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1. Introduction

At roots of unity the representation theory of quantum groups fails in semisimplicity. This is due
mainly to the fact that Weyl modules are not always simple and because filtrations by Weyl modules
do not always split. We will see that these problems occur in a sense that they can be managed so that
suffciently much of what we would like from semisimplicity remains, and by means of the subcategory
of tilting modules and an appropiate quotient of it, we can recover a suitable semisimple category of
representations.

Categories of representations of quantum groups provide examples of ribbon categories, therefore,
if the category is in addition semisimple, one could expect this category to be also modular, and
thus provide knot invariants. In this work, for each compact, simple, simply-connected Lie group
and each integer level we show that a modular tensor category can be constructed from a quotient
of a certain subcategory of the category of representations of the corresponding quantum group. We
give a detailed description of this category by means of a quantum version of the Racah formula for
the decomposition of the tensor product and we develop the basic representation theory of quantum
groups at roots of unity, including Harish-Chandra’s Theorem.

Modular categories provide invariants of links and 3-manifolds. Attaching modular categories to
quantum groups with this aim was first considered by Witten in [Wit89]. Witten argued that Chern-
Simons theory for a compact, connected, simply-connected simple Lie group at integer level k should
yield an invariant of links in a (biframed) three-manifold. He also sketched how to compute this invari-
ant combinatorially using two-dimensional conformal field theory, and worked out the SU(2) invariant
in enough detail to demonstrate that if well-defined it would have to give the Jones polynomial. A
first step on Witten’s program, was given in [RT91], where Reshetikhin and Turaev constructed an
invariant that met all of Witten’s criteria using the quantum group associated to sl2 (the complexifi-
cation of the Lie algebra of SU(2)) with the quantum parameter equal to a root of unity depending on
the level k. Intuitively, since to each simple Lie algebra there is associated a quantum group, one could
have expected that understanding the representation theory of this quantum group at roots of unity
in an analogous fashion to Reshetikhin and Turaev’s work on sl2, one could presumably show that
this representation theory formed a modular tensor category, and thus construct an invariant of links
and three-manifolds, presumably the one Witten associated to the corresponding compact, simple Lie
group.

Although it seemed that at this point an overall program was clear, it has not been fully completed.
We rely on [S05] to provide the reader with a survey on the (semisimplified) category of representations
of a quantum group at a root of unity.

There are, of course, more reasons why quantum roots at roots of unity became of interest. On
a more algebraic side, much of the work in this field has focused on the relationship between the
representation theory for algebraic groups over a field of prime characteristic p and the representation
of the corresponding quantum group at a pth root of unity.

The difference between the interests of physics and mathematicians, is, according to Sawin in [S05],
one of the reasons that have obstructed the completion of Witten’s program. One of the main obstacles
is related to the order of the root of unity, since while mathematicians became interested, as we said,
in roots of order prime, the values that correspond to integer levels and hence the cases of primary
interest for physicists are even roots of unity (in fact multiples of the entries of the Cartan matrix).
Sawin points that it has also been a source of confusion the fact that much of the algebraic work deals
only with representations with highest weights in the root lattice, while in topology and physics one
is interested in all representations whose highest weights lie in the weight lattice.
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In this work we prove the fundamental results on the representation theory of quantum groups
needed for applications to topology and physics for all nongeneric values of the parameter and all
representations.

We do not want to refer here to definitions concerning category theory and Hopf algebras, since
these concepts have been largely studied during the Master Class to which this work belong. We
assume the reader is familiarized with the basic concepts of these subjects, and humbly suggest to the
non-specialized reader in these two areas to look through the pages of the following books:
Category theory:

(1) Categories for the working mathematician. Mac Lane, Saunders. [Mac71]
Hopf algebras:

(1) Hopf algebras. Sweedler [S69].
(2) Quantum groups. Kassel [Kas95].
(3) Hopf algebras and their action on rings. Montgomery [Mon93]

Throughout this work, when referring to Hopf algebras, we will make use of the so called Sweedler
notation [S69] for the coproduct. Therefore, if H is a Hopf algebra with comultiplication ∆ and x ∈ H,
we will, for example, write:

∆(x) = x(1) ⊗ x(2),

and
(id⊗∆)∆(x) = (∆⊗ id)∆(x) = x(1) ⊗ x(2) ⊗ x(3).

We devote Section 2 we fix the notation for the concepts related to a Lie algebra g.
On Section 3 we define the general quantum group Uq(g) over Q(q), reviewing some elementary

results from the literature.
Section 3 constructs the quantum group at roots of unity. Here, we define the affine Weyl group

and use it to prove Theorem 4.15, the quantum version of Harish-Chandra’s Theorem.
On Section 4 (working over U res

q (g) and U †
s (g)), we define tilting modules as in [AP95]. We prove

here that they form a tensor category and that highest weight tilting modules are irreducible in this
category.

On Section 5 we introduce the so-called negligible modules and it is shown here that in fact every
highest weight tilting module outside the Weyl alcove is negligible.

Section 5 gives an application of the technology developed in the previous sections. Specifically it
gives A version of this formula for Weyl modules with highest weight in the root lattice appears in
[AP95].

Finally Section 6 we consider the ribbon category associated to the set of all modules and the one
associated to the set of all tilting modules. The quotient of the tilting modules by the negligible tilting
modules is given and proven to be a semisimple ribbon category. We describe this category in detail,
in particular giving a quantum version of the Racah formula, which expresses multiplicities of the
tensor products of two Weyl modules in terms of weight multiplicities.

We end this work with some comments on modularity and further research on Section 7
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2. Lie algebras

We follow Humphreys [Hum72] for all our results on Lie algebras, and for the most part, notation.
The following paragraph follows [Hum72][Ch. 10].

Let g be a complex simple Lie algebra, let h be a Cartan subalgebra and h∗ its dual vector space.
We fix the following list of notation and definitions:

• Let Φ ⊂ h∗ be the root system of g.
• Let 〈 · , · 〉 be the unique inner product on h∗ (and hence on h) such that 〈α, α〉 = 2 for every

short root α ∈ Φ (this convention guarantees that the inner product of two roots is an integer.
• Let Φ̌ = {α̌ = 2α/〈α, α〉 |α ∈ Φ} be the dual root system to Φ.
• Let Λ = {λ ∈ h∗|〈λ, α̌〉 ∈ Z, ∀α ∈ Φ}, be the weight lattice.
• Let Λr = ZΦ ⊂ Λ be the root lattice and Λ̌r = ZΦ̌ ⊂ 1

DΛ the dual root lattice.
• LetW, the Weyl group, be the group of isometries of h∗ generated by reflections about the roots

α ∈ Φ. Thus in particular for each root α ∈ Φ we have a σα ∈ W defined by σα(λ) = λ−〈λ, α̌〉α.
In fact we will most often be interested in the translated action of the Weyl group, which is
defined by σ · λ = σ(λ + ρ)− ρ.

• Let ∆ = {α1, . . . , αN} ⊂ Φ be a base.
• Let di = 〈αi, αi〉/2 (so di = 1 for short roots and di = D for long).
• Let α > β mean α− β is a nonnegative linear combination of the elements of ∆.
• Let (aij) = 〈αi, α̌j〉 be the Cartan matrix.
• Let Λ+ = {λ ∈ Λ|〈λ, αi〉 ≥ 0,∀αi ∈ ∆}.
• Let θ be the longest root, i.e., the unique long root in Φ ∩ Λ+,
• Let φ be the unique short root in the same intersection.
• Let ρ =

∑
α>0 α/2.

We also collect some numbers related to g:
• Let L be the least integer such that L〈λ, γ〉 ∈ Z whenever λ, γ ∈ Λ.
• Let D be the ratio of the square lengths of the long and short roots.
• Let ȟ = 〈ρ, θ̌〉+ 1 be the dual Coxeter number,.
• Let h = 〈ρ, φ̌〉+ 1 be the Coxeter number.

For convenience we summarize these quantities (all information taken from [Hum72]).

An B2n+1 B2n Cn D2n D2n+1 E6 E7 E8 F4 G2

L n + 1 2 1 1 2 4 3 2 1 1 1
D 1 2 2 2 1 1 1 1 1 2 3
h n + 1 4n + 2 4n 2n 4n− 2 2n 12 18 30 12 6
ȟ n + 1 4n + 1 4n− 1 n + 1 4n− 2 2n 12 18 30 9 4
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3. Quantum groups with generic parameter

We will introduce here several different (and non equivalent) versions of a quantum group related
to a Lie algebra, with generic paremeter q. We will try to do it in a way such that the reader could
easily keep track of each during the work. Further, we will review the most relevant facts about their
representation theory, which have been covered by the Master Class and we refer the reader to look
at the book [CP94] of Chari and Pressley for details.

Let A = Z[q, q−1]. Given integers m,n let

[n]q = (qn − q−n)/(q − q−1) ∈ A,

[n]q! = [n]q · [n− 1]q · · · [1]q ∈ A,[
m
n

]
q

= [m]q!/([n]q![m− n]q!) ∈ A.

Let qi = qdi .

Definition 3.1. We define the Hopf algebra Uq(g) over Q(q) with generators Ei, Fi, Ki and relations:

KiKj = KjKi KiK
−1
i = K−1

i Ki = 1,

KiEjK
−1
i = q〈αi,αj〉Ej , KiFjK

−1
i = q−〈αi,αj〉Fj ,

EiFj − FjEi = δi,j
Ki −K−1

i

qi − q−1
i

,

1−aij∑
r=0

(−1)r

[
1− aij

r

]
qi

(Ei)1−aij−rEj(Ei)r = 0 if i 6= j,

1−aij∑
r=0

(−1)r

[
1− aij

r

]
qi

(Fi)1−aij−rFj(Fi)r = 0 if i 6= j.

It is a Hopf algebra with comultiplication:

∆(Ki) = Ki ⊗Ki,

∆(Ei) = Ei ⊗Ki + 1⊗ Ei, ∆(Fi) = Fi ⊗ 1 + K−1
i ⊗ Fi,

antipode:
S(Ki) = K−1

i , S(Ei) = −EiK
−1
i , S(Fi) = −KiFi,

and counit:
ε(Ki) = 1, ε(Ei) = ε(Fi) = 0.

Proposition 3.2. [CP94] For each λ ∈ Λ+ there is a unique, irreducible, highest weight λ Uq(g)-
module of type I, the Weyl module W λ

q which is a direct sum of its weight spaces, and the dimensions
of whose weight spaces is the same as that of the classical Weyl module W λ (a weight λ vector in a
type I module is a vector v such that Kiv = q〈αi,λ〉v for all i). The tensor product of two Weyl modules
is isomorphic to a direct sum of Weyl modules with multiplicities the same as those in the classical
case.

Definition 3.3. Define E
(l)
i = El

i/[l]qi !, and likewise for Fi. We define the A-subalgebra U res
A (g) of

Uq(g) to be generated by the elements E
(r)
i , F

(r)
i , K±1

i , for 1 ≤ i ≤ N and r ≥ 1.
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U res
A (g) is an integral form of Uq(g) in the sense that Uq(g) = U res

A (g)⊗A Q(q), and U res
A (g) is a free

A-algebra.
There exist Eβ1 , Fβ1 , Eβ2 , Fβ2 , . . . , EβN

, FβN
,∈ U res

A (g), where β1, . . . , βN is an enumeration of the
positive roots, such that each Eβi

, Fβi
satisfies KjEβi

K−1
j = q〈αj ,βi〉Eβi

and the set consisting of all

(EβN
)(lN ) · · · (Eβ1)

(l1) forms a basis for the subalgebra U+
q (g) generated by {1, E

(k)
i } (and likewise for

F, with U−
q (g) defined correspondingly).

Proposition 3.4. [CP94] If v is a highest weight vector of a module W λ, then W λ
A = U res

A (g) · v is a
U res
A (g)-submodule of W λ and is a direct sum of its intersections with the weight spaces of W λ, each

of which is a free A-module of finite rank.

These two versions of a quantum groups are not ribbon Hopf algebras. Below we give an integral
form of the quantum group which is a ribbon Hopf algebra (technically a topological Hopf algebra, in
the sense that the comultiplication maps to a completed tensor product).

Let A′ = Z[s, s−1] and define a monomorphism A → A′ by q 7→ sL (henceforth we will treat this
monomorphism as the identity and write q = sL).

Definition 3.5. We define the A′ Hopf algebra U res
A′ (g) = U res

A (g) ⊗A A′ and the U res
A′ (g)-module

W λ
A′ = W λ

A ⊗A A′.

The collection of all set-theoretic functions from the addtive group Λ to A′, Map(Λ,A′), is naturally
an algebra over A′ with pointwise multiplication. A topological basis for this algebra is given by
{δλ}λ∈Λ, where δλ(γ) = δλ,γ . By topological basis we mean the elements are linearly independent and
span a dense subspace of Map(Λ,A′) in the topology of pointwise convergence.

It is a (topological) Hopf algebra when given the comultiplication ∆(f)(µ, µ′) = f(µ + µ′), the
counit ε(f) = f(0), and the antipode S(f)(µ) = f(−µ) for f ∈ Map(Λ,A′) and µ, µ′ ∈ Λ. Here

∆: Map(Λ,A′) → Map(Λ× Λ,A′).

The latter space contains the natural embedding of Map(Λ,A′)⊗Map(Λ,A′) as a dense subspace in
the topology of pointwise convergence, and thus may be viewed as the completed tensor product.

Recall any Abelian group with a homomorphism to its dual has an R-matrix associated to the
homomorphism in the Hopf algebra of functions. In the case of the homomorphism λ 7→ sL〈λ, · 〉, the
R-matrix is

∑
λ,γ sL〈λ,γ〉δλ ⊗ δγ , which once again is an element not of the tensor product of the Hopf

algebra with itself but of the completion.

Definition 3.6. Let U †
A′(h) be Map(Λ,A′) viewed as a topological ribbon Hopf algebra.

Notation 3.7. Defining λi ∈ Λ by 〈λi, α̌j〉 = δi,j we can write the canonical dual element to the pairing
as

∑
i λi ⊗ α̌i. We denote by qλ the homomorphism∑

γ∈Λ

sL〈λ,γ〉δγ ∈ Map(Λ,A′).

Likewise, we write

qλ⊗γ =
∑
λ′,γ′

sL〈λ,λ′〉〈γ,γ′〉δλ′ ⊗ δγ′ ∈ Map(Λ,A′)⊗Map(Λ,A′),

and then formally we can refer to the R-matrix above as q
P

i λi⊗α̌i . We develop this equality with
detail so as to meka the reader feel comfortable with the notation. Precisely,

qλi⊗α̌i =
∑
µi,ηi

q〈α̌i,µ
i〉〈λi,ηi〉δηi ⊗ δµi ,
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and so

q
P

i λi⊗α̌i =
∏

i

∑
µi,ηi∈Λ

q〈α̌i,µ
i〉〈λi,η

i〉δηi ⊗ δµi

=
∑

(µ1, . . . , µN ),
(η1, . . . , ηN ) ∈ ΛN

N∏
j=1

(
q〈α̌j ,µi〉〈λj ,ηi〉δηi ⊗ δµi

)

=
∑

µ,η∈Λ

N∏
j=1

q〈α̌j ,µ〉〈λj ,η〉δη ⊗ δµ

=
∑

µ,η∈Λ

q
PN

j=1〈〈α̌i,µ〉λj ,η〉δη ⊗ δµ

=
∑

µ,η∈Λ

q〈µ,η〉δµ ⊗ δη.

Define the weight w of a monomial in {Ei, Fi,Ki} to be the sum of αi for each factor of Ei and −αi

for each factor of Fi. U †
A′(h) acts on U res

A′ (g) by Hopf automorphisms via the Λ-grading of U res
A′ (g).

Specifically, f ∈ U †
A′(h) acts on a monomial X by f [X] = f(w(X))X and extends linearly. This

action is automorphic in the sense that ∆(h[X]) = h(1)[X(1)]⊗h(2)[X(2)] and h[XY ] = h(1)[X]h(2)[Y ].
In fact,

h[XY ] = h(w(XY ))XY = h(w(X) + w(Y ))XY = ∆(h)(w(X)⊗ w(Y ))XY

= h(1)(w(X))Xh(2)(w(Y ))Y = h(1)[X]h(2)[Y ],

∆(h[X]) = h(w(X))X(1) ⊗X(2) = h(w(X(1)) + w(X(2)))X(1) ⊗X(2)

= h(1)(w(X(1))⊗ h(2)(w(X(2)))X(1) ⊗X(2) = h(1)[X(1)]⊗ h(2)[X(2)],

since it is straightforward to check that U res
A′ (g) is a graded Hopf algebra, in the sense that

∆((U res
A′ (g))λ) ⊆

⊕
γ+η=λ

(U res
A′ (g))γ ⊗ (U res

A′ (g))η.

As such we can form the smash product Hopf algebra (see [Mon93] for a general definition, or think of
it as a semidirect product) U †

A′(h) n U res
A′ (g). It is clear that this Hopf algebra is (densely) generated

by {Ei, Fi,Ki} ∪ {δλ}λ∈Λ, with the standard quantum group relations together with

δλδγ = δλ,γδλ,
∑
λ∈Λ

δλ = 1

δλKi = Kiδλ δλEi = Eiδλ−αi
δλFi = Fiδλ+αi

.

If U †
A′(h) n U res

A′ (g) acts on an A′-module V, and v ∈ V, we say v is of weight λ ∈ Λ if Kiv = q〈λ,αi〉v

and fv = f(λ)v for f ∈ U †
A′(h), and we say V is a λ weight space if it consists entirely of weight λ

vectors.
Let W be the direct product of all U †

A′(h)nU res
A′ (g)-modules which are a finite direct sum of A′-free

λ weight spaces for λ ∈ Λ. Of course U †
A′(h) n U res

A′ (g) acts on W. The kernel of this action is a
two-sided ideal (clearly it includes at least Ki− qαi ,), and since the tensor product of two finite direct
sums of A′-free λ-spaces for λ ∈ Λ is another such, it is a Hopf ideal. Thus the quotient is a Hopf
algebra which embeds into the module of endomorphisms of W. The product topology on W gives the
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space of endomorphisms a topology, one in which a sequence converges if and only if it converges on
each finite-dimensional submodule (these being discrete, this happens when the sequence is eventually
constant on each submodule).

Definition 3.8. We define U †
A′(g) to be the closure of the image of U †

A′(h) n U res
A′ (g) in End(W) in

this topology. The product, coproduct, antipode and counit clearly extend to the completion (∆ has
range the closure of U †

A′(g)⊗U †
A′(g) in EndA′(W⊗W), which we will refer to as U †

A′(g)⊗U †
A′(g), the

completed tensor product).

Remark 3.9. We remark again that, in this new algebra, we have relations Ki = qαi .
Also, note that W λ

A′ (λ ∈ Λ+) can be made into a U †
A′(h) n U res

A′ (g)-module by letting f ∈ U †
A′(h)

act on a weight λ vector by multiplication by f(λ). W λ
A′ is a finite direct sum of free weight spaces, as

above, so any pair of elements of the semidirect product that act as different endomorphisms on some
W λ
A′ represents different elements of U †

A′(g).

This extended Hopf algebra U †
A′(g) is a ribbon Hopf algebra. Specifically notice that our earlier

R-matrix q
P

i α̌i⊗λi is an element of U †
A′(g)⊗U †

A′(g). Therefore so is

(1) R = q
P

i α̌i⊗λi

∞∑
t1,...tN=1

N∏
r=1

q
tr(tr+1)/2
βr

(1− q−2
βr

)tr [tr]qβr
!E(tr)

βr
⊗ F

(tr)
βr

∈ U †
A′(g)⊗U †

A′(g)

where qβr = qdi when βr is the same length as αi.

Proposition 3.10 ([CP94]). U †
A′(g) is a ribbon Hopf algebra with R-matrix R as above. Further, the

grouplike element qρ is a charmed element of the Hopf algebra for this R.

Remark 3.11. In particular, conjugation by q2ρ is the square of the antipode, so that for any finite-
dimensional U †

A′(g) module V, free over A′, the functional

qtrV : U †
A′(g) → A′

qtrV (x) = trV (q2ρx)

is an invariant functional on U †
A′(g) in the sense that qtr(a(1)bS(a(2))) = ε(a) qtr(b). In fact,

trV (q2ρa(1)bS(a(2))) = trV (q2ρa(1)q
−2ρq2ρbS(a(2))) = trV (S2(a(1))q

2ρbS(a(2)))

= trV (q2ρbS(a(2))S
2(a(1))) = trV (q2ρbS(S(a(1))a(2))) = ε(a) trV (q2ρb).

Define the quantum dimension

qdim(V ) = qtrV (1) = tr(q2ρ)

and in particular define qtrλ = qtrW λ
A′

and qdim(λ) = qdim(W λ
A′). Notice that since qtrV⊗W =

qtrV qtrW ,
qdim(V ⊗W ) = qdim(V ) qdim(W ).

Finally, a simple calculation modeled on the classical Weyl character formula gives ([CP94])

(2) qdim(λ) =
∏
β>0

(
q〈λ+ρ,β〉 − q−〈λ+ρ,β〉

)
/

(
q〈ρ,β〉 − q−〈ρ,β〉

)
∈ A.
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4. Quantum groups at roots of 1. The affine Weyl group

We now restrict the generic q to a root of unity. Specifically, let l be a positive integer, and consider
the homomorphism A′ → Q[s], where s is an abstract primitive lLth root of unity (i.e. satisfies the
lLth cyclotomic polynomial) given by s 7→ s. Write q = sL. Likewise q 7→ q gives a homomorphism
A → Q[q],

Definition 4.1. As before, define U †
s (g) = U †

A′(g)⊗A′ Q[s], and U res
q (g) = U res

A (g)⊗A Q[q].

We can define also W λ
s = W λ

A′ ⊗A′ Q[s].

Notation 4.2. Write qλ for qλ ⊗ 1 ∈ U †
A′(g)⊗Q[q] = U †

s (g).

Notice U †
s ⊗ U †

s
∼= (U †

A′ ⊗ U †
A′) ⊗A′ Q[s] embeds naturally (and densely in the inherited topology)

into (U †
A′ ⊗U †

A′) ⊗A′ Q[s], and thus we may define the latter space as the completed tensor product
U †

s ⊗U †
s . U †

s then becomes a Hopf algebra, and in fact a ribbon Hopf algebra since the image of R is
in U †

s ⊗U †
s .

For each i ≤ n let li be l/ gcd(l, di) (that is, the index of qi) and let l′i be li or li/2 according to
whether li is odd or even (so that l′i is the least natural number such that q

l′i
i ∈ {±1}. Likewise let l′

be l or l/2 according to whether l is odd or even.

Definition 4.3. The affine Weyl group, Wl, is the group of isometries of h∗ generated by reflection
about the hyperplanes

〈x, αi〉 = 〈kl′iαi/2, αi〉 = kl′idi

for each k ∈ Z and each αi ∈ ∆.

Remark 4.4. Wl includes the Weyl group W as a subgroup (when k = 0).

Again we will usually be interested in the translated action of the affine Weyl group, given by
σ · λ = σ(λ + ρ)− ρ.

Lemma 4.5. • If l′ is divisible by D, the affine Weyl group is the semidirect product of the
ordinary Weyl group is the semidirect product of the ordinary Weyl group the group of trans-
lations l′Λ̌r. In particular a set of generators consists of reflections σαi , αi ∈ ∆ together with
translation by l′θ/D. A fundamental domain for the translated action of the affine Weyl group
is the principal Weyl alcove, Cl, which is the region 〈x + ρ, αi〉 ≥ 0, 〈x + ρ, θ〉 ≤ l′.

• if l′ is not divisible by D, the affine Weyl group is the semidirect product of the ordinary Weyl
group is the semidirect product of the ordinary Weyl group the group of translations l′Λr. In
particular a set of generators consists of reflections σαi , αi ∈ ∆ together with translation by
l′φ. A fundamental domain for the translated action of the affine Weyl group is the principal
Weyl alcove, Cl, which is the region 〈x + ρ, αi〉 ≥ 0, 〈x + ρ, φ〉 ≤ l′.

Proof. Reflection about the hyperplanes 〈x, αi〉 = 0 followed by reflection about 〈x, αi〉 = 〈l′iαi/2, αi〉
gives translation by l′iαi. In fact, this last reflection is given by

z 7→ σi(z −
l′idi

〈αi, αi〉
) +

l′idi

〈αi, αi〉
and then the composition of the two reflections gives, for z = σi(y)

y 7→σi(σi(y)− l′idi

〈αi, αi〉
) +

l′idi

〈αi, αi〉

= y +
2l′idi

〈αi, αi〉
αi = y + l′iαi.
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This translation, since di = 1 or di = D and D is prime, is translation by l′αi or l′α̌i according to the
divisibility of l′. Conjugation by σβ for various β gives translation by l′β or l′β̌. Thus Wl contains the
groups mentioned, and clearly is generated by them. Since the Weyl group acts by conjugation on the
group of translations, the full group is a semidirect product.

The subgroup of translations is generated by l′β̌ (resp. l′β) for β a long root of Φ (resp. β a short
root of Φ). Thus a fundamental domain for the group of translations would be the polygon bounded
by the hyperplanes 〈x + ρ, β̌〉 ≤ l′ (resp. 〈x + ρ, β〉 ≤ l′) for all such β. Now, this region is invariant
under the translated action of W: if x is on the region, then so it is σ · x, for σ ∈ W:

〈σ · x− ρ, β〉 = 〈σ(x− ρ), β〉 = 〈x− ρ, σ(β)〉 = 〈x− ρ, β′〉 ≤ l′.

Therefore, a fundamental region for Wl is given by the intersection of this region with a fundamental
region of this action of W which is exactly the region given. �

Remark 4.6. When g is not simply-laced the affine Weyl group’s action is distinctly different when l′

is divisible by D and when it is not. When l′ is divisible by D, this is the affine Weyl group relevant
to affine Lie algebras, and the affine Weyl group of the root system Φ, but where the translations are
multiplied by l′/D. When l′ is not divisible by D it is (with multiplication by l′) the affine Weyl group
of the dual root system Φ̌. Therefore, in the context of quantum groups, both Weyl groups appear
with identical meaning.

Lemma 4.7. The affine Weyl group Wl is the largest subgroup of W† def
= W n l

2 Λ̌r which fixes the
root lattice Λr under the translated action. In particular these two are equal when 2D|l.

Proof. About the last claim, note simply that if 2D|l, then W n l
2 Λ̌r = W n l′Λ̌r = Wl, since D|l.

Now we focus on the main claim: The subgroup of the group of translations l
2 Λ̌r which preserves Λr

is l
2 Λ̌r ∩ Λr, and, since a half dual root is never a dual root, the latter equals l′Λ̌r ∩ Λr. In fact, if l

is even, then l
2 = l′ and there’s nothing to say. If l is odd, and x = l

2y, y ∈ Λ̌r, then l
2y ∈ Λr and

so y ∈ 2Λ̌r. Therefore, x ∈ lλ̌r ∩ Λ. Now, if D|l′, then l′Λ̌r ⊂ Λr, and therefore l′Λ̌r ∩ Λr = l′Λ̌r. If
D does not divide l′, then they are relatively prime, so for short roots l′β̌ = l′β ∈ λr, but for long
roots the smallest multiple in Λr is Dl′β̌ = l′β, so l

2 Λ̌r ∩ Λr ⊂ l′λr. Since the translated action of the
ordinary weyl group preserves the root lattice, we have that the largest subgroup which preserves the
root lattice is precisely W n l′Λr in the case in which D - l′ and W n l′Λr when D|l′, that is, the result
follows. �

The aim now is to give a proof of the quantum version of Harish-Chandra’s Theorem for U †
s (g).

Consider the action of the center Z of U †
s on a highest weight module of highest weight λ. If v is a

vector of weight λ then so is zv for any z ∈ Z, so z must act as multiplication by an element of Q[s]
on v, say zv = χλ(z)v. Since every element of the highest weight module is of the form Fv for some
F ∈ U †−

s (the subalgebra of U †
s generated by {1, F

(k)
i }) we have zFv = Fzv = χλ(z)Fv, so that in

fact z acts as multiplication by χλ(z) on the entire highest weight module. Thus each λ gives us an
algebra homomorphism χλ from the center Z to Q[s].

Definition 4.8. If λ, γ ∈ Λ say that λ ∼ γ if χλ = χγ . This is an equivalence relation.

Of course χλ = χγ if λ occurs as a highest weight in a highest weight γ module, so ∼ includes at
least the extension of this relation to an equivalence relation.

It will be useful to understand the relation ∼ in the case g = sl2. in this case, it is known that the
Verma module of weight jθ, j ∈ Z≥0/2 ∼= Λ+, is a U †

s -module spanned by {F (k)v | k ≥ 0}, where v is
of weight jθ and Ev = 0. For this module:

EF (s)v = [2j − s + 1]q F (s−1)v.
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To show this, we will first prove by induction the following commutation formula:

EF s = F sE + F s−1
s−1∑
i=0

q−2iK − q2iK−1

q− q−1
.

The case s = 1 is just the defining relation EF − FE = K2−K−2

q−q−1 . Now, assuming the formula holds
for a given s, we get

EF s+1v = F sEF + F s
s−1∑
i=0

q−2iK − q2iK−1

q− q−1
F

= F s(FE +
K −K−1

q− q−1
) + F s

s−1∑
i=0

q−2i−2 − q2i+2

q− q−1

= F s+1E + F s K −K−1

q− q−1
+ F s

s∑
i=1

q−2i − q2i

q− q−1

= F s+1E + F s
s∑

i=0

q−2iK − q2iK−1

q− q−1
.

If we apply this relation to v, recalling that Ev = 0 and Kv = −q〈θ,jθ〉 = q2j , we get:

EF sv = F sEv + F s−1
s−1∑
i=0

q−2iK − q2iK−1

q− q−1
v = F s−1

s−1∑
i=0

q2j−2i − q2i−2j

q− q−1
v

=
1

q− q−1

[
q2j

s−1∑
i=0

(q−2)i − q−2j
s−1∑
i=0

(q2)i

]
F s−1v =

1
q− q−1

[
q2j 1− q−2s

1− q−2
− q−2j 1− q2s

1− q2

]
F s−1v.

Now, since [s]q! = [s]q[s− 1]q! = qs−q−s

q−q−1 , we have that:

EF (s)v =
1

qs − q−s

[
q2jq−sq

s − q−s

1− q−2
− q−2jqsq

−s − qs

1− q2

]
F (s−1)v

= (
q2j−s

1− q−2
+

qs−2j

1− q2
)F (s−1)v = (

q2j−s+1

q− q−1
− qs−2j−1

q− q−1
)F (s−1)v

=
q2j−s+1 − qs−2j−1

q− q−1
F (s−1)v = [2j − s + 1]qF (s−1)v.

Notice [r]q = 0 if and only if r is a multiple of l′. Thus F (s)v is a highest weight vector when either
s = 2j + 1 or s = 2j + 1− kl′ and s < l′.

Now,

KF (2j+1)v = q−2(2j+1)F (2j+1)Kv = q−2(2j+1)q2jF (2j+1)v

= q(−2j−2)F (2j+1)v = q〈θ,−(j+1)θF (2j+1)v,

and

KF (2j+1−kl′)v = q−2(2j+1−kl′)F (2j+1−kl′)Kv = q−2(2j+1−kl′)q2jF (2j+1−kl′)v

= q−2j−2+2kl′F (2j+1−kl′)v = q〈θ,(kl′−j−1)θF (2j+1)v.

So jθ ∼ −(j + 1)θ when j ≥ 0 and jθ ∼ (kl′− j− 1)θ when 2j < (k + 1)l′. Note that this last relation
gives jθ ∼ (j + kl′)θ By transitivity j ∼ j′ whenever jθ is connected to j′θ by the quantum Weyl
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group, since σθ · jθ = σθ(jθ + 1
2θ) − 1

2θ = −(j + 1)θ and the group of translations is generated by
θ 7→ θ + kl′θ.

Now consider a general g. In the proof of the next proposition it will very useful the detail in which
we’ve developed the sl2 case.

Proposition 4.9. If λ, γ ∈ Λ and there is a σ ∈ Wl such that γ = σ · λ, then λ ∼ γ.

Proof. Let λ ∈ Λ. Recall that the Verma module of highest weight λ can be constructed as follows.
Consider U as a U -module under the adjoint action, and quotient it by the left ideal generated by
E

(k)
i and Ki − q(λ,αi)) for all i. It is easy to see that the vector 1 (which above was called v) is a

highest weight vector of weight λ. Now for each i {E(k)
i , F

(k)
i ,Ki} generate a subalgebra isomorphic to

U †
si(sl2) (here si = sdi) and the vectors F

(k)
i v span a U †

si(sl2) module isomorphic to the Verma module

of weight 〈λ, α̌i〉/2. Therefore the vectors F
〈λ,α̌i〉+1
i v and F

〈λ,α̌i〉+1−kl′i
i v where 〈λ, α̌i〉 < (k + 1)l′i give

highest weight vectors. Thus λ ∼ σ · λ, for σ a generator of the affine Weyl group. The result follows
by the transitivity of the ∼ relation. �

Let R be the R-matrix in U †
s (g) and let R21 = τ(R), where τ : U †

s (g)⊗U †
s (g) → U †

s (g)⊗U †
s (g) is the

standard flip. Let D = R21R. We write D =
∑

i xi ⊗ yi (infinite sum).
Let

Ψ: (U †
s (g))∗ → U †

s (g)

Ψ(z∗) =
∑

i

z∗(yi)xi,

where (U †
s (g))∗ is the direct sum over all λ ∈ Λ+ of the set (U †

s (g))λ of functionals on U †
s (g) which

factor through the representation on W λ
s :

(U †
s (g))λ = {x 7→ φ(x · w)/φ ∈ (W λ

s )∗, w ∈ W λ
s }.

This map is called the Drinfel’d map. We will also be interested in

Dh = q
P

i λi⊗α̌iq
P

i α̌i⊗λi = q2
P

i λi⊗α̌i

and the associated
Ψh : (U †

s (g))∗ → U †
s (h)

Ψh(z∗) =
∑

i

z∗(yi)xi

writing Dh =
∑

i xi ⊗ yi.
By the PBW theorem there is a well-defined map

Θ: U †
s (g) → U †

s (h)

given by sending all products in the PBW basis which contain factors of Ei or Fi to zero and all other
products to themselves. Thus χλ = λ ◦ Θ on the center Z. What’s more, since the only terms in D
which do not contain factors of the form E and F are those in Dh,

(3) ΘΨ = Ψh.

Consider the adjoint action of U †
s (g) on itself, given by, for a, x ∈ U †

s (g),

ada(x) = a(1)xS(a(2)).

An invariant element of U †
s (g) is then an x such that ada(x) = ε(a)x, ∀a ∈ U †

s (g). We will need the
following general lemma:
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Lemma 4.10. Let H be a (topological) Hopf algebra. Then the map H ⊗ H → H ⊗ H given by
a⊗ b 7→ a(1) ⊗ a(2)b is a bijection.

Proof. It is straightforward to check that the map H ⊗H → H ⊗H given by a⊗ b 7→ a(1) ⊗ S(ba(2))
gives an inverse to the map defined above. �

We consider now the inverse of the map defined in the Lemma, for H = U †
s (g). We can, thus, for a

given u ∈ U †
s (g), choose an element a⊗ b ∈ U †

s (g)⊗U †
s (g) such that a(1) ⊗ S(ba(2)) = u⊗ 1. Now, if z

is an ad-invariant element, we have

uz = uz1 = a(1)zS(ba(2)) = a(1)zS(a(2))S(b) = ε(a)zS(b) = za(1)S(a(2))S(b) = zu.

So every ad-invariant element lies in the center of U †
s (g). Since the converse is clearly true, we conclude

that the invariants elements of U †
s (g) (or of any Hopf algebra) are exactly the elements of the center.

Likewise, the coadjoint action on (U †
s (g))∗ send an element z∗ to

coada(z∗) = z∗(a(1) · S(a(2))).

Lemma 4.11. The Drinfel’d map Ψ takes invariant functionals to the center of (U †
s (g))∗.

Proof. Remember that if a Hopf algebra H is quasitriangular, then so is the co-opposite Hopf algebra
Hcop, with quasitriangular element Rcop = R21. Therefore, we have

(4) D∆(a)D = R21R∆(a) = R21∆cop(a)R = (∆cop)cop(a)R21R = ∆(a)R21R = ∆(a)D,

for all a ∈ (U †
s (g))∗. Then if z∗ is an invariant functional,

ε(a)Ψ(z∗) = ε(a)
∑

i

z∗(yi)xi =
∑

i

z∗(yi)xia(1)S(a(2)) =

=
∑

i

z∗(yi)xia(1)ε(a(2))S(a(3))

=
∑

i

z∗(yia(2)S(a(3)))xia(1)S(a(4))

(4)
=

∑
i

z∗(a(2)yiS(a(3)))a(1)xiS(a(4))

=
∑

i

ada(2)
(z∗)(yi)a(1)xiS(a(3))

=
∑

i

ε(a(2))z
∗(yi)a(1)xiS(a(3))

=
∑

i

z∗(yi)a(1)xiS(a(2)) = ada(Ψ(z∗)).

Thus Ψ(z∗) is an invariant element of (U †
s (g))∗. �

Corollary 4.12. If λ ∼ γ, then λ ◦Ψh = γ ◦Ψh on invariant functionals.

Proposition 4.13. If χλΨ = χγΨ on invariant functionals, then λ is mapped to γ by a transformation
in the semidirect product of the translated action of the Weyl group with the group of translations l

2 Λ̌r.
Further, {χλΨ} where λ runs through a choice of representative of each equivalence class of weights

in Λ related by this group, is a set of linearly independent functionals on the quantum traces.
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Proof. For each ν ∈ Λ+ the functional qtrν is an invariant functional. By induction on the ordering
we can form a linear combination of these qtrν to produce an invariant functional which on U †

s (h) acts
as

∑
σ∈W σ(ν)(q2ρ · ) for each ν ∈ Λ+. Notice that (µ⊗ µ′)(Dh) = q2〈µ,µ′〉. Now,

χλ(Ψh(
∑
σ∈W

σ(ν)(q2ρ · ))) = λ(
∑
σ∈W

σ(ν)
(
q2ρ(D2

h))
)
D1

h)

= λ(
∑
σ∈W

∑
η,γ

σ(ν)(q2ρδη)q2〈γ,η〉δγ)

= λ(
∑
σ∈W

∑
η,γ,µ

σ(ν)(δµδη)q〈2ρ,µ〉q2〈γ,η〉δγ)

= λ(
∑
σ∈W

∑
η,γ

σ(ν)(δη)q〈2ρ,η〉q2〈γ,η〉δγ)

=
∑
σ∈W

∑
η

∑
η

σ(ν)(δη)q〈2ρ,η〉q2〈λ,η〉δλ

=
∑
σ∈W

∑
η

σ(ν)(δη)q2〈ρ+λ,η〉δλ

=
∑
σ∈W

∑
η

δη(σ(ν))q2〈ρ+λ,η〉δλ

=
∑
σ∈W

q2〈λ+ρ,σ(ν)〉.

Therefore, we have
χλ(Ψ(

∑
σ∈W

σ(ν)(q2ρ · ))) =
∑
σ∈W

q2〈λ+ρ,σ(ν)〉.

The set {q2〈λ+ρ,ν〉 : λ ∈ 1
2L Λ̌r/

l
2 Λ̌r} is a basis for maps from Λ/(lLΛ) to Q[s]. W permutes this

basis (with the translated action), so
∑

σ∈W q2〈λ+ρ,σ(ν)〉 forms a basis for maps from (Λ/(lLΛ))W to
Q[s], when λ ranges over representatives of each Weyl orbit in 1

2L Λ̌r/
l
2 Λ̌r. Thus χλΨ is unchanged by

W†W n l
2 Λ̌r, and any set of orbit representatives is linearly independent.

�

Lemma 4.14. If λ ∼ γ then λ− γ ∈ Λr.

Proof. Notice an element f ∈ U †
s (h) is in the center of U †

s (g) if and only if f(λ) = f(λ + αi) for all
λ ∈ Λ and all i. The sub-Hopf algebra of such functions is isomorphic to the Hopf algebra of functions
on the fundamental group Λ/Λr. Such an f acts on λ by multiplication by f(λ), so every such f will
agree on λ and γ if an only if λ− γ ∈ Λr.

�

Theorem 4.15. λ ∼ γ if and only if λ = σ · γ for some σ ∈ Wl.

Proof. That the latter implies the former is exactly Proposition 4.9.
If λ ∼ γ, then by Proposition 4.9, they are connected by an element of W†. On the other hand, by

Lemma 4.14 they differ by an element of the root lattice, since if an element of W† takes one vector
to another vector that differs from it by a root vector, the difference of any vector and its image is
a root vector, since the obstruction for this does not depend on the vector of the argument, but on
the element itself. Thus, by Lemma 4.7 they are connected by an element of the affine Weyl group
Wl. �
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Corollary 4.16. The set {χλ}, choosing one λ from each translated Wl equivalence class, is a linearly
independent set of functionals on the center.

Proof. By Proposition 4.13 a linear relation between these would reduce to a linear relation between
those in the translated W n l

2 Λ̌r orbit of some λ. Since elements of this orbit which are not Wl

equivalent must be in distinct classes of Λ/Λr, computing them on the center intersected with U †
s (h)

shows that no such nontrivial relation exists. �
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5. Quantum groups at roots of 1. The tilting modules

In this section we will use U to refer to any of the forms of the quantum group defined in the last
two sections: Uq(g), U res

A (g), U †
A′(g), U res

q (g) or U †
s (g), and use “the ground ring” to refer to Q(q), A,

A′, Q[q], or Q[s] as appropriate. We also drop the subscripts from such notation as W λ
A′ when no

confusion would ensue.

5.1. Weyl filtrations and tilting modules.

Definition 5.1. A U -module V is said to have a Weyl filtration if there exists a sequence of submodules

{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn = V

such that for each 1 ≤ i ≤ n, Vi/Vi−1 is isomorphic to the Weyl module W λ for some λ ∈ Λ+.

Proposition 5.2. Suppose W is a U res
A (g)-module such that W ⊗A Q(q) =

⊕
i W

λi
q . Then W ⊗A Q[q]

and (W ⊗A A′) ⊗A′ Q[s] admit Weyl filtrations with the ith factor of highest weight λi, where the λi

are assumed to be ordered so that λi is never greater than λj for j < i.

Proof. We shall prove the Proposition over Q[q], the argument is exactly the same for U †
s (g), over

Q[s].
Decomposing W = Wtor ⊕ Wfree into its torsion and free parts over A, notice that W ⊗A Q(q) =

Wfree⊗AQ(q) and likewise for Q[q]. Since Wtor is a U res
A -module, the quotient by it is a free A-module

and a U res
A module whose tensor with Q(q) and Q[q] are isomorphic to that of W. Thus we can assume

W is a free A-module. Notice in this case the maps v 7→ v⊗1 are injective maps from W to W⊗AQ(q)
and W ⊗A Q[q] whose ranges span.

Let w ∈ W be such that w ⊗ 1 ∈ W ⊗A Q(q) is a vector of weight λ1. By the maximality of λ1

w must be a highest weight vector. Then U res
A w is a U res

A -module, free over A, whose tensor product
with Q(q) yields a Uq-module isomorphic to W λ1

q . Thus U res
A w must be isomorphic to W λ1

A . Its tensor
product with Q[q] thus gives a submodule isomorphic to W λ1

q . Therefore the quotient W/W λ1
A is a

module whose tensor product with Q(q) is isomorphic to
⊕

i>1 W λi
q and whose tensor product with

Q[q] is (W ⊗A Q[q])/W λ1
q . By induction the proposition follows. �

Corollary 5.3. The tensor product of two U res
q or U †

s modules with a Weyl filtration admits a Weyl
filtration.

Proof. By induction it suffices to prove that W λ ⊗ W γ admits a Weyl filtration, since if A and B
admit Weyl filtrations and V ⊂ B admits a Weyl filtration such that B/V ∼= W λ, for some λ, then,
if A ⊗ V admits a Weyl filtration, this filtration and A ⊗ V ⊂ A ⊗ B give a Weyl filtration for the
tensor product. The W λ ⊗W γ case follows from the previous Proposition, since, as we have recalled
in Section 3, the tensor product of U res

A (g) Weyl modules decomposes into a direct sum of U res
A (g)

Weyl modules. �

Remark 5.4. Notice the entries in that Weyl filtration are the same as the entries in the classical
decomposition of the tensor product of classical modules which were direct sums with the same entries
as the original Weyl filtrations. Thus if we restrict our attention to modules with a Weyl filtration
the category of such modules forms a monoidal category which reminds us of the tensor category of
classical finite-dimensional modules if we replace the notion of direct sum decomposition of modules
with that of Weyl filtration.

Definition 5.5. A U -module V is said to have a dual Weyl filtration if there exists a sequence of
submodules

{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn = V
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such that for each 1 ≤ i ≤ n Vi/Vi−1 is isomorphic to the dual of a Weyl module (W λ)∗ for some
λ ∈ Λ+.

Lemma 5.6. V admits a dual Weyl filtration if and only if V ∗ admits a Weyl filtration.

Proof. This follows from the following linear algebra fact: let W ⊂ V two (finite dimensional) vector
spaces, then the map

V ∗/W ∗ → (V/W )∗, f + W ∗ 7→ (x + W 7→ f(x)),
for f ∈ V ∗, x ∈ V, is a linear isomorphism. �

Definition 5.7. A U -module V is a tilting module if it admits both a Weyl filtration and a dual Weyl
filtration.

Corollary 5.8. The properties of admitting a Weyl filtration, admitting a good filtration or being a
tilting module are preserved by tensor product.

Remark 5.9. The category of tilting modules forms a rigid monoidal category, though not a semisimple
one. It is nevertheless true that, because of the existence of Weyl and dual Weyl filtrations, behaves
in many respects like the semisimple tensor category of classical g modules.

5.2. Indecomposable tilting modules. The following Proposition will lead us to the study of
indecomposable tilting modules. It addresses to one of the most relevant facts on tilting modules.

Proposition 5.10. If V ∼= W
⊕

W ′, then V is tilting if and only if W and W ′ are tilting

To understand indecomposable tilting modules, and in order to prove the Proposition, we need to
recall some notions from Homological algebra. For precise definitions and statements, we refer the
reader to the book [Mac63].

Let A and C be two modules over a ring R, Consider long exact sequences of R-modules

0 → Bn−1 → · · · → B1 → B0 → C → 0

running from A to C with n intermediate modules. These extensions, suitably classified by a con-
gruence relation, are the elements of a group Extn(C,A). To calculate this group, we present C as a
quotient C = F0/S0 of a free module F0. This process can be iterated as S0 = F1/S1, S1 = F2/S2, . . .
to give an exact sequence:

· · · → Fn → Fn−1 → · · · → F1 → F0 → C → 0

called a “free resolution” of C. The complex Hom(Fn, A) has cohomology Extn(C,A). Alternatively,
one may imbed A in an injective module J0 and then J0/A in an injective module J1 and in this way
iterate this process to get an exact sequence:

0 → A → J0 → J1 → · · · → Jn → · · ·
called an “injective resolution” of A. The complex Hom(C, Jn) has cohomology Extn(C,A). We do
not give details here about the equivalence of both definitions, nor about the congruence relation
mentioned above. We restrict ourselves to providing the reader a list of classical properties about the
Ext groups that will be needed in the sequel. We define Ext0(A,C) ∼= Hom(A,C).

Proposition 5.11 ([Mac63]). (1) Extn(A,C) is functorial on each variable.
(2) If 0 → X → Y → Z → 0 is a short exact sequence then we get the long exact sequences of

homology:

(5)
0 −−−−→ Ext0(Z,C) −−−−→ Ext0(Y, C) −−−−→ Ext0(X, C) −−−−→

Ext1(Z,C) −−−−→ Ext1(Y, C) −−−−→ · · ·
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and

(6)
0 −−−−→ Ext0(A,X) −−−−→ Ext0(A, Y ) −−−−→ Ext0(A,Z) −−−−→

Ext1(A,X) −−−−→ Ext1(A, Y ) −−−−→ · · · .

There is another approach to the Ext1(C,A) group, in terms of short exact sequences 0 → A →
B → C → 0 which will be very useful in what follows. We let Ext(C,A) be the set of all congruence
classes of extensions of A by C, via the following equivalence relation: two sequences

E : 0 → A → B → C → 0, and E′ : 0 → A → B′ → C → 0

are said to be equivalent if there exists a monomorphism β : B → B′ such that the following diagram
commutes:

0 // A // B //

β

��

C // 0

0 // A // B // C // 0
We now that in this situation β must be an isomorphism (Five Lemma) and thus the relation is seen
to be an equivalence relation. It is possible to give to this congruence set a group structure, with the
addition operation being the so-called “Baer sum” (cf. [Mac63]), which renders the trivial extension

0 → A → A⊕ C → C → 0

as the zero element of the group. With this in mind, we arrive to:

Theorem 5.12 ([Mac63]). Let A and C be two modules over a given ring R. If K
ι→ P → C is an

exact sequence, with P projective, then

Ext(C,A) ∼= HomR(K, A)/ι∗ Hom(P,A).

In particular, Ext(C,A) ∼= Ext1(C,A).

Corollary 5.13. If A and C are two modules over a ring R and such that every short exact sequence
0 → A → B → C → 0 splits, then Ext1(C,A) = 0

We now focus our attention back on tilting modules.

Lemma 5.14. If V is a U -module and λ ∈ Λ+ is such that no weight appearing in V is greater than
λ then any quotient

V
g−−−−→ W λ −−−−→ 0

splits.

Proof. Let v ∈ V be an homogeneous vector in the preimage of a highest weight vector in W λ under
g., then v is a vector of weight λ By the condition on λ, v is of maximal weight in V and hence is a
highest weight vector, so there is a map g′ : W λ → V sending a highest weight vector to v. Clearly
gg′ is nonzero on the highest weight vector and hence is a multiple of 1, so the sequence splits. �

Lemma 5.15. If A admits a Weyl filtration, and C admits a dual Weyl filtration then Ext1(A,C) = 0.

Proof. We will prove first the base case, then do induction on the filtration of A, and then induction
on the filtration of C.

• Ext1(W λ, (W γ)∗) = 0 for all λ, γ ∈ Λ+. Suppose first that λ 6< γ∗, where γ∗ (minus the image
of γ under the action of the longest element of the Weyl group) is the maximal highest weight
of (W γ)∗. Then if

0 → C → B → W λ → 0
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with C a submodule of (W γ)∗ then the result follows because the sequence splits by Lemma
5.14, since if a weight η in B were greater than λ, it would be in ker(B → W λ) = img((W γ)∗ →
B) and this would yield an element in (W γ)∗ of weight η and consequently we would have
λ < η < γ∗. On the other hand if λ < γ∗ and

0 → (W γ)∗ → B → W λ → 0

then dualizing
0 → (W λ)∗ → B∗ → W γ → 0

and again by Lemma 5.14 the result follows.
• Ext(A, (W γ)∗) = 0 if A admits a Weyl filtration. Inductively there is a short exact sequence

0 → W λ → A → A′ → 0

with A′ admitting a Weyl filtration and hence Ext1(A′, (W γ)∗) = 0. From the long exact
sequence (5)

→ [Ext1(W λ, (W γ)∗) = 0] → Ext1(A, (W γ)∗) → [0 = Ext1(A′, (W γ)∗)] →
from which it follows Ext(A, (W γ)∗) = 0.

• Ext(A,C) = 0 if A admits a Weyl filtration and C admits a dual Weyl filtration. Again
inductively we have a sequence

0 → (W γ)∗ → C → C ′ → 0

with C ′ admitting a dual Weyl filtration and hence Ext1(A,C) = 0. Again the long exact
sequence 6 and the previous two items give Ext(A,C) = 0.

�

The converse of this later Lemma also holds, in the sense stated in the following Lemma, for whose
proof in the totally analogue case of algebraic groups in finite characteristic, we refer to [Don93],
[Don81]:

Lemma 5.16. A highest weight module M has a Weyl filtration if and only if Ext1(M,B) = 0 for
every highest weight module B with a dual Weyl filtration. Similarly, M has a dual Weyl filtration if
and only if Ext1(A,M) = 0 for all A which have a Weyl filtration.

Corollary 5.17. A U−module T is tilting if and only if Ext1(T,M) = 0 = Ext1(N,T ) for every
highest weight module M admitting a dual Weyl filtration and every highest weight module N with a
Weyl filtration.

It is readily seen now that Proposition 5.10 follows by the additivity of the Ext functor.

Proposition 5.18. If Q, Q′ are indecomposable tilting modules over U each with a maximal vector
of weight λ, then Q ∼= Q′.

Proof. Suppose v is a weight λ vector in Q and v′ is a weight λ vector in Q′. Let f : W λ → Q and
f ′ : W λ → Q′ send a particular highest weight vector to v and v′ respectively. Let j be the smallest
integer such that Vj contains v in a Weyl filtration of Q. Then Vj/Vj−1

∼= W λ. By the maximality
of λ, Vj−1/Vj−2

∼= W γ with λ 6< γ. Now, W λ is a quotient of Vj and no weight appearing in Vj is
greater than λ, by maximality. Then, by Lemma 5.14 the map Vj → W λ has a section s and therefore
Vj = Vj−1 ⊕W λ. We can thus find a new V ′

j−1 = Vj−2 ⊕W λ (without changing Vj−2) such that the
filtration is still Weyl but v is now an element of Vj−1. Inductively, there exists a Weyl filtration with
the image of f being V1, which is to say there is a short exact sequence

0 −−−−→ W λ f−−−−→ Q −−−−→ N −−−−→ 0
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with N admitting a Weyl filtration. The long exact sequence (5) gives

0 → Hom(N,Q′) → Hom(Q,Q′) → Hom(W λ, Q′) → [0 = Ext1(N,Q′)] →
by Lemma 5.15, so that the sequence is in fact short exact, and f ′ ∈ Hom(W λ, Q′) must factor through
a map g′ : Q → Q′ which takes v to a nonzero multiple of v′. By the same argument with Q and Q′

reversed there is a map g : Q′ → Q taking v′ to a nonzero multiple of v. Thus gg′ is a map from Q to
itself taking v to a nonzero multiple of itself.
{(gg′)n[Q]}n∈N is a nested sequence of submodules and thus by finite-dimensionality must stabilize

on some submodule (gg′)M [Q] such that gg′ is onto when restricted to this submodule. So Q =
(gg′)M [Q]

⊕
ker((gg′)M ). Since Q is indecomposable one of these summands must be zero, and since

v ∈ (gg′)MQ one has Q = (gg′)M [Q] so gg′ is invertible. �

Corollary 5.19. For every λ ∈ Λ+, there exist a unique, up to isomorphism, indecomposable tilting
module with a maximal vector of weight λ. We call this tilting module Tλ

We will refer to the result of the following Corollary, as the Linkage Principle.

Corollary 5.20. A simple module with highest weight λ can occur as a composition factor in the Weyl
or indecomposable tilting module of highest weight γ only if λ ≤ γ and λ = σ · γ for some σ ∈ Wl.

Proof. If {Vi}n
i=0 is a Weyl filtration for Tγ , then we have seen that we may assume V1 = W λ, and

therefore λ ≤ γ and λ ∼ γ. �
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6. Quantum groups at roots of 1. The negligible modules

As in Section 3 we work with s a primitive lLth root of unity, and consider the quantum group
U †

s (g).

Definition 6.1. A U module V is called negligible if every intertwiner φ : V → V has quantum trace
0.

Proposition 6.2. An indecomposable tilting module is negligible if and only if its quantum trace is 0.

Proof. The algebra of intertwiners from an indecomposable module to itself consists of multiples of
the identity and nilpotent intertwiners (Fitting Lemma). Since nilpotent interwiners commute with
q2ρ, they have quantum trace zero. If the module has quantum dimension zero, then multiples of the
identity have quantum trace zero. �

Our pourpose is to describe the region in Λ+ where indecomposable negligible tilting modules can
be found.

Let M be the lattice of translations l′Λ̌r or l′Λr according to whether D divides l′ or not, so that
Wl = W n M.

Definition 6.3. We define the walls of the (translated) affine Weyl group to be the hyperplanes

wk,α =

{
{x ∈ h∗ , 〈x + ρ, α〉 = kl′} if D|l
{x ∈ h∗ , 〈x + ρ, α̌〉 = kl′} else,

for α ∈ Φ+.
Likewise the walls of W n l

2 Λ̌r are the hyperplanes 〈x + ρ, α〉 = kl/2.

Note that the translated action of Wl is generated by reflections σk,α about wk,α. If x is on the wall
wk,α and no other wall then the stabilizer of x in Wl is {1, σk,α}.

We call alcoves to the open regions into which these hyperplanes divide h∗, including the principal
alcove Cl, such that σ 7→ σ · Cl is a bijection between elements of Wl and alcoves. A wall wk,α of an
alcove σ ·Cl is called a lower wall if every point y in the interior satisfies 〈y + ρ, α〉 is greater than the
corresponding quantity for the points on the wall, and an upper wall otherwise.

Finally, let θ0 be θ if D divides l′ and φ otherwise. Notice that w1,θ0 is the unique upper wall of Cl.

Definition 6.4. Let Λl be the intersection of the interior of Cl with Λ:

Λl = {λ ∈ Λ+ | 〈λ + ρ, θ0〉 < l′}.

The following Theorem, whose proof we will give after several lemmas, characterizes the negligible
region.

Theorem 6.5. In U †
s (g), every Tλ with λ not in Λl is negligible, provided l′ ≥ Dȟ if D|l′ or l′ > h

otherwise.

Lemma 6.6. If σ ∈ W n l
2 Λ̌r, then qdim(λ) = (−1)σ qdim(σ ·λ) whenever λ, σ ·λ ∈ Λ+, where (−1)σ

represents the orientation of σ. In particular this is true of σ ∈ Wl.

Proof. By the Weyl formula (2), qdim(λ) is

qdim(λ) =
∏
β>0

(
q〈λ+ρ,β〉 − q−〈λ+ρ,β〉

)
/

(
q〈ρ,β〉 − q−〈ρ,β〉

)
.

In fact we can interpret qdim(λ) by this formula even when λ is not in Λ+. It suffices to prove the first
sentence when σ is a generator of the classical Weyl group σ0,αi and when σ is translation by lθ̌/2.
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Suppose first that σ is σ0,αi , then

qdim(σ · λ) =
∏
β>0

(
q〈σ·λ+ρ,β〉 − q−〈σ·λ+ρ,β〉

)
/

(
q〈ρ,β〉 − q−〈ρ,β〉

)
=

∏
β>0

(
q〈σαi (λ+ρ),β〉 − q〈−σαi (λ+ρ),β〉

)
/

(
q〈ρ,β〉 − q−〈ρ,β〉

)
=

∏
β>0

(
q〈λ+ρ,σαi (β)〉 − q−〈λ+ρ,σαi (β)〉

)
/

(
q〈ρ,β〉 − q−〈ρ,β〉

)
since σαi is a unipotent isometry. Notice that σαi permutes the positive roots of Φ except for αi which
it reverses ([Hum72][10.2]) so all factors above stay the same except for one which changes sign. Thus
the formula above gives − qdim(σ · λ) = (−1)σ qdim(λ).

Now suppose σ is translation by lθ̌/2. Then

qdim(σ · λ) =
∏
β>0

(
q〈σ·λ+ρ,β〉 − q−〈σ·λ+ρ,β〉

)
/

(
q〈ρ,β〉 − q−〈ρ,β〉

)
=

∏
β>0

(
q〈lθ̌/2+λ+ρ,β〉 − q−〈lθ̌/2+λ+ρ,β〉

)
/

(
q〈ρ,β〉 − q−〈ρ,β〉

)
=

∏
β>0

(
ql〈β,θ̌〉/2q〈λ+ρ,β〉 − q−l〈β,θ̌〉/2q−〈λ+ρ,β〉

)
/

(
q〈ρ,β〉 − q−〈ρ,β〉

)

=

∏
β>0

ql〈β,θ̌〉/2

 ∏
β>0

(
q〈λ+ρ,β〉 − q−〈λ+ρ,β〉

)
/

(
q〈ρ,β〉 − q−〈ρ,β〉

)
= ql〈ρ,θ̌〉 qdim(λ)

= qdim(λ).

Since the affine Weyl group is a subgroup of W n l
2 Λ̌r, the same result applies to the smaller

group. �

Corollary 6.7. As functionals on the center

qtrσ·λ = (−1)σ qtrλ

when σ ∈ Wl. As functionals on the image of quantum traces under Ψ the same is true when σ ∈
W n l

2 Λ̌r and σ · λ ∈ Λ.

Lemma 6.8. Let λ ∈ Λ+. Then qdim(λ) = 0 if and only if λ has nontrivial stabilizer in W n l
2 Λ̌r.

Proof. Of course if λ has nontrivial stabilizer than it lies on some wall so there is a reflection σ which
fixes λ and qdim(λ) = qdim(σ · λ) = − qdim(λ), so qdim(λ) = 0. λ has no stabilizer qdim(λ) is a
product of nonzero quantities, and thus nonzero. �

Proposition 6.9. Every Tλ where λ is on a wall of Wl is negligible.

Proof. By the Linkage Principle, Corollary 5.20, Tλ has a Weyl filtration all of whose entries are affine
Weyl equivalent to λ. If λ is on a wall, so are all weights in its affine orbit, and hence the quantum
dimension of Tλ, which is a sum of the quantum dimensions of the entries of the Weyl filtration, is
zero. Therefore Tλ is negligible.

�

Lemma 6.10.
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(1) If Wµ appears in a Weyl filtration of a tilting module T, and no µ′ in the translated Wl orbit
of µ with µ′ > µ appears in that filtration, then Tµ is a direct summand of T.

(2) If µ appears as a highest weight in the classical module W λ ⊗ W γ and no µ′ > µ in the
translated Wl orbit of µ appears in the classical module W λ′ ⊗W γ′ for λ′ ≤ λ and γ′ ≤ γ in
the translated Wl orbits of λ and γ respectively, then Tµ is a direct summand of Tλ ⊗ Tγ .

Proof.
(1) By the Linkage Principle, Corollary 5.20, Wµ appears in the filtration of an indecomposable

direct summand whose Weyl decomposition contains only modules with highest weights in the
translated Wl orbit of µ. By the assumption on µ the weight µ is maximal in this summand,
which must thus be isomorphic to Tµ by Proposition 5.18.

(2) Of course a factor of Wµ must appear in a filtration of Tλ ⊗ Tγ by Proposition 5.2 and Corol-
lary 5.3. If a larger µ′ in the orbit of µ also appeared in the filtration, it would appear in the
classical decomposition of some W λ′ ⊗ W γ′ with λ′ and γ′ in a Weyl filtration of Tλ and Tγ

respectively. This is ruled out by the assumption, so by part (a) we are done.
�

Lemma 6.11. Suppose λ, γ, λ+σ(γ) ∈ Λ+ for some σ in the classical Weyl group W, γ ∈ Λl, suppose
λ is on exactly one wall wk,α and λ + σ(γ) is in the interior of an alcove for which wk,α is a lower
wall. Then Tλ+σ(γ) is a direct summand of Tλ ⊗ Tγ .

Proof. By Lemma 6.10(b), we must check that λ + σ(γ) occurs as a highest weight in the classical
decomposition of W λ ⊗ W γ , and that nothing greater in its Wl orbit occurs as a highest weight in
classical W λ′ ⊗ W γ with λ′ Wl-equivalent to and less than λ (nothing is Wl-equivalent to and less
than γ because it is in the Weyl alcove).

For the first point, consider the classical Racah formula, Equation (11). Note that the result is true
unless λ + σ(γ) is the result of the translated action of a nontrivial element τ of the classical Weyl
group on λ + µ for some µ that occurs as a weight of W γ . It is easy to see that if λ, λ′ are in the Weyl
chamber then τ ·λ′ is strictly further from λ than λ′ for any τ ∈ W, so the length of µ must be strictly
greater than the length of σ(γ), which is not possible if µ is a weight of W γ .

Essentially the same argument applies for the second point. Since λ, λ+σ(γ) are in the same alcove,
any λ′, µ′ in the translated Wl orbits respectively of λ and λ + σ(γ) must be at least as far away from
each other as λ + σ(γ) and λ are, with equality only when µ′, λ′ are in the same alcove. But if µ′ is a
weight in classical W λ′ ⊗W γ , it must be at most ||γ|| away from λ′, with that distance only achieved
if µ′ − λ′ = σ′(γ) for some σ′ ∈ W. Thus if λ′ < λ, λ′, µ′ are in the orbits of λ and λ + σ(λ), and µ′ is
in W λ ⊗W γ , then µ′ is in the same alcove as λ′, so there is a single τ ∈ Wl such that τ · λ = λ′ and
τ · (λ + σ(λ)) = µ′. If µ′ > λ + σ(γ), then λ′ ≥ λ, so we must have λ = λ′. In this case τ = σn,α, the
reflection about the wall on which λ lies. since λ is on a lower wall this would make µ′ ≤ λ + σ(γ).
Thus by contradiction the result is proven. �

Now we are ready to give the proof of Theorem 6.5:

Proof. In light of Lemma 6.11 and Lemma 6.6, it suffices to find for each alcove other than Cl with
nonempty intersection with Λ+ a dominant weight λ on the interior of a lower wall of that alcove.
Then each µ in the interior of this alcove, since µ − λ is Weyl conjugate to something in Cl, would
have a Tµ as a summand in some Tλ⊗Tγ , and thus would be negligible. This requires that every such
alcove have a lower wall whose intersection with the weight lattice consists of dominant weights, and
that on the interior of each wall of the fundamental alcove there is a weight.

For the first, notice that every wall of an alcove is either a wall of the principal chamber for the
translated action of the classical Weyl group or is transverse to it, so every wall of every alcove either
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contains no dominant weights or all the weights in its interior are dominant. If the alcove intersects
Λ+ all of its walls that do not intersect Λ+ must be part of the walls of the chamber. If all the lower
walls of an alcove are walls of the chamber, the alcove clearly must be Cl.

For the second, if the the wall is w0,αi , one can readily check that −λi lies in the interior of the wall
(under the restriction on l). If the wall is w1,θ (D|l′ case), notice there is always a fundamental weight
λi such that 〈λi, θ̌〉 = 1 (Check [Hum72][p. 66]), so (l′ − ȟ/D)λi lies on w1,θ. Since it is a dominant
weight it lies on no other walls. If the wall is w1,φ (D6 |l′ case), we can find λi such that 〈λi, φ〉 = 1 for
Bn and Cn, and therefore (l′ − h)λi will do the trick. There remains only G2 and F4 to consider.

For G2, we check that 〈λ1, φ〉 = 2, 〈λ2, φ〉 = 3. Now every integer greater than 1 can be written
as a nonnegative integer combination of 2 and 3, and every number greater than 6 can be written so
with neither coefficient equal to zero. Thus if l > 6 = h there exists a positive integer combination of
λ1 and λ2 whose inner product with φ is l. Thus this integer combination minus ρ lies on wl,φ and no
other wall.

For F4, we check that 〈λi, φ〉 gives 2, 4, 3, 2 for i = 1 . . . 4. Again if l > 12− h, then l can be written
as a positive linear combination of these four numbers, and thus the same combination of λ1 through
λ4 gives a weight on the interior of wl,φ. �
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7. Quantum groups at roots of 1. The semisimple category of representations

Theorem 7.1. The category of modules of U †
A′(g) which are free and finite-dimensional over A′ is an

Abelian ribbon category.

Proof. Kassel in [Kas95][XI-XIV] defines ribbon categories and proves that the category of finite-
dimensional modules of a ribbon Hopf algebra over a field forms a ribbon category. One can easily
check that the proof goes through unchanged for topological Hopf algebras, and for Hopf algebras over
a p.i.d., provided we restrict to free modules (the freeness is required to define a map from the trivial
module to the tensor product of a module with its dual). �

Theorem 7.2. The category of all finite-dimensional U †
s (g)-modules is an Abelian ribbon category

enriched over Q[s], and the full subcategory of tilting modules is a ribbon subcategory.

Proof. Again this is a corollary of Kassel’s proof. A subcategory of a ribbon category is ribbon so long
as it is closed under tensor product and left duals, and this is the content of Corollary 5.8 (together
with the obvious fact that the set of tilting modules is closed under taking duals). �

We recall here the quotient construction of Mac Lane [Mac71][II.8]. Specifically, if D is a category
and f, g ∈ HomD(V,W ), we say that f ∼ g if, for all h ∈ HomD(W,V ), qtrV (hf) = qtrV (hg). Such
an equivalence relation defines a functor to a quotient category C such that f ∼ g implies f and g are
equal under the functor, and C is universal for this property.

Theorem 7.3. The category of tilting modules has a full ribbon functor to a semisimple ribbon category
C whose nonisomorphic simple objects are the image of the tilting modules with highest weight in Λl.

Proof. We construct the functor via the quotient construction described above. It is clear that the
image of any negligible tilting module is null, i.e. isomorphic to the null module {0}. Since qdim(λ) 6= 0
for all λ ∈ Λl, each such module is mapped to a non-null object and thus C is semisimple with these
as simple objects.

Because f ∼ g implies f⊗h ∼ g⊗h and h⊗f ∼ h⊗g for all h, C inherits a tensor product structure
making the functor a tensor functor. The image of the braiding morphisms, duality morphisms and
twist morphisms are braiding, duality and twist morphisms for C. �

We aim to describe the quotient category in more detail. The following results, based on the
previous two sections, will provide us an explicit description of the tilting modules in Λl.

Lemma 7.4. Let λ, µ ∈ Λl. Then, Wµ ⊂ T λ if and only if λ = µ.

Proof. We have already seen that W λ ⊂ T λ, as the first term in a Weyl filtration of T λ. But, the same
argument shows that if Wµ ⊂ T λ, we can construct a Weyl filtration starting on Wµ. Therefore, by
the Linkage principle Corollary 5.20 there is a σ ∈ Wl such that µ = σ · λ. Since λ, µ ∈ Cl and Wl

permutes the alcoves, we are left with σ = 1, λ = µ. �

Theorem 7.5. T λ = W λ, for λ ∈ Λl.

Proof. By the linkage principle Propostion 5.20 it is clear that the Weyl module W λ with highest
weight λ ∈ Λl is irreducible, since Λl is a fundamental domain of Wl. As T λ is irreducible, the result
follows. �

Now we address to the problem of describing the tensor structure on the quotient category.
For classical Lie algebras or generic q write

(7) W λ ⊗W γ ∼=
⊕

µ∈Λ+

Nµ
λ,γWµ
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where Nµ
λ,γ are nonnegative integers representing multiplicities.

For q an lth root of unity, if λ, γ ∈ Λl, then

W λ ⊗W γ ∼=
⊕
µ∈Λl

Mµ
λ,γWµ ⊕N

where N is a negligible tilting module and each Mµ
λ,γ is a nonnegative integer representing multiplicity,

since W λ,W γ are tilting modules. We define the truncated tensor product ⊗̂ on direct sums of modules
in Λl by extending the following to direct sums:

(8) W λ⊗̂W γ ∼=
⊕
µ∈Λl

Mµ
λ,γWµ.

Remark 7.6. Since each tilting module can be written uniquely as a direct sum M ⊕N, where M is
isomorphic to a direct sum of modules in Λl and N is negligible, we can define an isomorphic functor
from C to the full subcategory of the tilting module category consisting of modules isomorphic to a
direct sum of modules in Λl. Unfortunately this functor does not preserve the tensor product. However
this is a tensor isomorphism if the range category uses the truncated tensor product ⊗̂ for its monoidal
structure. This proves the truncated tensor product is a monoidal structure.

Our aim now is to derive a formula to compute the numbers Mµ
λ,γ .

Proposition 7.7.

(9) Mµ
λ,γ =

∑
σ ∈ Wl

σ · µ ∈ Λ+

(−1)σNσ·µ
λ,γ .

Proof. Over A,

qtrW λ⊗W γ =
∑

µ

Nµ
λ,γ qtrW µ

so in particular the same holds over Q[s]. As a functional on the center this is equal to∑
µ∈Λl

∑
σ ∈ Wl

σ · µ ∈ Λ+

(−1)σNσ·µ
λ,γ qtrµ .

On the other hand as a functional on the center

qtrW λ⊗W γ = qtrW λ⊗̂W γ =
∑
µ∈Λl

Mµ
λ,γ qtrµ .

Since {qtrµ}µ∈Λl are linearly independent as functionals on the center (Corollary 4.16), the result
follows. �

Corollary 7.8 (Quantum Racah Formula).

(10) Mµ
λ,γ =

∑
σ∈Wl

(−1)σ dim(W λ(σ · µ− γ))

where W λ(γ) is the subspace of W λ of weight γ.
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Proof. This result relies on the classical Racah formula, which says that

(11) Nµ
λ,γ =

∑
τ∈W

(−1)τ dim(W λ(τ · µ− γ)).

Recall that Λ+ is a fundamental domain for the (standard) action of W and that only the identity
fixes it. Suppose σ ∈ Wl takes the principal Weyl alcove Cl to some domain C. There is a unique
element τ ∈ W such that τ−1 of C intersects Λ+. Thus τ−1σ takes Λl to some fundamental domain
in Λ+. We conclude that every element of the affine Weyl group can be written uniquely as τη, where
τ ∈ W and η[Λl] ⊂ Λ+.

Note now that in our formula (9), the range of summation was the set {σ ∈ Wl, σ · µ ∈ Λ+}, for
a fixed µ ∈ Λl. If σ belongs to this set, then σ[Λl] ⊂ Λ+, since it preserves connected components
on the complement of the hyperplanes. In this case, the (τ, η) factorization described in the previous
paragraph is given by τ = 1, η = σ. Therefore,

Mµ
λ,γ =

∑
σ ∈ Wl

σ · µ ∈ Λ+

(−1)σNσ·µ
λ,γ =

∑
η[Λl]⊂Λ+

(−1)ηNη·µ
λ,γ

=
∑

η[Λl]⊂Λ+

(−1)η
∑
τ∈W

(−1)τ dim(W λ(τη · µ− γ)

=
∑

σ∈Wl

(−1)σ dim(W λ(σ · µ− γ).

�
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8. Quantum groups at roots of 1. Conclusion and applications

We have constructed a modular tensor category from a quotient of a certain subcategory of the cat-
egory of representations of the corresponding quantum group of a compact, simple, simply-connected
Lie group and each integer level. This process of ”semisimplification” has interest by itself, and has
been considered by many authors, including a generalization on [O05]. It is of interest to consider
which categoris can be made into semisimple ones, and relating the onformation from one to the other.
The semisimple category constructed is not always modular, and thus not always give invariants of
links and 3 manifolds. Nevertheless, this last issue is largely studied and Sawin, in [S05] describe
exactly the cases in which the S matrix is nondegerante.
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