Some questions on Hopf algebras

(in relation with Compact Quantum Groups)

Nicolás Andruskiewitsch

Universidad de Córdoba, Argentina

The Real Quantum Group Seminar, June 9, 2020

How to describe the compact Lie groups?

By exhibition: U(n), SU(n), O(n), SO(n), Spin(n), Sp(n),

the exceptional (compact) Lie groups,

the torus T^n ,

finite groups.

By structure:

 ω compact involution:

existence from Lie algebra structure (Cartan).

Tannakian approach:

 $\mathcal{O}(G) = \bigoplus_{V \in \operatorname{Irr} \mathfrak{g}} \operatorname{End}(V)^* = \operatorname{algebra} \text{ of polynomial functs. on } G$ $(\mathcal{O}(G), *)$ is a *-Hopf algebra, * induced by the compact inv. ω $C(K) = C^*$ -algebra obtained by completion **Remark.** $\mathcal{O}(G)$ is a commutative (complex) Hopf algebra.

H commutative Hopf alg. \implies $H = \mathcal{O}(G)$, *G* pro-algebraic grp.

• $H = \bigcup$ finitely generated Hopf subalgebras.

• *H* finitely generated commutative Hopf subalgebra $\iff H = \mathcal{O}(G)$, *G* an algebraic group.

- In this case, G connected \iff H domain.
- Also G reductive $\iff H$ cosemisimple.
- *H* finitely generated commutative \implies *H* noetherian & Krull dim $H < \infty$.

Woronowicz CQG: (A, A)

 $(\mathcal{A}, *)$ is a *-Hopf algebra **not necessarily commutative**, * positive definite in a suitable sense, generated by a matrix coalgebra.

 $A = C^*$ -algebra obtained by completion from \mathcal{A} .

Example. $\mathcal{O}_q(SL(2))$ is a well-known Hopf algebra. For q real or imaginary it has two involutions: one is positive definite \rightsquigarrow (completion) $C_q(SU(2))$

Remark. (Vaksman-Soibelman). The spectrum of $C_q(SU(2))$ is parametrized by the symplectic leaves of the Poisson structure on SU(2) behind the quantization.

Woronowicz CQG: enough to have: a *-Hopf algebra $(\mathcal{A}, *)$, where

 \mathcal{A} is a Hopf algebra generated by a matrix coalgebra (\iff finitely generated \iff : affine).

* is positive definite in a suitable sense (compact involution).

Problem 1. Classify affine Hopf algebras, having a compact involution *.

We split the problem in two:

Problem 2. Classify affine cosemisimple Hopf algebras.

Problem 3. Given an affine cosemisimple Hopf algebra, decide when it has * positive definite.(not always!) If $S^2 = id$? (not even in this case!)

Remark. Two compact involutions are conjugated by a Hopf algebra automorphism.

Some variations of Problem 2:

Problem 4. Classify affine cosemisimple Hopf algebras with **finite Gelfand-Kirillov dimension**.

Remark. The right quantum analogue of algebraic group seems to be affine with finite GK-dim (instead of noetherian).

Problem 5. Classify affine coss Hopf algs. with finite GK-dim that are **domains**. (i.e. connected quantum groups).

Still on Problem 2:

Problem 6. Classify **finite-dimensional** cosemisimple Hopf algebras.

Problem 7. Can affine cosemisimple Hopf algebras (with finite GK-dim) be described in terms of those that are domains and finite-dimensional ones?

Problem 8. Classify / characterize cosemisimple Hopf algebras with finite GK-dim that are quotients of the CQG in the first talk of the Seminar.

Examples.

• Let G be a finitely generated group. Then the (cosemisimple) group algebra $\mathbb{C}G$ has finite GK-dim $\iff G$ is nilpotent-by-finite (Gromov, Milnor, Wolf, ...).

• Let G be a semisimple algebraic group, K its compact form. The Hopf algebra $\mathcal{O}_q(G)$ (suitable q) has a compact involution \rightsquigarrow (completion) $C_q(K)$.

Remark. (Soibelman) The spectrum of $C_q(K)$ is parametrized by the symplectic leaves of the Poisson structure on K behind the quantization.

• There are also multiparametric versions: the Hopf algebra $\mathcal{O}_{q,F}(G)$ (suitable q,F) has a compact involution \rightsquigarrow (completion) $C_{q,F}(K)$.

Remark. (Levendorskii-Soibelman) Again there is a relation between the spectrum of $C_{q,F}(K)$ and the symplectic leaves of the Poisson structure on K. • (Ohn). Classification of cosemisimple Hopf algebras with the same corepresentation theory of SL(2) and SL(3) (compact involutions?).

Remark. *H* Hopf algebra, $\sigma : H \otimes H \to \mathbb{C}$ a 2-cocycle $\rightsquigarrow H_{\sigma}$ = same comultiplication, multiplication conjugated by σ

• *H* cosemisimple Hopf alg., σ 2-cocycle \implies H_{σ} cosemisimple.

Problem 9. Classify all 2-cocycles σ on $H = \mathcal{O}(G)$ where G is semisimple (Etingof, Gelaki). When $\mathcal{O}(G)_{\sigma}$ admits a compact involution? Woronowicz CQG Tannakian formalism: enough to have a rigid unitary tensor category generated by one object.

Problem 10. When a semisimple tensor category is unitary?

Let U be a complex Hopf algebra, $\rho : U \to \text{End } V$ a fin.-dim. rep., $C_{\rho} := \text{Image } \rho^t : (\text{End } V)^* \to U^*$, a subcoalgebra of U° .

Let \mathcal{C} be a tensor subcategory of rep U (i.e. an abelian subcategory closed under \otimes and ()*) $\rightsquigarrow A(\mathcal{C}) = \sum_{(V,\rho) \in \mathcal{C}} C_{\rho} \leq U^{\circ}$.

Problem 11. Classify all (U, C) s.t. A(C) is cosemisimple. When A(C) is a domain, resp. has finite GK?

Problem 12. Given an affine cosemisimple Hopf algebra H (domain, with finite GK-dim) does there exist (U, C) s.t. $H \simeq A(C)$?

A Hopf algebra U is **reductive** if rep U (the category of fin.-dim. reps.) is semisimple.

Problem 13. Classify reductive FDR Hopf algebras.

Remark. All pointed Hopf algebras H with abelian G(H), domains, with finite GK-dim and *reductive* are classified (A-Radford-Schneider) \rightsquigarrow close to multiparameter quantum groups.

Finally, an algebraic group is a nonsingular affine variety.

Problem 14. Does an affine coss. Hopf alg. (domain, finite GK-dim) satisfy cohomological properties indicating regularity? (See surveys by Brown, Zhang, Goodearl ...).