in the normalized
variables), has a significant component in the final, qua-
si-periodic state. This is further confirmed by the snap-
shots of the Kelvin wave. displuyed in Fig. 9¢, with a
quasi-periodic pattern very similar to those of the haro-
tropic case, end wilth only small amplitnde wiggles in
the larger frequencies.

4. Effects of the mean wind

The clfects of an externally imposed, uniform mean
wind are easily incorporated inte the model dynamies.
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g 5. (=) Time evoliion of the amplinnde of the Yaoa wave [or
the numerical experiment above, I soon converges o & perindic
wicillation with a period close 1o 2w (b The il enersy devays
very mpidly imually. and then very slowly, converging o the walng
correspanding 1o the exact aveling wave

OF course, the tacit hypothesis in assuming a uniform
mean wind is that this imposed velocity is both wider
and deeper thun the structure of the waves being in-
vesligaled. Such a requirement can be invalid in many
physical circumstances: nevertheless, this assumption is
made here to illusteate some polentially interesting ram-
ifications ol the wpogruphic resonant theory, To search
for resonances through topography, it is convenient o
leave the topography fixed, so thal its dispersion relation
has w = 0 as before, and consider instead the Doppler
effeet of the mean wind on the dispersion relation for
the waves, which becomes

Wik) = Wk + Uk, {+.1)

where We(k) iy the dispersion relation without mean
wind and {J 1s the velocity of the wind, measured using
the churactenistic speed ¢ as a unit. With (4.1), the con-
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Fici. 6. A second experiment an the herommapic made, this onc with
o smaller il eperey. The solution converzes o o guasi-periodic
wave with finite amplimds, (2] Fnergy as a function of sime, showing
fust initial decay und subseguent stabilization 4t o monzero value, (b)
Exalution of the amplimde of the Yanai wave. A periodic slow miod-
ulation ef the escillations clearly sppears. For elumiy, only Lhe e
hetween 7 = 6k and 5 = BOF) are displayed.

ditions in (2.11) and {2.12) for topographic resonance
wilh 4 mean wind [/ generalize o

ket ke =k% and Ry + Vi, = W) + VES. (4.2)

Figures 10 and 11 display the new dispersion relation
for two extreme cases. with U = ¢f2 and U — —o/2.
that 15 lor o wind moving, respectively. castward and
westward at half the speed of a linear Kelvin wave. A
unit for the wavenumbers, « = 0.23, is selected cor-
responding to the first baroclinic mode; notice, however,
that the unit of fFeguencics w 15 dilferent due o the
distartion brought about by the Doppler effect. Figures
10 and 11 indicate that relatively strong mean winds
(about 25 m 57') can change the general loek of the
dispersion relation quite dramatically. However, it is still
true that the Kelvin wave is the oaly nondispersive
wave, and the role of topography remains the same, so
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tht basic structure of our reduced model does not
change. only the modes involved in the resonances do.
One important feature noticeable in both Figs, 1 and
11 is that Rosshy waves of all longiiudinal Hermite
muodes are present, in what appears as a cluster of modes.
The appearance of such a spectrum ol oscillalory Ross-
by waves suggests a likely midladiude connection of
equatorial Kelvin waves through topographic resonance,
This aspecl, znd the elfeets of a latitude-dependent mean
wind in geostrophic balance with the pressurc. will be
developed elsewhere in more detail in the future,

5. Derivation of the reduced model
a. The barpiropic mode

In this section, the simplificd model in (2.13) and
2.14) Tor the interaction of the barotropic mode of long

equatorial waves through the ropography is derived, The
derivation hegins with the ansate,

n = €lKx — 1. e 7 + ¥(H————e¢ gt = CC.| + ey on, (5.1)
KF —
= glKix —r, e " + Yfﬂ;!?_""""f“'*u_“’ﬂ + CC.|+ u'(x, v, 0, and (5.2)
k* = wt
v = g[0 & Yire et Q0] + ey rh (5.3
where w* and &* satisfy the dispersion relation for Yanai i o pe O L
WAVES: Rt e el Ll 4 Tt ¥,
w*w* — k¥) = 1. 54 _iwfye s -
The slow time variable = in (5.1), (5.2), and (5.3) ix 7 T
= e, It is also assumed that the topography is also small :
d.l'!l]:'llllldi. wilh the lorm e JET [KF} + i(2w® — EFIKY
k= w*
Bix ¥) = E[E hivei + C.C, (5.5 : ve
: = + e KR+ Kh) b B+ iew"mY
e MUK LR s L

where the sum ranges over all multiples of .

Inserting this ansale into (2.1), (2.2), and {2.3) w
leading order in & the cguations are satslicd automat-
ically since the ansatz is the superposition of two linear
solutions. The equations at order €' become

N oulou =4, {5.6)
M +n —yw =8 and (5.7)
gl oyt =G (3.8

where

b oo Y (5.9)

and B and C have similar expressions. The equations
for the evolution in 7 of the Kix — v, ) und ¥i(7) in the
ansatz will follow from the solvability conditions [or
the system (5.6), (5.7), und (5.8).

1) Evouuvnion oF 11E KFLVIN WAVE

To find the solvability condition associated with the
Kelvin wave, we add Eys. (5.6) and (5.7), muluiply this
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Frii. 8. A numerical experiment on the harntropic made showing
that upwird and downward corners canpol coeaist, This eaperiment
explons a symmetry of the eguations that makes & one-To-ong oor-
respanidence hetween downward and upwird cormers, When this syme
metry is peflecled in the ininal data, the waves hreak and degay all
the way 0 2aro, (4) Energy as n funvtion of teoe shuwing comu ki
devay. (b) Amplitude of the maginery par of the Yanai wave (the
real part bs identically 2era) with decaving oscillations

sum by the factor & ™ and integrale in v hetwean —2=
and =. The lerms with p' are eliminated by this inte-
gralion. and the equation

R+ R = J- e A + B) dy, (5,10)

is oblained where

s

The solvability condition lor this equation requires that
the right-hand side of (5. 1) has no component depending
on {x — 7} since such a componeni—a solution Lo the
unforced equation for R—would make the Jutler grow

e il oty dy (5.11
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secularly in time. To determine which ferms conmibure
to this secular growth, the Kelvin wave Kix — ¢, 7) and
the topography Aix, ») from (5.5} are expanded in Fourier
SEMCS
K — 1 ) = 3 Knem, {5.12)
with the sum tuken over all multiples of «. This infinite
sum, and not just the finite ser of waves that resonants
through the topography, is needed lor the Kelvin wave
because this wave satislics a dispersion relation, which
mukes every horizontal wavenumber resonare wirth all
others (linear Kelvin waves are not dispersive).
The sum A + 8 will have terms arising from dilferent
combinations of K{x — 1, 7}, V{rje" = and hix, y).
These different terms are considerad separately.

+ Terms linzar in K. There is only ong such t2rm: thar
is.

X j e K Ax — t 7) dv.

This term is a function of (x = {), 50 it contribules
1¢ the resonance.
* Terms linear in ¥. These terms have no component in
{x — 1) since w® # E* for a Yanai wave,
« Terms quadratic in K. These terms are functions of (x
= 1), s0 they add w the scculurity. Their sum s

.

Producrs of K and ¥. These terms do not contribute
to the resonance since a typical term has the form
eitftmim el gnd | 4 k¥ = | + w®.

Terms quadratic in ¥, These do not contribute either
since 2k* # 2w* for Yanal waves,

Products of fr and K. These erms do not contnbuie
Lo the resonance since j + IR 5

Products of h and ¥. There is one term of this form,
and it has a component in (x — ) whenever j + £*
= w* This is precisely the resonance condition be-
tween 2 Kelvin and 2 Yanai wave through the topog-
raphy considered in (2.11) and (2.12). The term is

' -7 fﬂ-}*_L' P = 5
. e m].‘lw._,l.f_\}}’fﬂlf + .0 d_‘t.

Adding up all the contributions 1o resonance above
and equating their sum 1o zero, we oblain

e BINEE) (x = £ 1) v

ok, + oK) = o F(ae™™ + CC, (3.13)
where § = x ~ rand
) 5 "3
o= e dy £ = LR and

fw*y .

= J- e mh_; Lr) dy.



4130 JOURNAL

(a) ™

2 |

- [ ] ] 5 i B @ r

Equation (5.13) describes the evolution of the Kelvin
wave over the slow tme 7. It is a Burgers cquation
foreed by the nonlinear interaction between the Yana
wave and one mode of the topography. If the contri-
bution from the Yanai wave is ignored, that is, ¢, = 0,
the discussion in (3.100—(5.13) provides a simplificd as-
ymptotic derivation of the nonlinear Kelvin wave.

2} EVorimion oF TITE YANAT WAVE

Here only @ skeleh will be presented of the salient
features of the derivation of the equation in {1.2) for
the Yanm wave satisfving the resonant conditions in
(2.11) and (2.12). A complete detailed derivation is
avuilable upon reguest w the suthors.

The entical coupling term invelving topography and
the Kelvin wave at order €’ is piven by the source rerm
in the height equation for the linearized shallow water
cyudtion in (5.6). (5.7). and (5.8) with the form

1Az yie 72K(x — & 7)), (3.14)

It is important to assess when this forcing term yields
a resonant response from the linearized shallow water
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Fizp, Y. An experiment on the firee haroelinee mode, Lven though
the presence of muoliple wave mleractions makes this mode much
rieher than the harneapic, the scuel reselts of & Lypicul eaperimen
wre gualitatively similae. witl convergencs 1o @ nonzera sare, and a
rendency of the mades with lowest wavenumbers to prevadl, () L
erey as a funcion of e with an ioeadly Sst decay and convergence
o s nFern final value, (b Evalatian of the various dispersive wives.
The & = 4 Rossby wave, which interacts with the longest (k =
made of the Kelvin wave, converpes o 2 much sironger (il styee
than the other two modes. (03 Four suapshots of the Kelvin wave.
which deforme ag it moves af a nesrly consieng speed;

equations. With the expansion in parabolic cylinder
functions, £ (y), given by

N DV,

n=g

hix, vle =% = (3.15)

there is the corresponding series represenlation [or
(5.14),
[hix, vie "2 K(x — 1, 9],

= ¥ [h(OK(x (S.16)

5

Lol \«}

The response of the Yanai waves from (3.6) Lo (3.8)
1o the forcing in (5.16) on the height equation 15 given
by the equations (Gill 1982, chapler 11)

(-,-d- + ;-r‘-)ql - V2, = |h(0Kx =1 7], and
ol or
iy, 1
——q, =0,
ar V2 Rt =

{5.17)

where g = ' + m', v = o', and the subscripls O and
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Fic. 1, Daspersion relation eormesponding 1o A exterually inposed
uniform westerls mean wind of half the speed of 2 Kelvin wave. One
Yariui mude and o cluster of Rosshy waves resonale (or nearly res-
omate) with the Eelvin wave. This Jatler cluster of highly oscillsiory
Rossly waves sugwests o midiatitnde conneetion for the equineriul
Kelvin wawe,

I stand for the corresponding lerms in Lhe parabolic
cylinder expansion. In Fourier space. these eqoations
yield the forced lincar oscillator equations,
a¥, 5 e
o it = ¥ ih Ke= (518)
Pl
with wik) satislying the dispersion relation for Yanai
waves,

wik)lew(k) — k] = 1. (5.19)

From (5. 18), the response of the Yanai wave ampli-
tude ¥, at second order, w0 the inleruction hetween to-
pography and Kelvin waves will only be secular pro-
vided that

J+l=14k* (5.20)

with w* satisfying (5.19). These are precisely the res-
onant conditions i (2.10) and (2.11) [or this special
case. One removes the secular terms in (5. 18) by adding
a slow time correction to the leading-order Yanai wave
amplitude for the resonant mode £, as in the ansate ftom
(5.1} to (3.3), as demonstrated carlier for the Kelvin
wave. Carrying out this procedure vields the following
eyuation for the amplitude of the Yanai wave:

and | = w®,

dY +dFk,. =0, (5.21)
where
Y 5
d j m*(k*T'mT)[I = (w® — k") e dy  amd

; A L
d. =i [ e R e d
Erie o

This i un ordinary differential equation for the evo-

MAIJDA ET AL.

4131

Maan wnd « 65

Fe, 11, Same as Fig, 10 bor with ao easterly wind, Move Yo
muddes resonate with the Kelvin wave. and agaim u closter ot Hosshy
waves do

lution ol the Yanai wave, as forced by a nonlinear in-
teraction berween the Kelvin wave and the lopography.

Finally, it is convenient 1w rescale the variables in
{5.13}and (5.21) 1o achicve the cunonicul formin (2.13)
and (2.14), Notice that the independent variables 0 and
7 and the dependent vurishle K can be rescaled only by
positive real numbers in order not to alter the direction
of time, while the variable ¥ admits arbirary complex
rescalings. On the other hand, the coelficients ¢, and ¢,
are real and positive. and even though ¢, and 4- are
complex, the product (c.d; Wic,d,) is real and positive.
Hence, if rescaled variables are defined by

P AL iy o
= — = - 5.2
¥ {n-(r J,) K E uc;dl_y t222)
1. AN
6= "8 and r=(" ) 7 (3.23)
[ C\da

then by dropping the tildes, the canonical cqualions in
(2.13) and (2.14) emerge.

b The first baroclinic mode

The analysis of this case is entirely similar to the one
developed above, with the added complexily that the
various dispersive waves could interact among them-
selves, either direcily or through the lopography. How-
ever, for two waves to interact through the topography.,
their frequencies need Lo match, and this is not the case
for the three dispersive waves included in section 2d.
The denivation of the equations in (2.15) follows exactly
the same path discussed above for the barotropic waves
and the details are omitted.
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THE NONLINEAR RESPONSE 1O DIARATIC TIRATING

Throughout this paper, a wave speed, ¢ — 50m s ',
has been wsed o represent the lirst baroclinie mode in
the shallow water model, This is the representative value
utilized typically in studies concerning the response in
the toposphere 1o diabatic heating from convection
(Gill T982; Yano ot al. 1995; MilliT and Madden 1996)
rather than the value of the dry Kelvin wave speed, ¢
= |50 m s ' of the first baroclinic mode for the entire
equatorial atmosphere (Kasahara and Puri 1981). To par-
tally justify the use ol this smaller wave speed, atheory
for the nonlinear response to steady Gill forcing (Gill
1982} in the equarorial shallow water equarions has been
developed recemtly (Majda et al. 1999), This theory as-
surnes that the heating is sleady with small amplitude,
e<€ 1, a5 in (5.5) ahove. The nonlinear response to this
heating is a sum of two effects: the steady response.
which decouples, and the ransient response. which 1
advected by the steudy response in the asymptotics.
Thus. the nonlinear transient response satisfies the same
simplified nonlinear equations with resonances as given
in (3.1) and (3.2), and studied throughout this paper:
the spectrum of the steady forcing generates the steady
response spectrum. which plays an analogous role 10
the spectrum of the topography in (3.3} in determining
the transient exchange ol energy umonyg various large-
scale equatorial waves through resonances. The details
are too lengthy to present here and the interested reader
can consull a recent extended abstract (Majda et al.
1999).

6. Conclusions

A mew theoretical mechanism invelving topographic
resonance has been developed here where large-scale
cquatorial Kelvin waves can modily their speed through
dispersion and interaction with other large-scale equa-
torial waves. These explicit resonance conditions have
been presented in (2.11) and (2.12) and simplified re-
duced dynamical cguations For the interaction huve been
derived in section 3 under the assumption of small am-
plirnde waves and topography. The reduced dynamical
equations cormesponding Lo the barotropic and lirst baro-
clinic mode of the cyuaterial troposphere have been
presented in section 2, and the detailed properties of
solutions of these equations are swdied In section 3.
Lxplicit exact solutions in {3.6)-(38) as well as nu-
merical experiments with the reduced dynamics indicate
that this resonance mechanisim can prevent the breaking
of a propagating nonlinear Kelvin wave, slow down its
speed, and concentrate most of is cnergy in large-scale
zonal wavenumbers while simullaneously generating
large-scale Yanai or Rossby modes with specific zonal
wavelengths, The effect on topographic resonance of a
strong custwurd or westward mean flow with muagnilude
25 m 57! for waves comesponding to the first barochinic
made 15 guite dramatic (see section 4) with the possi-
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hility of midlatitude connections W Rosshy waves
through this mechanism. Tn this paper. topography in
the equatorial shallow water equations is ulilized to
crudely model large-scale land-sea contrasts. but the
authors have no doubt that the role ol topographic res-
onance, elucidated hers, can be replaced in similar mod-
¢ls by other large-scale inhomogeneous mechanisms in-
volving convective paramelerization (Neelio and Zeng
19271, which account for land—sea contrast in the Trop-
ics. We plan o develop these more elaborate applica-
tions Tor one- und two-layer models in the near furore.

Regarding various technical aspects, the work pre-
sented here, in order to focus on the hasic mechanism,
has intentionally ignored interesting relared physical is-
sues regarding near resonances as well as the equatorial
three wave resonunces (Ripa 1983ub) and their com-
petition with the topographic resonances presented here;
this competition is especially interesting with the effect
of a nomzero mean wind, ay discussed in section 4. The
authors are currently pursuing these issoes und will Te-
port on them elsewhers in the near future,

This work displays the potential importance of non-
linear elfects interucting wilh lurge-scale dispession for
equatorial waves in the context of the equalomial shallow
water equations. Ilowever, caution is necessary in in-
terpreting these resulls for the fully stratified system
since shallow water models vield an imperfect repre-
sentation of both nonlinearity and radiation. Noeverthe-
less, such simplificd models might capture same of the
cssential leatures of the more complex dynamics.
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