Resonant Triads Involving a Nondispersive Wave

By Rodolfo K. Resales, Fsteban G, Tabak, and Cristing V. Turner

A simple system is studied, involving a single nondispersive breaking wave and
its interaction with two dispersive modes through a resonant tnad. The
dynamics of (his system are shown to be quite rich, through a combined
theoratical and numerical analysis. A sharply defined traveling wave with a
comer seems 1o atiract almost all imual data with epough energy, provided the
nondispersive wave is unstable to {he ather two when standing alone. In other
cases, the solulion converges 10 quasiperiodic final states, unless exira
symmetries force the solution to converge to simpler configurations.

1. Introduction

Tn the world of wave motion, a sharp distinction exists between dispersive and
nondispersive waves. At the lincar level, the former decompose any mitial
diswurbance inlo its elementary sinusoidal mede components, cach mode
traveling at its own individual group velocity, while the latter prescrve the shape
of initial disturbances forever, with all modes iraveling together as a pack. At
the outset of nonlinearity, this difference n linear behavior gives rise to mode
interactions of a very different character. Because the various modes of a
nondispersive wave travel logether for long periods, they can exchange cnergy
rather strongly, yielding a nonlincar modulation of the wave’s shape, which, m
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mast sihuations involving waves i Muids, leads 10 wave breaking and shock
formation. Dispersive modes, n contrast, averlap anly over relatvely shorl
periods, so the nonlinear energy prchange among them is highly reduced. The
only exception 10 this rule is given by resonance: When a sct of modes, say
thrce, is such that {he relative phase betwesn the product of two of them and the
remaining one docs not change over {ime. epergy exchanges within the sel are
again rather sirong.

In fluids, the slow modulation of nondispersive Waves s often described in
terms of an inviscid Burgers’ cquation. The resonant interaction within a triad
of dispersive modcs can he modeled by 2 5¢1 of ordinary differential cquations
with Flamiltomian structure and cnougl constnts of motion that they can be
fully iptegrated n 1enms of elliptic functions. When many resonapt ot nedr-
resonant triads are present, an the other hand, the solutiens are much less
organized, 1o the point of requiring @ statistical treatment. Systens that are only
weakly dispersive, as free surface waves OVEr challow but finite depihs, yield
reduced equations in the spirit of the Koreweg—de Vries equation [1]-

However, often both dispersive and nondispersive Waves are solutions of 2
single systeiil. An example 18 provided by Kelvin waves, hoth coastal and
equatorial, which e as isolated pondispersive Waves in a “dispersive sen”
which includes snertial and planctary Waves. When this is the case the 1Ww0
canonical fonns of nonlincar mode interacuon get blended together, pmducin;_;
novel dymamics, which include shocks and smooth traveling Waves, with
ubiguilous Waves presenting  comer singularities in benween thesc L
gxtremes [2].

In this article, we explore oné of the simplest possible blends of dispersive
and mondispersive effeets: 2 nondispersive wave, with Purgers-like selt-
‘nteractions conducive to breaking, with one mode coupled o TWO dispersive
wave modes through 2 tnad resonance. A gimilar study wherc on¢ of the
dispersive modes was replaced by topography wus conducted in [2]. A CUrious
tendency was abserved there for nearly Al initial data 1o converge o shockless
solutions with cOmers, either a well-defined iraveling wave, when the initial
data have cnough encrgy, of a qumipeﬁndiu wave, for less cnergetic jnitia] data.
These resulls arc Very gimilar to those investigated 10 [3-6] for purely
hyperbolic waves, such as those arising in gas dymamics, interacting through a
varable medium or an inhomogeneous entropy-

In the case of interest here with 2 full triad, o new question arises. 1t 15 well
known that, for reglar rinds, the steady solutions in which only one element of
the triad is excited arc stable or unstable, depending on whether or not the
frequency of the corresponding mode agrees in sign with one of the other W,
It has ofien beep gpeculated that this siability criterion camies through Lo more
complicated geenarios, where none of the waves 15 Zer, delennining & direcnion
of cnergy flow through the trad [7]. In our coniext here, we wounld hke 10
Jetermine whether which of the threc Waves is the «unstable™ one, the
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nondispersive, or one ol the dispersive ones, has any significant effeet an the
dynamics of the sysiem. in particular. we would like to discover whether the
strong converaenee of high-energy initial data 1o traveling waves with a comer
oecurs independently of the relative signs of the three frequencies invalved,

2. The resonant equations and their conserved yuantities

We consider the system

i . —ikx
-l (E”) zlie[mezim J, ()

iy = =1 gely H.h (2}

b! = _i g ﬁﬁ: {3}

where u = u(x, #) is the nondispersive wave amplitude (real valued, 2r-periodic
in space and normalized to zero mean), & = a{f) and b = f(4) are the (complex)
amplitudes of the dispersive waves, w,, and wy, are the corresponding dispersive
wave frequencies, the bars represent complex conjugation, i, is the th Fouricr
cocllicient of' 1 (for some inteper k),

I i voo— ik
IMBE 7—_[ wlr,f) & g,
0

)

and the condition for resonance.
k4w, 4o =0,
is satisfied,

This system arises as a reduced asymptolic model for (he nonlinear interaction
between three waves: one nondispersive and two dispersive, the latter in
resonance with one mode of the former Physical examples include wave
dynamics in the equatorial wave guide, where a nondispersive Kelvin wave Ay
exchange encryry resonanily with either Rossby, Yanai, or Poincaré waves,

Tvpically, in an asymplotic derivation of the equations, 7 js a slow time,
t=eT, where 0 < ¢ < 1 is the nonlinear strength, and Tis the fast “real” tme.
Similarly, x represents the phase of the nondispersive wave, x=x — ¢l where e
{taken cqual 10 ) here for conureteness) is the linear speed of the nondispersive
wave, and X is the space coordinate in a fixed frame of refercnice. To leading
order, the full waves have the form

L-'.[X ;} = Hl.__}t',f}_ -
AX, T} = aft) 47 T,
E(A’_ f:l = b{f:l .;F'"r--" ““r-. [4}
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with the additiona| resonance condition k, + ks & = 0. For the Ath mode in the
nondispersive wave, we have:

dd k@ b+ NSIT,

dt

d e

TT = —F iy Pl (5)
ik = —jwy, a%

d.[ - (0 I3

where NSIT (Nonlincar Self-lntcraction Terms) are the terms generated by
(112), in (1), arising from the nonlincar coupling among all modes of the
nondispetsive wave. If we ignare these terms, (5) is the standard form of the
reduced interaction equations for three resonant waves.

The system (1-3) is Hamiltonian, with Hamiltonian

?—'I'
H =ﬁ£ whdx + 2Refa bil). {6)
The Hamiltonian form of the equations is
a &H
“= o
&= i waé.—fir
é‘ﬂ' :
&ff .
By = —iuwhy 6? (7}

This Hamiltonian form is valid only as long as the solution remains smooth.
When shocks develop, the Hamiltonian is no longer a conserved quantity and it
staris to evolve according (0 the equation

dH Lses Qlwa )

B> 2(26-51).

B s (34w
where the brackets stand for the magnitude of the jumps in the cnclosed
variables across the shocks (value behind minus value ahead), and 5 s the shock

speed. However, the Hamiltonian does not have a definite sign. A (probably)
more relevant wave energy is given by

¥ ;
E(f) - f z-u’-m + 2m(jal*+[b). (8)
0

The positive definite quantity F(1) is conserved while the solution remains
smooth, and becomes monotone decreasing when shocks are present, the rate of
change then given by

| '_{.‘.‘15" S R e

rﬁuln A
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ik 1 3
-~ =l < 0.
di 2‘ 12

Here the incquality follows from the Entropy Condition [u] = 0, that muyst apply
across shocks. In addition, the following (Manlcy -Rowe) quadratic form iy
always conserved, with or without shocks:

0= wilbf —wylal.

L S TE

‘ The nature of this invariant, which depends on the signs of w, and wh, will
i be shown below 1o affest significantly the nature of the solutions to the system
l in (1-3),

Two other invarants (modulys dissipation at shocks) can be found by
combining £ and O:

I 1, k,
g — . dx - —_—
Oy 211_/.; 2" x i fie]

|

i and
[ ek S
=— | cufdx- —|bf.
0, zﬂﬂzux%rl

The three invarians (. QOwe, and @, are instrumental in proving the
following stability criterion. Consider a stale where only one of w(x), 7 and & is
nonzero. Such a state is siable unless the nonzero mode §s the one associated
with a frequency (£, w,, or wy) of sign opposite to the other twe (for otherwise,
the Manlcy-Rowe invariant associated with the other twy modes is pusitive
definite, 50 these modes cannot, even nonlinearly, depart from zero.) Hence, this
critenion distinguishes one of the three modes as unstable lo the other two,
which raises the question of whether this mode being u, or one of & and & has
any sigmiticant effect on the dynamics of the system in situations where all three
WRYES are noneero.

3. Some exaet solutigns

The cquations (1-3) have some interesting exact solutions that play g
fundamental role in their dynarnics, a5 we show in the numerical simulations
below. First, we seck traveling waves of the fiorm

ulx, ) = Fx - x1), (9

where 5 is un arbilrary constnt For concretencss, we take & — | The first
Fouricr coefficient of u is then given by

- - ']
Hy - Fre
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so the cquations for a and b become

a, = —twy bF ",

(10)
by = —iwp akie.

For simplicity, let us pick the origin of time in such a way that F| is real and
negative. Then the equations in (10) have the particular family of solutions

uz\/lzijTI‘J e, (1)

b;fr f_‘ljciiﬁ’ [lzjl

]

where « and 3 satisly
a+3=3 and i w,,:u,,!?ﬂz, (13)
with =~ = sign(efwa) - sign(f/en), and J an arbilrary complex constant.
Thus, Equation {1} becomes the Q.D.E.
[—s + F()F(2) = 29l Fa| sin(z),

with solutien

Fz) = s+ 20 1FIWVE - yeos(a), (14)
where € > 1 is a constant of integration. Notice that, if € is strictly larger than
1, the salution is smooth bul, when C =1, it develops a comner. In the latter case,
the solution is

F(e) = s+ 21y 21 Fillsinz/2)]
when v = 1, and
Fiz) = s £ 21/ 211 cos(z/2)

when y = - 1. The valuc of 5 follows from equating the first Founier mode of the
solution to /7, and imposing the requircment that ¥ have zero mean. In the case
with a comer, we have

42 3211

By = sy 2Bl = A=-5a
B 1||'II i:".'T‘

and
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16)J| Wk .
Fiz) =« ——_J | |sin{z/2) or  Fiz) =s5- m,s'J' lcosfz/2)].
Ry Ja
(15)

Then, the condition that 7 have vanishing mean becomes

: 641 32} [
U=ff-'{z}dz=2ws+'f# =  y= =7 | l_
— 27

Ix?

]

MNow we may return to (13) and compule « and 3; they are

16]J)° deigiary _

B=— [ =y Lyf1- : 1

afi==a-|"" 9 (6)

Motice that, becausa w, +wy, = — 1, {tgop) < 14, Thus, o and 4 are always real.
Finally, from the definition of the invariant (,

Q= (o= gl

This allows us to compute |J| from the inirial data,
3t 0
32,\;1 — Auacty

as well as determining which of the itwa solutions in (16) are o and /4,
depending on the sign of §. The only remaining parameter in the exact solution
is the sign of «v = =1, which determines the orientation of the corner (upward or
downward} as well as the direction of propagation of the traveling wave. Here,
the situation depends rather strongly on the signs of «, and wy,. When they are
both negative, any sign of -y gives a solution, whereas, when they have opposite
signs, only one choice of -y is consistent with a given sign of Q.

This can be explained in terms of 2 symmetry of the system in (1-3): Note
that, when the signs of w, and w, are both negative, the cquations remain
invariant under the switch

U=+ {17}

[

a— o f—B5,
Wh
fun

b—,l—a,
Ly

which changes the sign of {J, while leaving w invariant, The cquations are also
invariant under the trmmsfurmation
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GJJ: =

1ll”"-"n

which changes bath the sign of (7 and the orientation of possible comers in .
When one w is positive, on the other hand, a similar symmetry does not seem to
exist.

In the particular case when w, = wp, we arc led W consider a symmetnc
solution with u(x) add and & and & real and cqual. Adopting &£ — 1, and hence
w, = =0.5, we can write

iy = - iS(t),

where
1 f" .
() = — [ ulx,r)sin(x) dx.
w00
Then, the equations reduce to

u + (u;)l = 2a* sin(x),

l
a; = Eaﬁ‘.

These admit a particular solution of the form
= /(9 (18)
iy Y
L N
o V2
where ¢ = 0 is a constant, f{x) satisfies the O D.E,

-+ ( ;)x: ¢* sin(x),

a4 =

with {0y = 0, _fnl = 2 and a shock at x — 7. The constant « follows from the
constraint that /| = 2, We show below that this particular solution is an attractor
to all symmetric initial data.

s




e

EEVTE

i

mahoa g i

Resonant Triads Involving a Nondispersive Wave 113

Tiven Tor arbitrary w, a weaker symmetry persists: solutions that start with
ulx) odd and @ and A real remain that way. Note that such data cxclude any
traveling wave solution, because these do not preserve parity.

4. The numerical scheme

Because shucks are expected 1w play u central role in the dynarnics of the model
equations, it is important that their numerical solution make use of the
conservation form of the equations. To this end, the amplitude of the
nondispersive wave & = wu(x,r) is replaced by an array: w — [uy... wmyl,
where w, = u,(¢) is the average of u(x, ) over the pih cell [the interval of width
dx = 2m/N, centered al x, = {n - 0.5)dx].

The cquations are then solved by a second-order Strang spliuting algorithm
[B], with one step solving the Burgers' equation via a seconel-order Godunov
method and the other step solving the purely ODE part through a standard
second-order Runge-Kutta.

With the interpretation of u, as the average of u over the nth cell, the QDE
part ol the equation lor & becomes:
kdx

L = 2Re(ikabe m‘j;;—xshr(—) = 4lm(a F;e"h*)

di

sin(4gr)
dg

2

where the extra factor (2/(k dx)) sin (k dx/2) arises from the averaging of ¢~
over cach cell. The comrection brought about by this extra factor is at the same
level as the second-order error in the scheme, so it is not really required. On the
other hand, it involves so little extra work, that it seems worthwhile kezping, as
we have done in the numerical caleulations that follow.

5. Numerical results and discussion

5.1 Generic initial dota and parameters

The first two sels of experiments are designed to study the behavior of the
solutions to (1-3) with generic initial data. In the first set, the nondispersive
wave ux, f) is the onc unstable to the other two; whereas, in the second, it is the
dispersive mode B(f), In both cases, the initial data are

u(x,0) = Ulsin{x) + 0.6 cos{2x) - 0.4 sin(2x) +10.2 sin{3x)].
al(0) =1402i,

(D) = 0.75 + 0.5,
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where 1 s a tunable amplitude that distinguishes the various experiments
willin a set.
The frequencics are, for the first sef,

k=1 (15 the unstuable wave).
wy = —0.3,
whhy = 071
and, for the sccond,
k=1,
w, = (.5,
wy, - —1.5 {bis the unstable mode).

In both cases, we solve the system for the lime interval 0 < ¢ < 1,200, with
= 2,000 spatial cclls and a fixed Ar salisfying a conservative cstimate for the
CFL condition based on the initial daa.

5.1.1. Experiments with v the unstahle wave. The results of the first set of
experiments with I = 1 and I = 1/4 are ploited in Figures 1 and 2,
respecitvely. Figune 1A shows the energy £ us a lunction of time which, after
a sharp initial decay attributable to shocks, settles down to a nonecro value,
preciscly the one corresponding to the exact traveling wave solution (15} for
the initial value of the Manley Rowe invariant . Figure 1B shows snapshols
af sz, £) at the initial time ¢ = 0, intended to represent gencric data, at an early
time ¢ = 2, when a strong shock is dominating the solution, and at the [inal
time of the computation ¢ = 1200, when the exacl traveling wave sclution has
taken over. For comparison, this figure includes a plot of the exsct solution
(15}, which agrees to a surprising degree with the numerical one, leaving little
doubi that the final state of the experiment is, indeed, the exact traveling wave
with a corer. Figures 1C and D and display the absolute valucs and actual
complex amplitudes of @ and & as functions of time, the former at the
beginning and the latter only near the end of the computation. We see both
dispersive waves converging very rapidly o their values in the exact solution
(11,12).

In Figure 2A, we see the evolution of £(f) for the smaller amplitude M= 1/4.
Although it also settles down to a final nomzero value, this 1s smaller than that
of the exact traveling wave. Snapshots of w(x, £) for vanous values of ¢ {from
£= 1170 to = 12000, plotted in Figure 2B, show an evolving profile, where
the wave shape scems to (almost) recur. This strongly suggesls a
quasiperiodic (in time) wave, one thal undergoes a periedic deformation in
shape as it travels. More evidence for this is given by Figure 2C. which
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Figure 1. Selution 1o (1 3}, with geaeric initial daw and ula, £) the unstable wave, Specifically:
wtx, 0h= [sinfa) + 0.6 cos(2e) — 0.4 sin{2x) + 0.2 5 n{3x)], a0} = 1 + 0.2 £ and 5(0) - 0.75 +05 4,
with frequencies £= Lo, - —03 andw 5= —L7. Figure | A shows the engrgy £ seltling down 1
{he nonzero value (after & sharp initisl decay atribotabie to shocks) cotrespucding to the ravelng
wave solufion {13, with the Manlcy—Rowe invananl {J given by the initial tata. Figure 11} shows
snapshots of ufx, ) at 7= 0, at an catly lime £ = 2 (a yrong shock dominates the solution) and 2t the
computation final time 7= 1200 (the cxact travefing wave soluliun has taken aver). A plot of the
exact solution (15} is included for comparison. Figures 1C and LD display the absolute values and
the complex amplitudes of @ and & as funclions of time. Thath waves converge rapidly to the exact
solution (11, 12), Figare 1D clearly shows b moving on 2 circle a1 2 constanl rate.

plots the norm of the change in shape as a function of time. The norm of the
change in shape is defined by .

et e mine(e) — gl — 501 (20)

where wg(x) is a reference profile; n our case g(x) = wix, 1100}, Further
evidence can be found in Figure 2D, which shows the late evolution of Jalr)|
and |b(r)], periodic with a perod different from {and in all likelihood
incommensurable with) that of the phuscs of a and b (not displayed).
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Figwe 2. Solution to (1-3), with everylhing the same as in Figure 15 cxcept for a sualles
ampliude nondispersive wave: s, Q) 025 (sinlx) + 06 ces{Ze) - 04 sin{2eh+ 0.2 xint3a)
Again, the energy £ setiles dawn 16 a final nonzers value (Figure 1A}, but this value is soaller than
that of the traveling wave, Snapshots ol wly, 1) for varous valucs of £{Figure 2) show an evolving
profile with an (almeost) reewrent wave shape. This suppesis g quasiperiodic (in lime) wave, Figure
20 shows a plot of the norm ol the change in shipe, as defincd by (20). Finally, Figure 2T elows
the late evalution of | a{ff and | H{n. periodic with a period different from that of the rhases ol o
andd b (not displayed).

Remark: In regard to the norm of the shape change in a solution, defined
above in (20), note that when this norm vanishes, the solution is equal to the
solution at the reference time. cxcept for a space immslation. In our
numerical experiments, this norm quite never vamishes, but the observed
behavior indicates that this may just be caused by lack of numerical
resolution. For a given set of parameters, more points in the space grid and
longer runy in time had the effect of producing closer approaches to wero in
the shape norm. We hope that (future) more resolved runs will senle (his
quUestion.

All these results are strongly reminiscent of those in [2] for a nondispersive
wave inferacting with = dispersive mode through topography, and in [3 6. 4] for
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nomdispersive waves imteracting through either topogmphy or u varable
entrapy. In all these cases, initial data with enough enerey converae robustly 1o
traveling waves with comers, and less energetic initial data, o smalle
quasiperiodic waves. This is a very intrigning phenomena, which still awaits a
full mathematical explanation,

5.0.2. Experiments with b the unstable wave. The situation i the second sct
of experiments, where the unstable wave is the dispersive mode £, is rather
different. Figure 3A displays the profiles of u(x,1200) for three ditferent
values of Tt 1/4, 2, and 8, wgether with the exact traveling wave solution
corresponding to the value of the Manley Rowe invaranl & common to the
three runs. Neither of the three profiles agrees with this exact solution; in fact,
the three of them seem to correspond to quasiperiodic waves. Figure 3B
illustrates this for the case with T' = 8, by plotting the norm of the change in
shape of the solution. In Guct, for I' = 2 (and values nearby, which we have
run but are not plotted here), the solution is relatively close o the exact
iraveling wave, although the sharp comer is entirely removed. However
(unlike the caves where the unstable wave is w), as the initial energy of the
runs gets larger, the final state gets smaller and further away from this exact
solution.

5.2, Solutions with symmetries

It is interesting to obscrve the behavior of solutions with the symmetry ufx, 1)
wdd, afr) and #{e) real, which excludes all traveling and mosl quasiperiodic
waves, We tirst show the strongly symmetric case, where w, = wy, = =0,3 and
& = b, For example, consider the inilial data

u(x,0) -~ sin(x),
a(lll) =1,

an
B0)=1.

The numerical results converge very accurately to the exact self-similar solution
(18, 19). Figure 4A shows the enerpy E(f) rapidly converging to zero. Figure 4R
includes two snapshots of w(x, () at the relaively late times r= 350 and ¢ = 700,
where the sclf-similanty of the solution becomes clear. Based on this (and other
similar) experiments, il is natural to conjecture that almost all solulions with the
strong symmetry u 0dd, w, = wy, a and b real and equal, will be altracied o this
exact self-similar solution.

I ——_



118 H. R. Rosalas et al,

A Nondispersive wave profiles for time = 1200
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Figure 3. Sclutions ta (1 -39, with, generic initizl dats and b rhe westehle wave. For some T = 0 AR ES
[Sinfx} + 06 sl Zx) — J4sn(?r) + 02 sin{ ko), eifk - 1 +0.2 4, and BN =0.75+0.55, with frequencics & - |,
whp = 0.5 aatd wy, = < 1.5, Figune 3A digpluys the profiles efulx, 1200) for =023, 2 and & wgether witl the
cxaet fraveling wave salution teanespanding e the commmon vales of the Manley—Rowe invanam (), Nerthaer
of the profiles agracs with this exact solution, and they all gecn W carrcspund w quasipenadic waves. Figure
3B Musirsiss this [or the case with [ 4, by plotting the nomm of the solutineg’s change in shape, Unlike the
cates where e unstable wave s i, a5 the initiol energy pets larger, the final stale gels smalier and farle:
away from the raveling wave solution.
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3.3 Selutions with weak symmetries

Finally, we run a weakly symmetric case, where w, [/ wy. and b is the unstable
wave. We take wy, — 0.5, wy = 1.5 and the same initial data as above, The
results are displayed in Figure 5. Figure 3A shows the absolute value of
approaching a nonzero constant; whereas b (slowly) decays to zero, Figure 513
inciudes two snapshols of alx, ) at relatively mature times, which show u
convergng 10 oo through permanent dissipation at two shocks, one at x = 0
and the other at x = #. Thus, the run seems lo converge o a final state where
anly & is nonzero. This is consistent with the fact that b is the unstable mode, so
it could not possibly stand alone. Nor could w stand alone, becausc it then
would dissipate all its energy with shocks {(moreover, @ and & zemo 15 not
consistent with a nonzero ). However, it is not clear to us why the solution
needs 1o seille down 1o such simple configuration, with only one nonzero mode
prescat,

6. Conclusions

The intermclions belween dispersive and nondispersive waves display an
smazingly mich— and maostly unexplained—dynamics. Even the simplest
model considered here, of a single nondispersive wove inleracting with only
vwo dispersive modes through a mesonanl inad, gives 1ise 0 Surprnising
phenomena (such as the robust convergence of large encugh initial data to 2
single traveling wave solution with a sharp corner). This single solution seems
to be an atiractor only when the frequeney of the nondispersive mode has 2 sign
uppositc 10 the ather two (i is unstable to a and &) and the initial cnerizy 15 large
enough. Otherwise, most initial data converge to guasipedodic waves, with
finite energy and no shocks.

" Shock waves play an obviously prominent role in this selection mechanism;
the comers in the final states are, in feel, leflovers from fully decayed shocks.
How exactly shocks and trhad resonances conspire to create this unique
dynamic, however, remains mostly a mystery.
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Energy as a function of time
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B Nondispersive wave profile for two times

T T T
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Figure 4. Solutions wilh the strong symunetry wie, ) odi, aif) = &) renl and e, wy ns
i (k= 1). Here, we take the mitial daa: six, ) = sin(e) and a{(0) = (0} = 1. The solmon comverges

very accurately b the exact seli-similar solution (18,19, Figure 44 shows the energy £00) rapidly

converging by verg, Figure 4B inchudes two snapshols of wiv. 1) at the late tones ¢ 330 amd
I £ T, where the self-similanty of the solution beeomes clear. We conjecture that lmost 51l
solutions with this strong symmetry will be atiracied to the selfesimilas solution {18, 19).
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A Absolute value of a (as a function of time)
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Absolute value of b (as a function of time)
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bl

8 Nondispersive wave profile for two times
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Figure 3. Solutions with the weak symmetry wix, £ odd, alil. and B 1) real, but w, #£ = Here,
we consider the ease where b i the unstable wave (with w, 05, wy =157 and the game initial
cata as in Figure 4, Figure 3A shows the ahsalute value of g apprmaching a nonzern coAsTaTl,
while b {slowly) decays o zero. Figure 5B includes by smapshots of ufx, 1) an relatively mature
nmes (- S0and ¢ 150, which show u converging o zer fheoupgh pernanent dissipation al o
chocks. ame at v = {tand the other atx = = Thus, Ihe i seems 10 conveze o A linal state where
anly a iy Benrere.
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