Peak Performance for an Application in CUDA

Nicolás Wolovick

Fa.M.A.F., Universidad Nacional de Córdoba, Argentina

May 4, 2010

Fa.M.A.F. - U.N.C.
Outline

The Numeric Problem

Serial Codes

Our aim

CUDA Codes

Conclusions
<table>
<thead>
<tr>
<th>Outline</th>
<th>The Numeric Problem</th>
<th>Serial Codes</th>
<th>Our aim</th>
<th>CUDA Codes</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Numeric Problem</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serial Codes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Our aim</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CUDA Codes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conclusions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Heat Conduction in a Plate

Also known as Laplace Differential Equation in two dimensions.

\[\nabla^2 T = \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0 \]

It can be solved iteratively using:

- Jacobi
- Gauss-Seidel
- Red-Black Gauss-Seidel
Red-Black Gauss-Seidel

A highly parallel, memory efficient method

Description

1st pass: update red cells from n to $n + 1$ using blacks in n.

2nd pass: update black cells from n to $n + 1$ using reds in $n + 1$.
Red-Black Gauss-Seidel Iteration

Red
For each red \((i, j)\), that is \((i + j) \mod 2 = 0\) do:

\[
M(i, j) = \frac{M(i-1, j) + M(i, j-1) + M(i+1, j) + M(i, j+1)}{4}
\]

Black
For each black \((i, j)\), that is \((i + j) \mod 2 = 1\) do:

\[
M(i, j) = \frac{M(i-1, j) + M(i, j-1) + M(i+1, j) + M(i, j+1)}{4}
\]

(stencil average)

Borders are not updated since they are our contour conditions.
The Numeric Problem

Serial Codes

Our aim

CUDA Codes

Conclusions
Serial_Checkboard

Remarks:

- Massive use of asserts
 ...they can be disabled with \texttt{-DNDEBUG} define.
- Border of fire of quadratic temperature.
 Maximum in the center.
- Write simple PPMs image files as Pre/Post state.
- Measure \textit{walltime} with microsecond precision.
- Print stats: GFlops and GBps.
Serial_Checkboard, results

gcc -std=gnu99 -O3 -Wall -DNDEBUG -D MAX_ITERATIONS=1000 -c -o heat.o heat.c
gcc -std=gnu99 -O3 -Wall -DNDEBUG -D MAX_ITERATIONS=1000 -c -o ../../common/common.o ../../common/common.c
gcc heat.o ../../common/common.o -o heat -std=gnu99 -O3 -Wall -DNDEBUG
./heat
Secs: 12.777368
GBps: 1.641302
GFlops: 0.328260

Disclaimer
Our GBps, our GFlops, perhaps nothing to do with the real x86 architecture, but it serves for comparison.
Serial_Checkboard_Packed

\[(i, j) \rightarrow \left(\frac{(i+j) \mod 2 \times N + i}{2}, j \right) \]
Serial_Checkboard_Packed, hoping less cache misses

With this transformation there are three reads in a row.

Thanks to cache spatial locality they implement prefetching bringing a whole cache line.
Serial_Checkboard_Packed, hoping less cache misses

With this transformation there are three reads in a row.

Thanks to cache spatial locality they implement prefetching bringing a whole cache line.

Running it

./heat
Secs: 24.516243
GBps: 0.855413
GFlops: 0.171083

Not so useful.
Serial_Checkboard_Packed, less cache misses?

Using tools/perf/perf to quantify the executions.

Serial_Checkboard$ perf stat ./heat
Secs: 13.877461
GBps: 1.511193
GFlops: 0.302239

Performance counter stats for './heat':

29989928783 cycles
17154205308 instructions
133880188 cache-references
3208543 cache-misses
14.008524450 seconds time elapsed

Serial_Checkboard_Packed$ perf stat ./heat
Secs: 22.524494
GBps: 0.931054
GFlops: 0.186211

Performance counter stats for './heat':

48381072692 cycles
26476442265 instructions
138237703 cache-references
4295066 cache-misses
22.827983029 seconds time elapsed

It seems

• Double instruction count.
• No cache hits payoff.
The Numeric Problem

Serial Codes

Our aim

CUDA Codes

Conclusions
Peak performance for Red-Black Gauss-Seidel

- Memory-bandwidth limited problem.
- Measure memory bandwidth for the architecture.
- Use the knowledge of the underlying architecture to reach such value.

We are going to measure the BW using **SAXPY**.

\[
\bar{y} = \alpha \bar{x} + \bar{y}
\]
Architecture
Intel Core 2 Duo E8400, 2GB DDR3 1333MHz (January 2008)

SAXPY measurement
For a vector of 2^{24} floats.

Secs: 0.030218
GBps: 6.662472
GFlops: 1.110412

Wikipedia informs 10.67 GBps.
SAXPY/CUDA

Architecture
NVIDIA GTX 280 (GT200 arch), 1GB GDDR3, 30*8=240 cores (June 2008)

SAXPY measurement
For a vector of 2^{24} floats, blocks of 512 threads.

Secs: 0.001747
GBps: 115.241323
GFlops: 19.206887

Wikipedia informs 141.70 GBps.
Speedup

For a memory bandwidth intensive application:

17x

We aim to peak in our app.

115GBps
The Numeric Problem

Serial Codes

Our aim

CUDA Codes

Conclusions
CUDA_Checkboard

code inspection
CUDA_Checkboard

code inspection

We emphasize

- All red(black) 512×1024 threads are divided in
 - A block of 16×16 threads.
 - A grid of 32×64 blocks.
- First map thread position to matrix element.
- Then compute the average.

We are (still) surprised with

- Extra fine granularity for concurrency.
- Pure C plus minor extensions.
CUDA_Checkboard, results

Running it

Secs: 0.403626
GBps: 51.957803
GFlops: 10.391561

Speedup

$$\frac{\text{Serial_Checkboard}}{\text{CUDA_Checkboard}} = \frac{12.777368}{0.403626} \geq 31x$$

Correctness

$\text{diff Serial_Checkboard/image_after.ppm CUDA_Checkboard/image_after.ppm}$
Binary files Serial_Checkboard/... and CUDA_Checkboard/... differ

Not so...
CUDA_Checkboard_Packed

code inspection
Remarks

- Avoid branches using arithmetic.
- The only if (...) { ...} is for border detection.
- Divergent branches makes warps slow.

We hope for the best.
Running it

Secs: 0.266050
GBps: 78.825484
GFlops: 15.765097

Speedup

\[
\frac{\text{Serial_Checkboard}}{\text{CUDA_Checkboard}} = \frac{12.777368}{0.266050} \geq 48x
\]

Do some performance measurements to find out why.
CUDA_Checkboard\{_Packed\}, profiling

CUDA_Checkboard

CUDA_PROFILE_LOG_VERSION 1.5
CUDADEVICE 0 GeForce GTX 280
TIMESTAMPFACTOR fe5c7d8438c7794
method,gputime,cputime,registerPerThread,occupancy,gld_32b,gld_64b,gld_128b,divergent_branch
method=[memcpyHtoD] gputime=[1535.264] cputime=[1865.000]

CUDA_Checkboard_Packed

CUDA_PROFILE_LOG_VERSION 1.5
CUDADEVICE 0 GeForce GTX 280
TIMESTAMPFACTOR fe5c7d92dd8961c
method,gputime,cputime,registerPerThread,occupancy,gld_32b,gld_64b,gld_128b,divergent_branch
method=[memcpyHtoD] gputime=[381.472] cputime=[1111.000]
method=[memcpyHtoD] gputime=[381.440] cputime=[1030.000]

Thanks to hardware performance counters.
The Numeric Problem

Serial Codes

Our aim

CUDA Codes

Conclusions
Lessons learnt

- Avoid branches using arithmetic boolean-encoding tricks:
 $$i + (2 * (j \% 2) - 1)$$

- Avoid (non) optimizations that hinder readability:
 $$i != (N - 1) / 2 * (j \& 1)$$ identical to $$i != (N - 1) / 2 * (j \% 2)$$
 $$i >>= 1$$ identical to $$i /= 2$$.

- nvcc is a modern compiler.

- Disconnect profiling: export CUDA_PROFILE=0.

- Compile to PTX and briefly inspect the code.
 We discovered $$0.25f*(\ldots)$$ is way different to $$0.25*(\ldots)$$

- Play with block size and grid size in powers of two.

- Use all the (scarce) runtime error detection mechanisms:
 CUDA_SAFE_CALL(\ldots), CUT_CHECK_ERROR(\ldots).

- Profile, measure, experiment, propose explaining hypothesis, etc.
Conclusions

We obtained 67% of peak memory bandwidth, and a considerable speedup: 57x.
The code is still readable for humans.
Conclusions

We obtained 67% of peak memory bandwidth, and a considerable speedup: 57x.
The code is still readable for humans.

Thanks!

Tomorrow we are going to deal with summarizations of the grid.
We need to know when to stop.
The Attic

Spare time?
The Attic

Spare time? Ok, let’s show the little weirdos of the attic.
Spare time? Ok, let’s show the little \textit{weirdos} of the attic.

What if we just program the \textbf{trivial} Jacobi iteration?

- Double matrix (swap old&new each turn).
- Fully parallel.
The Attic

Spare time? Ok, let’s show the little *weirdos* of the attic.

What if we just program the *trivial* Jacobi iteration?

- Double matrix (swap old&new each turn).
- Fully parallel.

Serial_Trivial

Secs: 25.292405
GBps: 0.829163
GFlops: 0.165833

Too bad for the serial case.
The Attic, the freak: CUDA Trivial

code inspection
The Attic, the freak: CUDA_Trivial

code inspection

Running it

Secs: 0.218067
GBps: 96.170076
GFlops: 19.234015

Speedup

\[
\frac{\text{Serial_Checkboard}}{\text{CUDA_Trivial}} = \frac{12.777368}{0.218076} \geq 58x
\]

Amazing: zero effort, big gains, near peak bandwidth.
The Attic, the freak, the counters

CUDA_Checkboard_Packed

CUDA_PROFILE_LOG_VERSION 1.5
CUDA_DEVICE 0 GeForce GTX 280
TIMESTAMPFACTOR fe5c7d92dd8961c
method,gputime,cputime,registerPerThread,occupancy,gld_32b,gld_64b,gld_128b,divergent_branch
method=[memcpyHtoD] gputime=[381.472] cputime=[1111.000]
method=[memcpyHtoD] gputime=[381.440] cputime=[1030.000]

CUDA_Trivial

CUDA_PROFILE_LOG_VERSION 1.5
CUDA_DEVICE 0 GeForce GTX 280
TIMESTAMPFACTOR fe5c7d9201f0ad18
method,gputime,cputime,registerPerThread,occupancy,gld_32b,gld_64b,gld_128b,divergent_branch
method=[memcpyHtoD] gputime=[1535.424] cputime=[1872.000]
method=[memcpyHtoD] gputime=[1548.256] cputime=[1934.000]

There is no apparent reason, everything is worse.
The Attic, the freak, the reasons

Reading from global memory is a hairy business:

- Alignment
- How warps access the memory in each instruction

We hope a different transformation (paralelogram?) can render better results.
The Attic, the freak using shared: CUDA_Trivial_Shared

code inspection
The Attic, the freak using shared: CUDA_Trivial_Shared

code inspection

Running it

Secs: 0.242293
GBps: 86.554378
GFlops: 17.310876

Profiling it

method, gputime, cputime, registerPerThread, occupancy, gld_32b, gld_64b, gld_128b, divergent_branch
method=[memcpyHtoD] gputime=[1535.200] cputime=[1872.000]
method=[memcpyHtoD] gputime=[1544.320] cputime=[1932.000]

Each cell is read four times. Although in shared (ten to a hundred times faster), the more miss-aligned reads, the logic, and divergent branches make it slower.
Finally, two experiments

- Completely symmetrical problem, swap i, j and see.
- TILE – 2 seems awkward to memory alignment, what if just TILE?
See you tomorrow.

Questions?