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How to describe the compact Lie groups?

By exhibition: U(n), SU(n), O(n), SO(n), Spin(n), Sp(n),
the exceptional (compact) Lie groups,

the torus T,

finite groups.



By structure:
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Tannakian approach:

Spec

C(K) e (0(G), %) = O(G)

O(G) = ®verrrg ENd(V)* = algebra of polynomial functs. on G
(O(@G), *) is a »-Hopf algebra, * induced by the compact inv. w
C(K) = C*-algebra obtained by completion



O(G) is a commutative (complex) Hopf algebra.
H commutative Hopf alg. — H = O(G), G pro-algebraic grp.
e H = |J finitely generated Hopf subalgebras.

e H finitely generated commutative Hopf subalgebra
<~— H = O(G), G an algebraic group.

e In this case, G connected «— H domain.
e Also (G reductive <— H cosemisimple.

e H finitely generated commutative ——= H noetherian
& Krull dim H < oco.



Woronowicz CQG: (A, A)

(A, %) is a x-Hopf algebra , * POSi-
tive definite in a suitable sense, generated by a matrix coalgebra.

A = C*-algebra obtained by completion from A.

Example. O4(SL(2)) is a well-known Hopf algebra. For ¢ real
or imaginary it has two involutions: one is positive definite ~
(completion) Cu(SU(2))

Remark. (Vaksman-Soibelman). The spectrum of Cy(SU(2)) is
parametrized by the symplectic leaves of the Poisson structure
on SU(2) behind the quantization.



Woronowicz CQG: enough to have: a x-Hopf algebra (A,x),
where

A is a Hopf algebra generated by a matrix coalgebra
( < finitely generated <= : affine).

x IS positive definite in a suitable sense (compact involution).

Problem 1. Classify affine Hopf algebras, having a compact
involution x.



We split the problem in two:
Problem 2. Classify affine cosemisimple Hopf algebras.

Problem 3. Given an affine cosemisimple Hopf algebra, decide
when it has * positive definite.(not always!)
If S2 = id? (not even in this case!)

Remark. Two compact involutions are conjugated by a Hopf
algebra automorphism.



Some variations of Problem 2:

Problem 4. Classify affine cosemisimple Hopf algebras with
finite Gelfand-Kirillov dimension.

Remark. The right quantum analogue of algebraic group seems
to be affine with finite GK-dim (instead of noetherian).

Problem 5. Classify affine coss Hopf algs. with finite GK-dim
that are domains. (i.e. connected quantum groups).



Still on Problem 2:

Problem 6. Classify finite-dimensional cosemisimple Hopf al-
gebras.

Problem 7. Can affine cosemisimple Hopf algebras (with finite
GK-dim) be described in terms of those that are domains and
finite-dimensional ones?

Problem 8. Classify / characterize cosemisimple Hopf algebras

with finite GK-dim that are quotients of the CQG in the first
talk of the Seminar.
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Examples.

e Let G be a finitely generated group. Then the (cosemisimple)
group algebra CG has finite GK-dim <= G is nilpotent-by-finite
(Gromov, Milnor, Wolf, ...).

e Let G be a semisimple algebraic group, K its compact form.
The Hopf algebra O4u(G) (suitable ¢q) has a compact involution
~» (completion) Cq(K).

Remark. (Soibelman) The spectrum of Cy(K) is parametrized
by the symplectic leaves of the Poisson structure on K behind
the quantization.
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e There are also multiparametric versions: the Hopf algebra
O, r(G) (suitable g, F') has a compact involution ~ (completion)

Cy.r(K).

Remark. (Levendorskii-Soibelman) Again there is a relation be-
tween the spectrum of quF(K) and the symplectic leaves of the
Poisson structure on K.
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e (Ohn). Classification of cosemisimple Hopf algebras with the
same corepresentation theory of SL(2) and SL(3) (compact in-
volutions?).

Remark. H Hopf algebra, o : H ® H — C a 2-cocycle
~ Hy = same comultiplication, multiplication conjugated by o

e H cosemisimple Hopf alg., ¢ 2-cocycle — H, cosemisimple.
Problem 9. Classify all 2-cocycles ¢ on H = O(G) where G is

semisimple (Etingof, Gelaki).
When O(G)s admits a compact involution?
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Woronowicz CQG Tannakian formalism: enough to have a rigid
unitary tensor category generated by one object.

Problem 10. When a semisimple tensor category is unitary?
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Let U be a complex Hopf algebra, p: U — EndV a fin.-dim. rep.,
C, :=1Image p': (End V)* — U*, a subcoalgebra of U°.

Let C be a tensor subcategory of rep U (i.e. an abelian subcat-
egory closed under ® and ( )*) ~ A(C) = X (v p)ec Cp S U°.

Problem 11. Classify all (U,C) s.t. A(C) is cosemisimple.
When A(C) is a domain, resp. has finite GK?

Problem 12. Given an affine cosemisimple Hopf algebra H (do-
main, with finite GK-dim) does there exist (U,C) s.t. H ~ A(C)~
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A Hopf algebra U is reductive if rep U (the category of fin.-dim.
reps.) is semisimple.

Problem 13. Classify reductive FDR Hopf algebras.

All pointed Hopf algebras H with abelian G(H), do-
mains, with finite GK-dim and reductive are classified (A-Radford-
Schneider) ~ close to multiparameter quantum groups.

Finally, an algebraic group is a nonsingular affine variety.

Problem 14. Does an affine coss. Hopf alg. (domain, finite
GK-dim) satisfy cohomological properties indicating regularity?
(See surveys by Brown, Zhang, Goodearl .. .).
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