
Intro to CUDA
Author: Dionisio E Alonso <dionisio.e.alonso@intel.com>

Date: June 2011

mailto:dionisio.e.alonso@intel.com

Known methods of parallelism

MPI

• Clusters

• Over networks

OpenMP

• One computer

• Parallelism over multiples cores

GPGPU - FaMAF
© 2011

2

What is CUDA?

• CUDA means: Compute Unified Device Architecture.

• CUDA is developed by NVIDIA for computing over graphic devices.

• The architecture used from G8x.

• There are many flavors (C, Fortran, OpenCL, Python, etc.)

GPGPU - FaMAF
© 2011

3

Former Graphics Pipelines

GPGPU - FaMAF
© 2011

4

NVIDIA GPUs structure

2006: unified structure.

GPGPU - FaMAF
© 2011

5

Let's see a CPU core

GPGPU - FaMAF
© 2011

6

CPU on diet

GPGPU - FaMAF
© 2011

7

Parallelism

GPGPU - FaMAF
© 2011

8

SIMD

GPGPU - FaMAF
© 2011

9

More parallelism

GPGPU - FaMAF
© 2011

10

What if...

not everyone executes the same code?

GPGPU - FaMAF
© 2011

11

And the memory access?

• No more cache, more(?) latency

• More parallelism available

• Many more threads than execution units.

GPGPU - FaMAF
© 2011

12

Hiding memory latency

GPGPU - FaMAF
© 2011

13

Hardware examples

G110 (GeForce GTX580, Tesla c2090):

• 16 Streaming Multiprocessors (SM)

• 32 CUDA cores per SM

• Two instructions per CUDA core per cycle @ 1554MHz (GTX 580) = 1581 GFLOPS

• 192 GBPS to memory = 33 instructions per float access

• Adicional information:

• 128KB registers per SM

• 64KB shared memory / cache L1 per SM

• 12KB read only cache per SM

• 768KB global cache L2

GPGPU - FaMAF
© 2011

14

Compared to CPU high-end

~15 times more throughput, ~10 times more memory bandwidth

GPGPU - FaMAF
© 2011

15

Some differences with CPU

• More threads is better

• Cost launching thread: ~0

• Cost in context switch between threads: ~0

• Cost terminating threads: ~0

• Is better to recalculate

• Use registers or shared memory instead of global memory

GPGPU - FaMAF
© 2011

16

CUDA C

• C++ Syntax & Semantics

GPGPU - FaMAF
© 2011

17

Kernels

• The kernel is the function which runs in each thread

• Don't return values

• __global__ prefix

• A kernel can call __device__ functions

• No recursion allowed

GPGPU - FaMAF
© 2011

18

an example

__device__ int abs(int a) {
 return a < 0 ? -a : a;
}

__global__ void distance(int * a, int * b, int * c) {
 int idx = threadIdx.x + blockIdx.x * blockDim.x;
 c[idx] = abs(a[idx] - b[idx]);
}

GPGPU - FaMAF
© 2011

19

Blocks

Threads a grouped in blocks from 1 to 3 dimensions and run in the same SM

• Data declared as __shared__ is shared between threads

• Threads in the same block can synchronize using __syncthreads

• The threadIdx predefined variable allocates the thread coordinate

• Predefined blockDim allocates the block size

GPGPU - FaMAF
© 2011

20

an example

__global__ void sum_all(int * a) {
 __shared__ int s[256];
 int idx = threadIdx.x;

 s[idx] = a[idx];
 __syncthreads();

 int sum = 0;
 for (int i = 0; i < 256; ++i) {
 sum += s[i];
 }
 a[idx] = sum;
}

GPGPU - FaMAF
© 2011

21

Launching kernels

• Specify block size

• Put them in a (up to 2 dimensions) grid (in newer cards may be 3)

• Predefined blockIdx allocates the block coordinate

• Predefined gridDim allocates the grid size

GPGPU - FaMAF
© 2011

22

an example

__global__ void distance(int * a, int * b, int * c) {
 int idx = threadIdx.x + blockIdx.x * blockDim.x;
 c[idx] = abs(a[idx] - b[idx]);
}

int main(...) {
 // ...
 dim3 dim_block, dim_grid;
 dim_block.x = 256;
 dim_grid.x = ceil(N / dim_block.x);
 distance<<<dim_grid, dim_block>>>(vector1, vector2, result);
 // ...
}

GPGPU - FaMAF
© 2011

23

Memory management

• GPU owns memory addresses, where you can allocate device memory or map host
memory

• Can't receive host pointers

• Programmer tracks which are host pointers and device pointers

• GPU memory management is similar to C language

• cudaMalloc allocates memory and returns the pointer (as a parameter)

• cudaFree frees allocated memory in a pointer

• cudaMemcpy copies in/from/to the device

GPGPU - FaMAF
© 2011

24

en example

int h_a[N];
initialize(a);

int *d_a;
cudaMalloc(&d_a, N * sizeof(int));
cudaMemcpy(d_a, h_a, N * sizeof(int), cudaMemcpyHostToDevice);

modify<<<grid,block>>>(d_a);

cudaMemcpy(h_a, d_a, N * sizeof(int), cudaMemcpyDeviceToHost);

GPGPU - FaMAF
© 2011

25

Q & A:

Questions?

GPGPU - FaMAF
© 2011

26

Bibliography

• NVIDIA GeForce 8800 GPU Architecture Overview, 2006.

• David B. Kirk, Wen-mei W. Hwu. Programming Massively Parallel Processors: A Hands-on
Approach, Morgan Kaufmann, 2010.

• NVIDIA Inc., CUDA C Programming Guide, version 3.2, 2010.

• NVIDIA Inc., CUDA Toolkit Reference Manual, version 3.2, 2010.

• Wolovick Nicolás - Bederián Carlos, Basic course PEAGPGPU, 2011.

GPGPU - FaMAF
© 2011

27

	Known methods of parallelism
	MPI
	OpenMP

	What is CUDA?
	Former Graphics Pipelines
	NVIDIA GPUs structure
	2006: unified structure.

	Let's see a CPU core
	CPU on diet
	Parallelism
	SIMD
	More parallelism
	What if...
	And the memory access?
	Hiding memory latency
	Hardware examples
	Compared to CPU high-end
	Some differences with CPU
	CUDA C
	Kernels
	an example
	Blocks
	an example
	Launching kernels
	an example
	Memory management
	en example
	Q & A:
	Bibliography

