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Abstract Nichols algebras, Hopf algebras in braided categories with distinguished
properties, were discovered several times. They appeared for the first time in the
thesis of W. Nichols [72], aimed to construct new examples of Hopf algebras. In
this same paper, the small quantum group uq(sl3), with q a primitive cubic root of
one, was introduced. Independently they arose in the paper [84] by Woronowicz as
the invariant part of his non-commutative differential calculus. Later there were two
unrelated attempts to characterize abstractly the positive part U+

q (g) of the quan-
tized enveloping algebra of a simple finite-dimensional Lie algebra g at a generic
parameter q. First, Lusztig showed in [64] that U+

q (g) can be defined through the
radical of a suitable invariant bilinear form. Second, Rosso interpreted U+

q (g) in
[74, 75] via quantum shuffles. This two viewpoints were conciliated later, as alter-
native definitions of the same notion of Nichols algebra. Other early appearances of
Nichols algebras are in [65, 77]. As observed in [17, 18], Nichols algebras are basic
invariants of pointed Hopf algebras, their study being crucial in the classification
program of Hopf algebras; see also [10]. More recently, they are the subject of an
intriguing proposal in Conformal Field Theory [79].
This is an introduction from scratch to the notion of Nichols algebra. I was invited
to give a mini-course of two lessons, 90 minutes each, at the Geometric, Algebraic
and Topological Methods for Quantum Field Theory, Villa de Leyva, Colombia,
in July 2015. The theme was Nichols algebras, that requires several preliminaries
and some experience to be appreciated; a selection of the ideas to be presented was
necessary. These notes intend to preserve the spirit of the course, discussing some
motivational background material in Section 1, then dealing with braided vector
spaces and braided tensor categories in Section 2, arriving at last to the definition
and main calculation tools of Nichols algebras in Section 3. I hope that the various
Examples and Exercises scattered through the text would serve the reader to absorb
the beautiful concept of Nichols algebra and its many facets. Section 4 is a survey
of the main examples of, and results on, Nichols algebras that I am aware of; here
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the pace is faster and the precise formulation of some statements is referred to the
literature. I apologize in advance for any possible omission. This Section has inter-
section with, and is an update of, the surveys [1, 19, 2], to which I refer for futher
information.

1 Preliminaries

1.1 Conventions

We assume the conventions N= {1,2,3, . . .}, N0 =N∪{0}, N≥2 =N−{1}, etc. If
k < θ ∈ N0, then we denote Ik,θ = {n ∈ N0 : k ≤ n≤ θ} and Iθ = I1,θ .

If N ∈ N, then GN denotes the group of N-roots of unity in k, while G′N is the
subset of primitive roots of order N. Also G∞ =

⋃
N∈NGN , G′∞ =G∞−{1}.

If V is a vector space, then V ∗ := homk(V,k) and 〈 , 〉 : V ∗×V → k is the evalu-
ation.

The finite field with q elements is denoted Fq.
We abbreviate W ≤ V for W is a subobject of V , where subobject means sub-

module, subgroup, subspace, subrack, according to the context.

1.2 Groups

We fix a field k; later we shall assume that k is algebraically closed and has charac-
teristic 0. We expect that the reader is familiar with the notions of group, module and
representation; we use indistinctly the languages of modules and representations. As
customary, we denote by GL(V ) the group of bijective linear transformations of a
vector space V onto itself. We remind some basic definitions:

• A module is simple if it has exactly two submodules, 0 and itself (thus, it is
different from 0). In the representation-theoretic language, one says irreducible
instead of simple.

• A module is semisimple if it is a direct sum of simple submodules. In the repre-
sentation theory, completely reducible is the translation of semisimple.

Let G be a group. We denote by kG the group algebra of G, with the canonical
basis (eg)g∈G. Thus, there is a bijective correspondence between representations of
G and of kG. We observe that kG can be identified with (a subspace of) the linear
dual of the vector space of functions from G to k, where eg( f ) = f (g), for f : G→ k
and g ∈ G.

We denote by IrrG the set of classes of simple G-modules, up to isomorphism.
For instance, ε ∈ IrrG is the class of the trivial representation, the 1-dimensional
vector space where every g ∈ G acts by 1. If ξ ∈ IrrG and V is a G-module, then
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Vξ := ∑
W≤V :W∈ξ

W

is the isotypical component of V of type ξ . Particularly, V G := Vε , the isotypical
component of trivial type, is the submodule of G-invariants of V .

Example 1. Let U and V be G-modules. Then Hom(V,W ) is a G-module with the
action g ·T = gT g−1 and HomG(V,W ) = Hom(V,W )G.

Theorem 1. (Maschke). Let G be a finite group. Then the following are equivalent:

(1) The characteristic of k does not divide |G|.
(2) Every finite-dimensional representation of G is completely reducible.

Assume that (1) holds. Let V be a finite-dimensional G-module. The action of∫
G
=

1
|G| ∑g∈G

eg ∈ kG (1)

on V is a G-morphism and a projector V → V G. (If k = C, then
∫

G is a normalized
Haar measure on the discrete group G). To prove (2), it is enough to show, arguing
recursively, that any W ≤ V admits a complement U that is also a G-submodule.
So, consider p ∈ Hom(V,U) a projector onto U ; then q :=

∫
G ·p ∈ HomG(V,U) is a

projector onto U and kerq is the desired complement.
To prove (1), it is enough to assume that the representation of G on kG by left

multiplication is completely reducible. Then the kernel of the projection p : kG→G,
eg 7→ 1 for all g ∈ G, admits a complement U that is also a G-submodule. It turns
out that U has to be the span of x = ∑g∈G eg; since p(x) = |G|, this could not be 0.

Remark 1. There is a natural notion of integral in finite-dimensional Hopf alge-
bras that permits a generalization of the classical Maschke Theorem. This can be
extended further to Hopf algebras with arbitrary dimension, but the complete re-
ducibility in question is of comodules. See e.g. [78] for details.

Let X be a set. We denote by SX the group of bijections from X onto itself, with
multiplication being the composition. In particular, Sn is the symmetric group on n
letters, i.e. Sn = SIn , where In := {1, . . . ,n}. Let τi be the the transposition (i i+1).
Then Sn is generated by the τi, with i ∈ In−1, subject to the defining relations

τ
2
i = e, i ∈ In−1, (2)

τiτ j = τ jτi, |i− j| ≥ 2, (3)
τiτ jτi = τ jτiτ j, |i− j|= 1. (4)

The group Sn together with S = {τi, i∈ In−1} is a Coxeter group. In particular, there
is a length function ` : Sn→N0, measuring the minimum of the possible expressions
of an element as product of τi’s. Thus we have the sign representation sgn : Sn→ k×,
w 7→ (−1)`(w), w ∈ Sn.
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E. Artin introduced in 1926 the braid group Bn, that has important applications
in various areas and plays a central role in our story. Concretely, Bn is the group
generated by σi, i ∈ In−1, with defining relations (3) and (4) (with σ instead of τ).
By definition, there is a surjective group homomorphism π : Bn → Sn, σi 7→ τi; it
admits a set-theoretical section M : Sn → Bn (i. e., not a group homomorphism),
sometimes called the Matsumoto section, determined by

M(τi) = σi, i ∈ In−1,

M(uw) = M(u)M(w), if `(uw) = `(u)+ `(w).
(5)

1.3 The tensor algebra

We denote by τ : V ⊗W →W ⊗V the usual flip v⊗w 7→ w⊗ v between the tensor
products of vector spaces V and W .

We expect that the reader is familiar with the notions of associative, commutative
and Lie algebra. The ideal, respectively the subalgebra, of an algebra A generated
by a subset S is denoted by 〈S〉, respectively by k〈S〉. A graded vector space is a
vector space with a fixed grading V =⊕n∈N0V n; it is locally finite if dimV n < ∞ for
all n ∈ N0. In such case, its Hilbert-Poincaré series is

HV = ∑
n∈N0

dimV ntn ∈ Z[[t]].

The graded dual of a locally finite graded vector space V =⊕n∈N0V n is

V ? =⊕n∈N0V ?n, V ?n = homk(V n,k). (6)

A graded algebra is a graded vector space A = ⊕n∈N0An with an algebra structure
such that AnAm ⊂ An+m.

We also assume that the reader knows the basics of the theory of categories. Let
Veck, Assock, Commk, Liek, be the categories of vector spaces, associative algebras,
associative and commutative algebras, Lie algebras, over k, respectively.

Let V be a vector space. As customary, we set T 0(V ) = k, T n+1(V ) =V⊗T n(V ),
n≥ 0, and T (V ) =⊕n≥0T n(V ). We abridge

v1v2 . . .vn := v1⊗ v2⊗·· ·⊗ vn, v1,v2, . . . ,vn ∈V.

The natural identifications

µm,n : T m(V )⊗T n(V )' T m+n(V )

patch together to an associative product µ : T (V )⊗T (V )→ T (V ), giving rise to the
tensor algebra T (V ). This is also the free algebra on V , meaning that it satisfies the
universal property:
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(i) There is a linear map ι : V → T (V ), the inclusion V = T 1(V ) ↪→ T (V ).

(ii) Every linear map ϕ : V → A, where A is an associative algebra, extends to a
morphism of algebras Φ : T (V )→ A such that Φ ◦ ι = ϕ .

In categorical terms, this means that we have a functor T : Veck → Assock that is
left adjoint to the forgetful functor Assock→ Veck.

Among the plentiful applications of the tensor algebra, let us single out the con-
struction of the enveloping algebra of a Lie algebra g, as the quotient

U(g) := T (g)/〈xy− yx− [x,y] : x,y ∈ g〉.

Again, this is a functor U : Liek → Assock left adjoint to the forgetful functor
Assock → Liek; indeed, every associative algebra becames a Lie algebra with the
commutator [a,b] = ab−ba.

Remark 2. Let V be a vector space. By the universal property, the linear map δ : V →
T (V )⊗T (V ), δ (v) = v⊗1+1⊗v, v∈V , extends to ∆ : T (V )→ T (V )⊗T (V ); then
T (V ) becomes a Hopf algebra. It is cocommutative, i. e. ∆ = τ∆ .

Remark 3. Let g be a Lie algebra. The linear map δ : g→U(g)⊗U(g), δ (v) = v⊗
1+1⊗v, v∈ g, extends to ∆ :U(g)→U(g)⊗U(g), so that U(g) is a cocommutative
Hopf algebra.

Exercise 1. Let V be a vector space and
L(V ) := Prim T (V ) = {x ∈ T (V ) : ∆(x) = x⊗1+1⊗ x}

1. Prim T (V ) is a Lie subalgebra of T (V ) (this is valid for every Hopf algebra).
2. T (V )'U(L(V )).
3. L(V ) is the free Lie algebra on V . This provides the left adjoint to the forgetful

functor Liek→ Veck.

1.4 The symmetric algebra

Let V be a vector space. The symmetric algebra S(V ) is the free commutative algebra
on V , meaning that it satisfies the analogous universal property as above but with
respect to linear maps from V to commutative algebras. Categorically, it gives a
functor S : Veck → Commk left adjoint to the forgetful functor Commk → Veck.
Concretely,

S(V ) := T (V )/〈xy− yx : x,y ∈V 〉=⊕n≥0Sn(V ),

so that S(V ) is the enveloping algebra of V with the zero bracket. In passing, we
mention also the exterior algebra

Λ(V ) := T (V )/〈xy+ yx : x,y ∈V 〉=⊕n≥0Λ
n(V ).
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A quadratic algebra is one of the form T (W )/〈J〉, where W is a vector space and
J ≤ T 2(W ) (recall our convention in §1.1, this means that J is a suspace of T 2(W )).

Both S(V ) and Λ(V ) are quadratic algebras, of the form T (V )/〈J∓〉 respectively,
where J± = {xy± yx : x,y ∈V}.

The symmetric group Sn acts on T n(V ) by w ·v1 . . .vn = vw(1) . . .vw(n), for n ∈N0

(where S0 = S1 are trivial). In particular, the isotypic components of T 2(V ) with
respect to the action of S2 ' Z/2 are J+ for the trivial, respectively J− for the sign,
representation. It turns out that the n-th homogeneous components of the ideals 〈J±〉
are Sn-submodules of T n(V ). Hence, Sn(V ) and Λ n(V ) are Sn-modules, and it is not
difficult to see that the former is a trivial module.

Assume now that char k = 0. Then the various Sn-modules T n(V ) are all com-
pletely reducible and we may consider S̃(V ) =⊕n≥0T n(V )Sn .

Proposition 1. The natural projection T (V )→ S(V ) induces a linear isomorphism
S̃(V )' S(V ). Consequently, cf. (1),

ker(T (V )→ S(V )) = 〈J−〉=⊕n≥2 ker
∫
Sn

. (7)

Similarly, the polynomial algebra k[X1, . . . ,Xd ] is the free commutative algebra
on the set Id . Thus, if dimV = d, then every choice of a basis in V induces an
isomorphism of algebras S(V )' k[X1, . . . ,Xd ].

1.5 Coalgebras and Hopf algebras

We expect that the reader has acquaintance with the notions of coalgebra, bialgebra
and Hopf algebra. There are several books and monographs to be initiated on these
topics; some of them are [25, 66, 71, 73, 78, 80]. The reader willing to learn these
matters is advised to acquire first some experience with groups and Lie algebras.

As usual, the comultiplication of a coalgebra C is denoted by ∆ , for which the
Sweedler notation is ∆(c) = c(1)⊗ c(2), and the counit by ε . If D,E are subspaces
of the coalgebra C, then

D∧E := {c ∈C : ∆(c) ∈ D⊗C+C⊗E}.

Coalgebras and comodules have a distinguished feature: they are locally finite,
i.e. they are union of their finite-dimensional subcoalgebras, respectively subcomod-
ules. A coalgebra without proper subcoalgebras (remember that 0 is not a coalgebra)
is called simple; thus a simple coalgebra is finite-dimensional. If k is algebraically
closed, then every simple coalgebra is the dual of a matrix algebra.

The coradical of a coalgebra C is the sum of all its simple subcoalgebras, denoted
C0; it is analogous to the socle of a module (in fact it is the socle of a coalgebra as
a comodule over itself). By a standard argument, the coradical is a direct sum of
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simple coalgebras. A coalgebra is cosemisimple if it coincides with its coradical,
i.e. if it is a (direct) sum of simple subcoalgebras. A one-dimensional coalgebra is
of course simple; a coalgebra is pointed if its coradical is a (direct) sum of one-
dimensional coalgebras. Basic examples are:

• The group algebra H = kG of a group G, with ∆(g) = g⊗g, g∈G. Here H0 =H.
• The enveloping algebra U(g) of a Lie algebra g, with ∆(x) = x⊗1+1⊗x, x ∈ g.

Here H0 = k.

The study of pointed Hopf algebras started in the 70’s by Taft, Wilson, Radford,
Nichols and others, being those with the simplest possible coradical. Some examples
beyond group algebras and enveloping algebras were discovered. In the early 80’s,
Reshetikhin, Kulish and Sklyanin introduced the Hopf algebra nowadays known as
Uq(sl2) and soon after that, Drinfeld and Jimbo defined the quantized enveloping
algebras Uq(g) for every finite-dimensional simple Lie algebra g; these are pointed
Hopf algebras. Finite-dimensional pointed Hopf algebras related to Uq(g) appeared
in the work of Lusztig [62, 63, 64]. The ICM report [28] made a deep impact in
the area of Hopf algebras–and in many others. After some time the classification
program of finite-dimensional pointed Hopf algebras was launched [17, 18], see the
survey [19], and the classification under some hypothesis in [20]. For more refer-
ences and details see [2].

The notions of filtration and grading are ubiquitous in algebra. For instance, it
is useful for many purposes to filter an algebra by powers of an ideal. A coalgebra
filtration of a coalgebra C is a family of subspaces (Dn)n∈N0 such that

Dn ⊆ Dn+1, C =
⋃

N∈N0

Dn, ∆(Dn)⊆ ∑
0≤i≤n

Di⊗Dn−i.

Here the first condition says that the filtration is ascending and the second that it is
exhaustive. The coradical filtration is defined recursively by

C0 = the coradical, Cn+1 =Cn∧C0.

Exercise 2. 1. Let G =⊕n∈N0G
n be a graded coalgebra, i.e.

∆(G n)⊆⊕0≤i≤nG
i⊗G n−i.

Let Dn := ⊕0≤i≤nG
i. Prove that (Dn)n∈N0 is a coalgebra filtration. We say that

G =⊕n∈N0G
n is coradically graded if Dn = Gn (in words, the coradical filtration

coincides with the filtration associated to the grading).
Let A be a finite-dimensional algebra and C = A∗ the dual coalgebra (with the

transpose of the multiplication and the unit). If I ⊆ A, then we set

I⊥ := {c ∈C : 〈c,x〉= 0 for all x ∈ I}.

2. I ⊆ A is a two-sided ideal if and only if I⊥ ⊆C is a subcoalgebra.
3. If I,J ⊆ A, then (IJ)⊥ = I⊥∧ J⊥.
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4. Let (In)n∈N be a family of subspaces of A and Dn := I⊥n+1. Then (In)n∈N is a
descending algebra filtration if and only if (Dn)n∈N0 is a coalgebra filtration.
Prove that gr C =⊕n∈N0Dn/Dn−1 is a graded coalgebra (where D−1 = 0).

5. Let J be the Jacobson radical of A. Then C0 = J⊥. Conclude that Cn+1 = (Jn)⊥

and that the coradical filtration is a coalgebra filtration. Show that gr C, with
respect to the coradical filtration, is coradically graded.

6. Let H be a Hopf algebra with bijective antipode S . Assume that the coradical
H0 is a subalgebra. Prove that H0 is a Hopf subalgebra and that the coradical
filtration is an ascending filtration of algebras, each term being stable under the
antipode. Conclude that gr H is a graded Hopf algebra.

7. If C is coalgebra, then G(C) = {x∈C−0 : ∆(x) = x⊗x} is linearly independent.
If H is a Hopf algebra, then G(H) is a group with the multiplication of H and
inverse x−1 = S (x), x ∈ G(H).

8. The coradical of a pointed Hopf algebra H is a Hopf subalgebra: H0 ' kG(H).

1.6 The tensor coalgebra

Let V be a vector space. We shall need later the tensor coalgebra T c(V ); this is the
vector space T (V ) with the comultiplication ∆ given by

∆(v1v2 . . .vn) := ∑
j∈In

v1 . . .v j⊗ v j+1 . . .vn, v1, . . . ,vn ∈V. (8)

Clearly ∆(v) = v⊗1+1⊗v for v∈V , but ∆(v1v2) = v1v2⊗1+v1⊗v2+1⊗v1v2 6=
∆(v1)∆(v2), thus ∆ 6= ∆ from Remark 2.

Remark 4. The coalgebra T c(V ) is dual to the tensor algebra T (V ∗), but it is not the
cofree coalgebra on V (cofree means universal with respect to maps C→ V , C a
coalgebra). The construction of the cofree coalgebra is more delicate [80].

1.7 Gelfand-Kirillov dimension

The notion of dimension pervades all mathematics. In the dictionary affine alge-
braic geometry–commutative algebra, the Krull dimension is the translation of the
topological dimension. A guiding principle in non-commutative algebra is to adapt
ideas and tools from geometry; in this sense, there are different attempts to general-
ize the Krull dimension. Perhaps the best adapted is the Gelfand-Kirillov dimension,
GK-dim for short; a comprehensive account is [59].

Let A be a finitely generated k-algebra. Let V be a finite-dimensional subspace
of A such that A = k〈V 〉. Set
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V j =V ·V · · ·V︸ ︷︷ ︸
j times

, An = ∑
0≤ j≤n

V j

The Gelfand-Kirillov dimension is defined as

GK-dimA := limn→∞ logn dimAn. (9)

It can be shown that GK-dimA does not depend on the choice of V [59, 1.1]. When
A is not finitely generated, the definition is extended as follows:

GK-dimA := sup{GK-dimB|B finitely generated subalgebra of A}. (10)

Example 2. Let V be a vector space of dimension 1 < d ∈ N and A = T (V ). Then

dimAn = ∑
0≤ j≤n

dimT j(V ) = ∑
0≤ j≤n

d j =
dn+1−1

d−1
=⇒ logn dimAn ∼

n
logn

,

hence GK-dimT (V ) = ∞.

Exercise 3. Let A be a finitely generated k-algebra and V a finite-dimensional sub-
space such that A = k〈V 〉. Show that

GK-dimA = inf{r ∈ R : dimV j ≤ c jr for some c ∈ R,∀ j ∈ N}
= inf{r ∈ R : dimV j ≤ jr for large j}.

Exercise 4. Let V be a vector space of dimension d ∈ N and A = S(V ). Let
k[X1, . . . ,Xd ]

j ' S j(V ) be the subspace of homogeneous polynomials of degree j.

1. Prove that dimS j(V ) =
(d+ j−1

j

)
(for instance, argue recursively and use that

S j(V )' k[X1, . . . ,Xd−1]
j−1 ·Xd⊕k[X1, . . . ,Xd−1]

j).
2. Prove that dimAn = ∑0≤ j≤n dimS j(V ) =

(d+n
n

)
(e.g., use the linear isomorphism

k[X1, . . . ,Xd+1]
n→⊕0≤ j≤nk[X1, . . . ,Xd ]

j, f (X1, . . . ,Xd+1) 7→ f (X1, . . . ,Xd ,1)).
3. Since

(d+n
n

)
is a polynomial of degree d in n, conclude that GK-dimS(V ) = d.

4. If dimV = ∞, then GK-dimS(V ) = ∞.

Exercise 5. Let A be a finitely generated algebra. Then GK-dimA = 0 if and only if
A is finite-dimensional.

If A is arbitrary, then GK-dimA = 0 if and only if every finitely generated subal-
gebra is finite-dimensional. For example, if dimV = ∞, then GK-dimΛ(V ) = 0.

Example 3. If A is a finitely generated commutative algebra, then

GK-dimA = KrulldimA = dimSpecA.

Here SpecA is the Zariski spectrum of A; it could be replaced by its subset of closed
points, that is the affine variety defined by A. In other words, the Gelfand-Kirillov
dimension coincides with the usual dimension in the commutative case. Therefore,
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if A is a commutative algebra, then GK-dimA∈N0∪∞. However there are examples
of non-commutative algebras A with GK-dimA = r for any r ∈ [2,∞). But there is
no algebra A with GK-dimA = r for any r ∈ (1,2). See [59].

Example 4. A finitely generated group G is virtually nilpotent or nilpotent-by-finite
if it has a normal nilpotent subgroup N such that G/N is finite.

• J.A. Wolf, J. Milnor and others showed that the group algebra of a virtually nilpo-
tent group has finite Gelfand-Kirillov dimension (in an equivalent formulation).

• A celebrated Theorem of Gromov establishes the converse: if G is a finitely gen-
erated group and GK-dimkG < ∞ then G is virtually nilpotent.

Example 5. Let A be an algebra with an ascending algebra filtration. Then

GK-dimA≥ GK-dimgrA;

also, the equality holds if grA is finitely generated. Let g be a Lie algebra; we con-
clude that GK-dimU(g) = dimg.

2 Braided tensor categories

We first discuss the notion of braided vector space, the input of the definition of
Nichols algebra, and illustrate it through various examples. Then we review braided
tensor categories and the example of our main interest, Yetter-Drinfeld modules.

2.1 Braided vector spaces

The Yang-Baxter equation, introduced independently by C. N. Yang in 1968, and
R. J. Baxter in 1971 in statistical mechanics, has important applications in various
areas of mathematics. Here we consider the equivalent braid equation

(c⊗ id)(id⊗c)(c⊗ id) = (id⊗c)(c⊗ id)(id⊗c), c ∈ GL(V ⊗V ), (11)

where V is a vector space. Solutions of the braid equation (11) are the input for
the definition of Nichols algebras. Following the common usage, we say that a pair
(V,c), with c satisfying (11), is a braided vector space.

We first justify the adjective braided: we claim that the assignment

σ j 7→ idT ( j−1)(V )⊗c⊗ idT (n− j−1)(V ) (12)

gives rise to a representation ρn : Bn → GL(T n(V )), for every n ≥ 2. Indeed, (11)
insures that (4) holds, while (3) is free from the definition. The applications of the
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Yang-Baxter equation mostly arise from these representations. For us, they will use-
ful to present Nichols algebras. But let us discuss before some classes of examples
of braided vector spaces.

2.1.1 Symmetries

Here chark 6= 2. A symmetry, is a solution c of (11) such that c2 = id. The name
alludes to the fact that ρn factorizes through the representation ρ̃n : Sn→GL(T n(V ))
given by

τ j 7→ idT ( j−1)(V )⊗c⊗ idT (n− j−1)(V ), j ∈ In−1.

Prominent examples of symmetries are:

◦ The transposition, i.e. the usual flip τ : V ⊗V →V ⊗V , v⊗w 7→ w⊗ v.

◦ The super transposition of a super vector space V = V0⊕V1; i.e. the linear map
sτ : V ⊗V →V ⊗V , determined by v⊗w 7→ (−1)i jw⊗ v for v ∈Vi, w ∈Vj.

Clearly, we have the decomposition

T 2(V ) = ker(id+c)⊕ker(id−c).

2.1.2 Hecke type

Here chark = 0. Let q ∈ k×, q 6= −1. The Hecke algebra of parameter q is the
associative algebra Hn(q) generated by (Ti)i∈In−1 with relations (4) (with T instead
of τ) and

(Ti−q id)(Ti + id) = 0, i ∈ In−1. (13)

A braided vector space (V,c) is of Hecke type with label q if

(c−q id)(c+ id) = 0. (14)

The name refers to the fact that in this case, ρn factorizes through the representa-
tion ρ̃n : Hn(q)→ GL(T n(V )) given by Tj 7→ idT ( j−1)(V )⊗c⊗ idT (n− j−1)(V ), j ∈ In−1.

2.1.3 Diagonal type

We fix θ ∈N and abbreviate I= Iθ . Let q= (qi j)∈ (k×)I×I and let V a vector space
with a basis (xi)i∈I. We define cq ∈ GL(T 2(V )) by

cq(xi⊗ x j) = qi j x j⊗ xi, i, j ∈ I, (15)
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Then cq satisfies (11). When qi j = 1, we recover the transposition τ , and the super
transposition also has this shape. By technical reasons, we say that a braided vector
space (V,c) with c = cq as in (15) is of diagonal type if in addition

qii 6= 1, i ∈ I. (16)

Instead of the matrix q, we also give the associated Dynkin diagram1, that has

• set of vertices I, the i-th vertex being labelled with qii;
• an edge between the vertices i and j only if q̃i j := qi jq ji 6= 1, in which case the

edge is decorated by q̃i j.

Notice that we loose some information, but this is justified by Example 29.

We introduce the important subclass of Cartan type. Let A = (ai j) ∈ ZI×I be a
generalized Cartan matrix, that is, it satisfies

aii = 2, i ∈ I; (17)
ai j ≤ 0, i 6= j ∈ I; (18)
ai j = 0 ⇐⇒ a ji = 0, i 6= j ∈ I; . (19)

These are the input for the definition of Kac-Moody algebras [57]; among them,
there are the celebrated Cartan matrices classifying finite-dimensional Lie algebras.
Let (V,c) be a braided vector space of diagonal type with respect to a matrix q =
(qi j) ∈ (k×)I×I. We say that (V,c) is of Cartan type (with matrix A) if

qi jq ji = q
ai j
ii , i 6= j ∈ I. (20)

Suppose that qii is a root of 1 of order Ni, for all i. Observe that if the matrix q
satisfies (20) for some integers ai j, then we get a generalized Cartan matrix by taking
aii = 2 for all i and normalizing the ai j’s by

−Ni < ai j ≤ 0, i 6= j ∈ I.

2.1.4 Triangular type

Let (V,c) be a braided vector space with a basis (xi)i∈I. Let Vj be the subspace
generated by (xi)i∈I j . We say that (V,c) is of triangular type if there exists q =

(qi j) ∈ (k×)I×I such that

c(xi⊗ x j) ∈ qi j x j⊗ xi +Vj−1⊗V, i, j ∈ I. (21)

Example 6. Let ε ∈ k× and ` ∈ N≥2. The block V (ε, `) is the braided vector space
with a basis (xi)i∈I` such that for i, j ∈ I` = {1,2, . . . , `}, 1 < j:

1 Actually this is called a generalized Dynkin diagram but we omit generalized.
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c(xi⊗ x1) = εx1⊗ xi, c(xi⊗ x j) = (εx j + x j−1)⊗ xi. (22)

Later on, we call V (ε,2) and ε-block; this is justified by Theorem 7.

2.1.5 Rack type

To define this class of braided vector spaces, we need to discuss the notion of rack,
that is an abstract version of the conjugation in a group; see [15] for more informa-
tion. We start with the general notion of braided set; we leave to the reader to fill in
the details of the proofs.

The braid equation (11) makes sense in any monoidal category, a basic example
being the category of sets with Cartesian product as the tensor one. So, a braided set
is a pair (X ,c), where X 6= /0 is a set and c : X×X → X×X is a bijection such that

(c× id)(id×c)(c× id) = (id×c)(c× id)(id×c). (23)

Also, c is called a set-theoretical solution of the quantum Yang-Baxter equation; it
has been studied in many papers [30, 61, 32] etc.

Notice that any braided set (X ,c) gives rise to a braided vector space (kX ,c)
by linearization; namely kX is the vector space with basis (ex)x∈X and c extends
linearly the map defined on the basis by c.

Let X be a non-empty set and c : X×X→X×X be a bijection. If p1, p2 : X×X→
X are the standard projections, then we write

x. y = p1c(x,y), x/ y = p2c(x,y), so that c(x,y) = (x. y,x/ y), x,y ∈ X .

Clearly, to give . and / is equivalent to give c.

Exercise 6. 1. Find necessary and sufficient conditions on the pair (.,/) so that c
satisfies (23).

2. Let q : X×X → k× be a function denoted (x,y) 7→ qx,y and let

cq : kX⊗kX → kX⊗kX , cq(ex⊗ ey) = qx,yex.y⊗ ex/y, x,y ∈ X . (24)

Prove that if cq satisfies (11), then (X ,c) is a braided set.
3. Let q be as in the previous item. Assume that (X ,c) is a braided set. Find neces-

sary and sufficient conditions on q so that cq satisfies (11).

The definition of rack arises by considering the trivial /, i.e. x / y = x for all
x,y ∈ X . That is, consider . : X ×X → X and correspondingly c : X ×X → X ×X
given by c(x,y) = (x. y,x), x,y ∈ X . Then c is bijective if and only if

the map φx = x. is bijective for any x ∈ X (25)

while c satisfies (23) if and only if
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x. (y. z) = (x. y). (x. z) for all x,y,z ∈ X . (26)

We say that (X ,.) is a rack if (25) and (26) hold. Morphisms of racks and sub-
racks are defined as usual; AutX denotes the group of rack automorphisms of X .

Exercise 7. Let X be a non-empty set and . : X×X → X a function.

1. Let q : X×X → k× be a function, (x,y) 7→ qx,y, and let cq : kX⊗kX → kX⊗kX
be given by

cq(ex⊗ ey) = qx,yex.y⊗ ex, x,y ∈ X .

Prove that (kX ,cq) is a braided vector space if and only if (X ,.) is a rack and

qx,y.zqy,z = qx.y,x.zqx,z, ∀x,y,z ∈ X . (27)

2. Here is a generalization. Let W be a vector space and let q : X ×X → GL(W ) be
a function. Set V = kX⊗W , exv := ex⊗ v. Let cq : V ⊗V →V ⊗V be given by

cq(exv⊗ eyw) = ex.yqx,y(w)⊗ exv, x,y ∈ X , v,w ∈W. (28)

Prove that (V,cq) is a braided vector space if and only if (X ,.) is a rack and (27)
holds.

3. Let q,p : X ×X → k× be two functions satisfying (27) and let b : X → k× be a
function. Let T : kX → kX be given by T (ex) = bxex, x ∈ X . Find necessary and
sufficient conditions such that T : (kX ,cq)→ (kX ,cp) is a morphism of braided
vector spaces.

The condition (27) says that q is a 2-cocycle; when dimW = 1, it is part of a
cohomology theory, while for n > 1 it is a non-abelian cocycle. Observe that any
constant function q is a 2-cocycle.

Braided vector spaces as in the previous Exercise are called of rack type and play
an important role in the classification of finite-dimensional pointed Hopf algebras.

2.1.6 Racks

We discuss now examples of racks; once again the reader is encouraged to work out
the details.

Example 7. Let (X ,c) be a braided set with associated . and / as above. Then we
say that c is non-degenerate if for all x,y ∈ X the maps

x. : X → X , / y : X → X

are both bijective. Assume that this is the case. Write / y−1 for the inverse of
/ y. Define I: X×X → X by
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xI y =
(
(x/ y−1). y

)
/ x. (29)

Then (X ,I) is a rack, called the derived rack of (X ,c).

Example 8. Let X be a non-empty set. Given σ ∈ SX , the associated permutation
rack (X ,.) is defined by x. y = σ(y) for all x,y ∈ X .

Example 9. A group G is a rack with x.y = xyx−1, x,y∈G. If X ⊂G is stable under
conjugation by G (for example if X is a conjugacy class), then it is a subrack of G.

Example 10. A set X 6= /0 with . defined by x . y = y for all x,y ∈ X is a rack; such
racks are called abelian. The abelian rack with elements {1, . . . ,n} is denoted In.

Exercise 8. 1. If X is a rack, then φ : X → SX , x 7→ φx, is a morphism of racks. The
subgroup of SX generated by the image of φ is denoted by InnX . Thus InnX
acts on X . Show that InnX is a normal subgroup of AutX (the group of rack
automorphisms).

2. When a subrack of a group is a permutation rack?
3. Let X be a subrack of a group. Then, for all x,y ∈ X , we have

x. x = x, (30)
x. y = y =⇒ y. x = x, (31)

A rack with these properties is a crossed set. Can a crossed set be realized always
as a subrack of a group?

The following examples can be identified with subracks of groups, but they de-
serve a separate consideration.

Example 11. Let G be a group and T ∈ AutG. Let ⇀T be the action of G on itself
given by x ⇀T y = xyT (x−1), x,y ∈ G. Then the orbit OG,T

x of x ∈ G by this action
is a rack with operation

y.T z = yT (zy−1), y,z ∈ OG,u
x . (32)

The rack (OG,T
x ,.T ) is called a twisted conjugacy class of type (G,T ).

Example 12. Let A be an abelian group and T ∈AutA. We define the operation . by

x. y = (1−T )x+Ty, x,y ∈ A.

Then (A,.) is a rack, denoted Aff(A,T ). If T is multiplication by a fixed m, then the
rack is denoted by Aff(A,m). The rack Aff(A,T ) is isomorphic to the subrack A× id
of Ao 〈T 〉. Racks of this sort are called affine. For instance, the dihedral rack Dn,
n≥ 3, is Aff(Z/n,T ), where T is multiplication by −1.

Exercise 9. Let X be a rack; below ∪̇ means disjoint union.
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1. A decomposition of X is a pair of subracks (Y,Z) such that X = Y ∪̇ Z; X is
decomposable if it admits a decomposition, indecomposable otherwise.
Let /0 6= Y ( X and Z = X−Y . If X is finite, then

(Y,Z) is a decomposition of X ⇐⇒ Y .Z ⊆ Z and Z .Y ⊆ Y ⇐⇒ X .Y ⊆ Y.

If X is not finite, which of the implications remain true? Find counterexamples
for the rest.

2. X is indecomposable ⇐⇒ X = O InnX
x for any x ∈ X .

3. Let n≥ 3. Compute all subracks of Dn. Conclude that Dn is indecomposable if n
is odd. Prove that InnD4 6= AutD4, what about InnDn for n 6= 4?

Exercise 10. Let Y,Z be two racks and X = Y ∪̇Z. The following are equivalent:

1. Structures of rack on X such that (Y,Z) is a decomposition.
2. Pairs (ς ,ϖ) of morphisms of racks ς : Y → AutZ, ϖ : Z→ AutY such that

y.ϖz(u) = ϖςy(z)(y.u), ∀y,u ∈ Y, z ∈ Z, i.e., φyϖz = ϖςy(z)φy; (33)

z. ςy(w) = ςϖz(y)(z.w), ∀y ∈ Y, z,w ∈ Z, i.e., φzςy = ςϖz(y)φz. (34)

The rack X is denoted Y ς

∏
ϖ Z, with ς omitted if ςy = idZ for all y ∈ Y , idem for ϖ .

Assume that Y and Z are crossed sets and that (33), (34) hold. Then X is a crossed
set if and only if the following condition holds:

ςy(z) = z if and only if ϖz(y) = y, ∀y ∈ Y, z ∈ Z. (35)

Exercise 11. Assume that Y = In. Then the previous setting reduces to a family
(ςi)i∈In of commuting elements in AutZ and a morphism of racks ϖ : Z→ Sn such
that

ϖz = ϖς j(z), z. ς j(w) = ςϖz( j)(z.w), ∀ j ∈ In, z,w ∈ Z.

Suppose that Y = In and Z = Im. Then the previous setting consists of families
(ςi)i∈In and (ϖh)h∈Im of commuting elements in Sm and Sn respectively, such that

ϖh = ϖς j(h), ς j = ςϖh( j), ∀ j ∈ In, h ∈ Im. (36)

In particular, let σ ∈ Sm and π ∈ Sn and consider the constant families ςi = σ , i∈ In,
and ϖh = π , h ∈ Im. These families satisfy (36), thus we have the rack In σ

∏
π Im.

Here is an important notion for our purposes.

Definition 1. A finite rack X is simple if

• it has at least 2 elements,
• for any surjective morphism of racks π : X →Y , either π is an isomorphism or Y

has just one element.
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Finite simple racks have been classified in [15, Th. 3.9, Th. 3.12], [56]. Because
of its importance in recursive arguments about Nichols algebras, we state this result.

Theorem 2. Let X be a finite simple rack with |X | elements. Then either of the fol-
lowing holds:

1. |X | is divisible by at least two primes. In this case, there exist

• a simple non-abelian group L,
• t ∈ N, and
• θ ∈ AutL,

such that X is a twisted conjugacy class of type (G,T ), where

• G = Lt and
• T ∈ Aut(Lt) acts by

T (`1, . . . , `t) = (θ(`t), `1, . . . , `t−1), `1, . . . , `t ∈ L.

Furthermore, L and t are unique, and T only depends on its conjugacy class in
Out(Lt) = Aut(Lt)/Inn(Lt).

2. |X |= pt where p is a prime and t ∈ N. In this case, there are two possibilities:

a. t = 1 and X ' Ip is the permutation rack of the cycle (1,2, . . . , p) (this could
not be realized as a conjugacy class in a group).

b. X is the affine rack (Fp
t ,T ), where T is the companion matrix of a monic

irreducible polynomial f ∈ Fp[X] of degree t, different from X and X−1.

Particularly, non-trivial conjugacy classes in finite simple groups are simple
racks.

2.2 Braided tensor categories

The notion of braided vector space has a counterpart in the notion of braided tensor
category, that is both technically convenient and the right formulation for applica-
tions. We briefly discuss this notion and refer to [31, 58] for extensive expositions.

2.2.1 Tensor categories

We start by the formal definitions.
A monoidal category is a collection (C ,⊗,1,a, l,r), where

• C is a category;
• ⊗ : C ×C → C is a functor, called the tensor product;
• 1 ∈ C is an object called the unit;
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• aX ,Y,Z : (X⊗Y )⊗Z→ X⊗ (Y ⊗Z) is an invertible natural transformation, called
the associativity constraint;

• lX : X → X⊗1, rX : X → 1⊗X , are invertible natural transformations, called the
left and right unit constraints.

These data is required to satisfy the pentagon and the triangle axioms, expressed
by the commutativity of the following diagrams:

((X⊗Y )⊗Z)⊗U
a(X⊗Y ),Z,U //

aX ,Y,Z⊗idU

��

(X⊗Y )⊗ (Z⊗U)

aX ,Y,Z⊗U

��
(X⊗ (Y ⊗Z))⊗U

aX ,Y⊗Z,U ))

X⊗ (Y ⊗ (Z⊗U))

X⊗ ((Y ⊗Z)⊗U)

idX ⊗aY Z,U

55

and

(X⊗1)⊗Y
aX ,1,Y // X⊗ (1⊗Y )

X⊗Y.
lX⊗idY

ff

idX ⊗rY

88

The pentagon and triangle axioms guarantee that we can tensor any finite num-
ber of objects, the result being independent of the distribution of parentheses up to
isomorphism, and that the unit objects can be ignored in such a product. This was
shown by S. Mac Lane, who also proved any monoidal category is equivalent to a
strict one (one with associative and unit constraints equal to the identity).

Let C be a monoidal category and M ∈ C . A left dual of M is an object ∗M ∈ C
provided with morphisms

1
coevM // ∗M⊗M , M⊗ ∗M

evM // 1,

such that the composition

M
lM // M⊗1

id⊗coevM // M⊗ ∗M⊗M
evM⊗ id // 1⊗M

r−1
M // M (37)

equals idM . Analogously, a right dual of M is an object M∗ ∈ C provided with
morphisms

1
coev′M // M⊗M∗ , M∗⊗M

ev′M // 1,

such that the following composition equals idM:
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M
rM // 1⊗M

coev′M⊗ id // M⊗M∗⊗M
id⊗evM // M⊗1

l−1
M // M (38)

Clearly, if M has a right dual M∗, then M∗ has itself a left dual which is M.

Exercise 12. Prove that two left duals of the same object are isomorphic.

A monoidal category C is rigid if every object in C has right and left duals.

Example 13. Assume that C is a discrete category, i.e. Ob C is a set X and the only
arrows are the identities idx, x ∈ X . Then a structure of monoidal category on C
is tantamount to a structure of monoid on X . Thus, a structure of rigid monoidal
category on C is tantamount to a structure of group on X . In other words, the notion
of rigid monoidal category is a categorification of the notion of group.

Definition 2. A tensor category (over k) is a rigid monoidal category such that C
is abelian k-linear and ⊗ is k-linear in each variable (that is, ⊗ is a bifunctor).

Example 14. Let Veck be the category of vector spaces over k and let veck be the
full subcategory of the finite-dimensional ones. Then Veck is a monoidal (abelian
k-linear) category, with ⊗ = ⊗k the usual tensor product over k, 1 ' k, and the
natural isomorphisms a, l and r from the universal property defining ⊗k. Also veck
is a tensor category; given V ∈ veck, we take ∗V =V ∗ = homk(V,k) and

k
coevV // ∗V ⊗V V ⊗ ∗V

evV // k

1 � // ∑i∈I αi⊗ vi, f ⊗ v � // f (v),

where (vi)i∈I is a basis of V and (αi)i∈I is its dual basis.

Exercise 13. Prove that Veck is not rigid.

Example 15. Let H be a Hopf algebra with bijective antipode S . Let RepH be the
category of representations of H and let repH be the full subcategory of the finite-
dimensional ones. Then RepH is a monoidal subcategory of Veck and repH is a
tensor subcategory of veck (but neither is full). Indeed, if V,W ∈ RepH, then H acts
on V ⊗W via the comultiplication ∆ ; the unit is k with the trivial action given by the
counit ε; ∗V , respectively V ∗, is homk(V,k) with the action given by the transpose
of the antipode, respectively its inverse.

This class of examples includes:

• The category RepG of representations of a group G over k and the subcategory
repG.

• The category Repg of representations of a Lie algebra g and the subcategory
repg.
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• The category VecG
k of G-graded vector spaces, where G is a group, and the sub-

category vecG
k . Here the tensor product of V = ⊕g∈GVg and W = ⊕g∈GWg is

graded as V ⊗W =⊕g∈G(V ⊗W )g, where

(V ⊗W )g =⊕h∈GVh⊗Wh−1g.

The category of super vector spaces is the particular case Sveck = VecZ/2
k ; as

usual, sveck is the full subcategory of finite-dimensional objects.

Exercise 14. Assume that k is algebraically closed of characteristic 0. Let G be a
finite abelian group and Ĝ be its group of characters. Then VecG

k is equivalent to
Rep Ĝ as monoidal categories.

Example 16. Let H be a Hopf algebra with bijective antipode. Let M H , respectively
HM , be the category of right, respectively left, H-comodules. Then both M H and
HM are monoidal subcategories of Veck. Indeed, the tensor product arises via the
multiplication and the unit is k with the trivial coaction. The subcategories of finite-
dimensional comodules are tensor, with duals given by the the antipode, respectively
its inverse.

2.2.2 Braided tensor categories

If the notion of monoidal category could be thought as an extension of the notion
of monoid (or group), then it is natural to seek for the analogue of the notion of
abelian group. Such an analogue was already proposed by S. Mac Lane–symmetric
monoidal categories. However the weaker notion of braided category turned out to
be much more flexible for applications.

A braided monoidal category is a monoidal category C provided with a natural
isomorphism cX ,Y : X ⊗Y → Y ⊗X , called the braiding, that is required to fulfill
the hexagon axioms, meaning that the following diagrams commute:

(X⊗Y )⊗Z
aX ,Y,Z //

cX ,Y⊗id
��

X⊗ (Y ⊗Z)
cX ,Y⊗Z // (Y ⊗Z)⊗X

aY,Z,X

��
(Y ⊗X)⊗Z aY,X ,Z

// Y ⊗ (X⊗Z)
id⊗cX ,Z

// Y ⊗ (Z⊗X),

(39)

X⊗ (Y ⊗Z)
a−1

X ,Y,Z //

id⊗cY,Z

��

(X⊗Y )⊗Z
cX⊗Y,Z // Z⊗ (X⊗Y )

a−1
Z,X ,Y
��

X⊗ (Z⊗Y )
a−1

X ,Y,Z

// (X⊗Z)⊗Y
cX ,Z⊗id

// (Z⊗X)⊗Y,

(40)
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for all X ,Y,Z ∈ C . In addition, C is symmetric when

cY,X cX ,Y = idX⊗Y , for all X ,Y ∈ C . (41)

Loosely, (41) is abbreviated as c2 = id. In this case, c is called a symmetry, instead
of a braiding.

Exercise 15. Assume that (41) holds. Then (39) and (40) are equivalent.

Needless to say, a braided tensor category is a tensor category that is also braided.

Example 17. The super categories Veck and veck are symmetric, with symmetry
being the transposition τ .

Example 18. If G is a group and g is a Lie algebra, then the tensor categories RepG
and Repg are symmetric, with symmetry τ .

Example 19. The categories Sveck and sveck are symmetric, with symmetry being
the super transposition sτ .

Exercise 16. 1. Classify all possible braidings in the category VecZ/n
k , 1 < n ∈ N.

2. Classify all possible braidings in the category VecG
k , where G is an abelian group;

determine those that are symmetries.
3. Let G be a group. Prove that the category VecG

k admits a braiding if and only if
G is abelian.

Where the adjective braided comes from?

Proposition 2. Let C be a braided monoidal category. Assume that it is strict, i.e.
the associativity and unit constraints are identities. Then for all X ,Y,Z ∈ C ,

(cY,Z⊗ idX )(idY ⊗cX ,Z)(cX ,Y ⊗ idZ) = (idZ⊗cX ,Y )(cX ,Z⊗ idY )(idX⊗cY,Z), (42)

equality in hom(X⊗Y ⊗Z,Z⊗Y ⊗X).

Thus, if X ∈ C , then cX ,X is a solution of the braid equation. If C is not strict,
then a version of (42) with associators holds.

V. G. Drinfeld found a mechanism to construct solutions of the braid equation
(11). First, he introduced the notion of quasitriangular Hopf algebra as a pair (H,R)
where H is a Hopf algebra and R ∈ H ⊗H is tailored to give RepH a structure
of braided tensor category. Second, he showed how to assign to a Hopf algebra
H (say finite-dimensional to avoid technicalities), a quasitriangular Hopf algebra
D(H)–called nowadays the Drinfeld double of H. For a better understanding of this
construction, we give now the categorical version; passing from H to D(H) is a
particular instance of the center of a monoidal category.

Exercise 17. Let C be a monoidal category. Prove that Z (C ) (the center of C )
defined as follows is a braided monoidal category:
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• The objects are pairs (Z,γ) where Z ∈ C and γ is a natural isomorphism

γX : X⊗Z→ Z⊗X , X ∈ C ,

such that the following diagram commutes:

X⊗ (Y ⊗Z)
a−1

X ,Y,Z //

id⊗γY

��

(X⊗Y )⊗Z
γX⊗Y // Z⊗ (X⊗Y )

a−1
Z,X ,Y
��

X⊗ (Z⊗Y )
a−1

X ,Y,Z

// (X⊗Z)⊗Y
γX⊗id

// (Z⊗X)⊗Y.

(43)

By the similarity of (43) with (40), γ is called a half-braiding.
• The morphisms between pairs (Z,γ) and (Z′,γ ′) are maps f : Z→ Z′ in C such

that

( f ⊗ idX )γX = γ
′
X (idX⊗ f ) : X⊗Z→ Z⊗X , for all X ∈ C .

• The tensor product of (Z,γ) and (Z′,γ ′) is (Z⊗Z′, γ̃), where γ̃ is defined by the
commutativity of the diagram

X⊗ (Z⊗Z′)
a−1

X ,Z,Z′ //

γ̃

��

(X⊗Z)⊗Z′
γX⊗id // (Z⊗X)⊗Z′

aZ,X ,Z′

��
(Z⊗Z′)⊗X Z⊗ (Z′⊗X)

a−1
Z,Z′,Xoo Z⊗ (X⊗Z′)

id⊗γ ′Xoo

(44)

• The unit object is (1,r−1l).
• The braiding between (Z,γ) and (Z′,γ ′) is

c(Z,γ),(Z′,γ ′) = γ
′
Z .

If (Z,γ) ∈Z (C ) and Z has a left dual in C , then (Z,γ) has a left dual in Z (C ).

Exercise 18. Compute explicitly Z (RepG) and Z (Veck G).

2.2.3 Yetter-Drinfeld modules

Let H be a Hopf algebra with bijective antipode S . Let G(H) be the group of
group-like elements. This is the point we wanted to reach:

Definition 3. A Yetter Drinfeld module over H is a vector space V provided with

• a structure of left H-module · : H⊗V →V and
• a structure of left H-comodule δ : V → H⊗V , such that
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• for all h ∈ H and v ∈V , the following compatibility condition holds:

δ (h · v) = h(1)v(−1)S (h(3))⊗h(2) · v(0). (45)

Thus we have the category H
HY D of Yetter-Drinfeld modules, with morphisms being

linear maps that preserve both the action and the coaction.

Exercise 19. Prove that H
HY D is a braided tensor category, with the tensor product

of modules and comodules and braiding

cV,W (v⊗w) = v(−1) ·w⊗ v(0), V,W ∈ H
HY D , v ∈V, w ∈W. (46)

Here cV,W is bijective because S is so; indeed

c−1
W,V (v⊗w) = w(0)⊗S −1(w(−1)) · v, V,W ∈ H

HY D , v ∈V, w ∈W. (47)

That is, the assignment H  H
HY D is the categorical version of H  D(H);

indeed, when H is finite-dimensional, H
HY D is equivalent to RepD(H).

Exercise 20. Show that H
HY D is equivalent as tensor category to Z (HM ).

Notice that there are four versions of Yetter-Drinfeld categories, the other three
being HY DH (left comodules and right modules), Y DH

H and HY DH .

Summarizing, given H as above, every V ∈ H
HY D provides a braided vector

space, namely (V,cV,V ). Two questions come up naturally: Does every braided vec-
tor space (V,c) arise as a Yetter-Drinfeld module over some H? (For short, we say
that (V,c) is realized over H). If yes, then in so many ways? The answer to the first
is affirmative, up to a technical hypothesis:

Definition 4. A finite-dimensional braided vector space (V,c) is rigid if the map
c[ : V ∗⊗V →V ⊗V ∗ given by

f ⊗ v 7−→∑
i
(ev⊗ id⊗ id)( f ⊗ c(v⊗ vi)⊗α

i)

is invertible, where (vi) is a basis of V and (α i) its dual basis.

Proposition 3. [33, 81, 77, 43] Let (V,c) be a rigid braided vector space. Then there
is a Hopf algebra H(V ) such that V ∈ H(V )

H(V )
Y D and c = cV,V .

The construction of H(V ) is done in two steps: first, one attaches a bialgebra
A(V ) such that V ∈ A(V )

A(V )
Y D–this is the celebrated FRT-construction. Second, and

here rigidity is needed, one passes from A(V ) to H(V ).
However, H(V ) does not provide, by far, the unique realization and the problem

of classifying or even characterizing all of them contains some subtleties.
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Example 20. A pair (g,χ) ∈ G(H)× homalg(H,k) is called a YD-pair for H pro-
vided that

χ(h)g = χ(h(2))h(1) gS (h(3)), h ∈ H. (48)

If (g,χ) is a YD-pair, then g ∈ Z(G(K)).
YD-pairs classify the V ∈ H

HY D with dimV = 1. Indeed, if (g,χ) is a YD-pair,
then kχ

g = k with action and coaction given by χ and g respectively, is in H
HY D . In

fact, (48) is just (45). Clearly, the braiding of kχ
g is multiplication by q = χ(g).

Example 21. Let q = (qi j) ∈ (k×)I×I satisfying (16) and let V the corresponding
braided vector space of diagonal type with respect to a basis (xi)i∈I. A principal
realization of (V,c) is a collection (gi,χi)i∈I of YD-pairs such that qi j = χ j(gi) for
all i, j ∈ I. But there might be realizations different from these.

Example 22. Assume that k is algebraically closed and chark= 0. If H = kΓ , where
Γ is a finite abelian, then H

HY D is semisimple and its simple objects have dimension
1. Now (48) always holds. In conclusion, every V ∈ H

HY D of dimension θ ∈ N is
determined by families (gi)i∈Iθ

and (χi)i∈Iθ
; the braiding of V is of diagonal type

with matrix q= (qi j), qi j = χ j(gi), for all i, j ∈ Iθ .

Example 23. We now explain how to realize blocks of dimension 2, cf. Example
6. A YD-triple for H is a collection (g,χ,η) where (g,χ), is a YD-pair for H,
η ∈ Derχ,χ(H,k), η(g) = 1 and

η(h)g = η(h(2))h(1)gS (h(3)), h ∈ H. (49)

Let (g,χ,η) be a YD-triple. Let Vg(χ,η) be a vector space with a basis (xi)i∈I2 ,
where action and coaction are given by

h · x1 = χ(h)x1, h · x2 = χ(h)x2 +η(h)x1, δ (xi) = g⊗ xi,

h∈H, i∈ I2. Then Vg(χ,η)∈ H
HY D , the compatibility being granted by (48), (49).

Since η(g) 6= 0, then Vg(χ,η) is indecomposable in H
HY D . As braided vector space,

Vg(χ,η) is the block V (ε,2), where ε := χ(g).

Exercise 21. Find a realization of the block V (ε,2) over kZ.

Exercise 22. Let G be a group. Prove that M ∈ kG
kGY D if and only if M is a G-

module with a G-grading M = ⊕γ∈GMγ such that g ·Mγ = Mgγg−1 . Consequently,
if N ≤M is a Yetter-Drinfeld submodule, then N inherits the grading; in particular
N 6= 0 implies Nγ 6= 0 for some γ ∈ G.

Example 24. Let G be a finite group. Let O be a conjugacy class in G, pick x∈O and
(W,ρ) an irreducible representation of Gx = {g ∈ G : gx = xg}, i,.e. the centralizer
(or the isotropy subgroup) of x. Let

M(O,ρ) = IndG
Gx ρ = kG⊗kGx W. (50)
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We want to show that M(O,ρ) ∈ kG
kGY D , for which we need to define the coaction.

Let (xi)i∈Im be a numeration of O , m = |O|. Then there are (zi)i∈Im in G such that

zi . x = zixz−1
i = xi, i ∈ Im.

Thus G =
∏

i∈Im ziGx. We may normalize the choice by x1 = x and z1 = e. Now

M(O,ρ) =⊕i∈Imkzi⊗W ; (51)

the action of G is explicitly given by

g · (zi⊗w) = z j⊗ρ(y)(w), if gzi = z jy, g ∈ G, i ∈ I, w ∈W.

We define δ : M(O,ρ)→ kG⊗M(O,ρ) by

δ (zi⊗w) = xi⊗ (zi⊗w), i ∈ I, w ∈W.

(In the formulation of Exercise 22, the grading is (51) with kzi⊗W in degree xi).
We prove the compatibility condition (45). Let g ∈G, i ∈ I, w ∈W and suppose that
gzi = z jy with y ∈ Gx. Then

δ (g · (zi⊗w)) = x j⊗ (z j⊗ρ(y)(w)),

g(zi⊗w)(−1)g
−1⊗g · (zi⊗w)(0) = gxig−1⊗ z j(⊗ρ(y)(w)).

and the first line equals the second because

gxig−1 = gzixz−1
i g−1 = z jyxy−1z−1

j = z jxz−1
j = x j.

Using Exercise 22, we check that M(O,ρ) is a simple Yetter-Drinfeld module.
Clearly dimM(O,ρ) = |O|dimW . Also it is easy to see that M(O,ρ) 'M(O ′,ρ ′)
implies O = O ′ and ρ = ρ ′ (we have picked one element in each conjugacy class).
Since kG

kGY D ' RepD(kG), we conclude that⊕
O conjugacy class

ρ∈IrrGx

EndM(O,ρ)≤ D(kG). (52)

Assume that k is algebraically closed and that chark does not divide |G|. Then
By a counting argument, see [15, p. 63], we see that the equality holds in (52); hence

• the category kG
kGY D is semisimple and

• any simple object in kG
kGY D is isomorphic to M(O,ρ) for a unique (O,ρ).

Finally, the braiding in M(O,ρ) is given by

c((zk⊗ v) · (zi⊗w)) = xk · (zi⊗w)⊗ (zk⊗ v) = z j⊗ρ(y)(w)⊗ (zk⊗ v)

where xkzi = z jy. Now, x j = z jy . x = xkzi . x = xk . xi. In other words, M(O,ρ) is
isomorphic to a braided vector space of rack type. Namely consider the rack O; then
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the map M(O,ρ)→ kX⊗W , zi⊗w 7→ exi ⊗w is an isomorphism of braided vector
spaces, where q : X×X → GL(W ), qxi,x j = ρ(y).

3 Nichols algebras

Nichols algebras are a special kind of Hopf algebras in braided tensor categories.
Our main interest is in Nichols algebras in the category H

HY D . We start with the
definition of Hopf algebra in a braided tensor category; then we discuss the con-
cept of Nichols algebra. Finally we overview several techniques to compute Nichols
algebras. Throughout we refrain from using parentheses and the associativity con-
straints, as justified by Mac Lane coherence theorem.

3.1 Hopf algebras in braided tensor categories

Let C be a monoidal category. A monoid in C is a triple (M,µ,u), where M ∈ C ,
µ : M⊗M→M and u : 1→M are morphisms in C , such that the following diagrams
commute:

M⊗M⊗M

µ⊗id
��

id⊗µ // M⊗M

µ

��
M⊗M

µ // M,

1⊗M
u⊗id //

l
��

M⊗M
µ

vvM M⊗1r
oo

id⊗u

OO (53)

When C is actually a tensor category, it is also customary to say algebra in C instead
of monoid in C . Indeed, a monoid in Veck is just an associative algebra over k.

Example 25. Let G be a group. An algebra in VecG
k is just a G-graded algebra.

The dual notion of comonoid in C is obtained reversing the arrows. That is,
a comonoid is a triple (C,δ ,ε), where C ∈ C , δ : C → C⊗C and ε : C → 1 are
morphisms in C , such that the following diagrams commute:

C⊗C⊗C C⊗C
id⊗δ

oo

C⊗C

δ⊗id

OO

C,
δ

oo

δ

OO 1⊗C

l
��

C⊗C
ε⊗idoo

id⊗ε

��
C

δ

66

C⊗1.r
oo

(54)

When C is a tensor category, we say coalgebra instead of comonoid.

There are straightforward definitions of morphisms of monoids, and thus of the
category of monoids in C , and also of actions of monoids on objects of C , and
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thus of the category of objects in C with action of a fixed monoid. However extra
structure is needed to define the tensor product of two monoids.

Definition 5. Let C be a braided monoidal category. The tensor product of two
monoids M = (M,µM,uM) and N = (N,µN ,uN) in C is the monoid

M⊗N = (M⊗N,µM⊗N ,uM⊗N),

where µM⊗N and uM⊗N are defined by the following compositions:

M⊗N⊗M⊗N
µM⊗N //

idM⊗cN,M ))

M⊗N,

M⊗M⊗N⊗N

µM⊗µN
77

M⊗N

uM⊗uN $$

uM⊗N // 1.

1⊗1
l

==

Exercise 23. 1. Prove that the unit of a monoid is unique. Idem for the counit of a
comonoid.

2. Prove that M⊗N is a monoid, i.e. it satisfies (53).
3. Define the tensor product comonoid of two comonoids; show that it satisfies (54).
4. Let M be a monoid and C a comonoid in C . Define the convolution product

∗ : homC (C,M)×homC (C,M)→ homC (C,M), f ∗g = µ( f ⊗g)δ .

Prove that ∗ is associative and has unit uε .

Definition 6. Let C be a braided tensor category. A bialgebra in C is a collection
(B,µ,u,∆ ,ε) such that

• (B,µ,u) is an algebra (a monoid) in C ;
• (B,∆ ,ε) is a coalgebra in C ;
• ∆ : B→ B⊗B is a morphism of algebras.

A Hopf algebra in C is a bialgebra B such that the identity idB ∈ homC (B,B) admits
an inverse S for the convolution product ∗; i.e. there exists S ∈ homC (B,B) such
that

S ∗ idB = idB ∗S = uε.

Example 26. Let H be a Hopf algebra with bijective antipode and C = H
HY D . Let

V ∈ H
HY D . Then the tensor algebra T (V ) is an algebra in H

HY D . Thus we may
consider the algebra T (V )⊗T (V ), which is not the same as the algebra T (V )⊗
T (V ). For instance, if y,u ∈ T (V ), then the product in T (V )⊗T (V ) gives
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(1⊗ y)(u⊗1) = (y(−1) ·u)⊗ y(0).

By the universal property, since T (V )⊗T (V ) is in particular an associative algebra,
there is a unique map ∆ : T (V )→ T (V )⊗T (V ) such that ∆(v) = v⊗1+1⊗v, v∈V .
Notice that ∆ neither coincides with the ∆ in Remark 2 nor with the ∆ in §1.6.

Exercise 24. The tensor algebra T (V ) with the map ∆ : T (V )→ T (V )⊗T (V ) de-
fines a Hopf algebra in H

HY D (define the antipode on T n(V ) recursively on n).

Exercise 25. There is a coalgebra map µ : T c(V )⊗T c(V )→ T c(V ) determined by
µ(v⊗1) = v = µ(1⊗v), v ∈V ; with this, T c(V ) is a graded Hopf algebra in H

HY D .

We shall see plenty of examples of Hopf algebras in braided tensor categories,
aka braided Hopf algebras. But before that, let us show how they appear in nature.

3.2 Bosonization

A basic result in group theory establishes an equivalence between the following two
situations:

(a) π : G→ L and ι : L→ G are morphisms of groups such that πι = idL.
(b) L and N are groups with L acting on N by group homomorphisms.

Namely, if (a) holds, then one takes N = kerπ; while if (b) holds, then G'NoL.
The situation is slightly more complicated when we consider the parallel setting for
Hopf algebras; as we shall see, braided Hopf algebras appear in a natural way.

We start considering the situation:

(A) π : A→H and ι : H→ A are morphisms of Hopf algebras such that πι = idH .

It turns out that the right analogue of kerπ in this setting is

R = AcoH = {a ∈ A : (id⊗πH)∆(a) = a⊗1}

(Un)fortunately, this is not a Hopf algebra, but, following Radford and Majid, see
[73, 66], we claim that R is a braided Hopf algebra in H

HY D ; explicitly, via

h · r = h(1)rS (h(2)),

r(−1)⊗ r(0) = π(r(1))⊗ r(2),

R is a subalgebra of A,

∆R(r) = r(1)⊗ r(2) = ϑR(r(1))⊗ r(2), r ∈ R, h ∈ H.

(55)

We leave the proof to the reader, who may find useful the map ϑR : A→ R given by

ϑR(a) = a(1)ιπ(S (a(2))), a ∈ A; (56)

it satisfies ϑR(rh) = rε(h), ϑR(hr) = h · r, r ∈ R, h ∈ H. (57)
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It is tempting to guess that the situation (A) would be equivalent to

(B) H is a Hopf algebra and R is a braided Hopf algebra.

This is indeed the case; it remains to produce a Hopf algebra R#H from R and H,
and this is done by a construction proposed by Radford, and interpreted in terms
of braided categories by Majid; see [66, 73]. Concretely, R#H = R⊗H as a vector
space, so we use the notation r#h = r⊗h, r ∈ R, h ∈ H. This is a Hopf algebra by

(r#h)(s# f ) = r(h(1) · s)#h(2) f ,

∆(r#h) = r(1)#(r(2))(−1)h(1)⊗ (r(2))(0)#h(2).
(58)

We call R#H the bosonization of R (some authors say the Radford biproduct in-
stead). We are back in situation (A) by the maps π : R#H→ H and ι : H→ R#H,

π(r#h) = ε(r)h, ι(h) = 1#h, r ∈ R, h ∈ H.

Exercise 26. 1. Prove that R#H is a Hopf algebra with the structure (55), with an-
tipode SR#H determined by

SR#H(r) = S (r(−1))SR(r(0)), r ∈ R. (59)

Then pR : R#H→ R, pR(r#h) = rε(h), r ∈ R, h∈H, is a morphism of coalgebras.
2. Prove that R = AcoH is a Hopf algebra in H

HY D with the structure (58). Along
the way, prove that the antipode SR of R is given by

SR(r) = r(−1)S (r(0)), r ∈ R, (60)

is a morphism in H
HY D and is anti-multiplicative and anti-comultiplicative in the

following sense:

SRµ = µ(SR⊗SR)c = µc(SR⊗SR),

∆RSR = (SR⊗SR)c∆R = c(SR⊗SR)∆R,
(61)

3. Let R be a Hopf algebra in H
HY D . The adjoint representation of R on itself is the

linear map adc : R→ EndR given by

adc x(y) = µ(µ⊗S )(id⊗c)(∆ ⊗ id)(x⊗ y), x,y ∈ R.

Show that this is indeed an algebra map. Explicitly,

adc x(y) = x(1)[(x(2))(−1) · y]S ((x(2))(0)) = adx(y), x,y ∈ R. (62)

Show the the second equality (use (55) and the expression of the antipode). Let
P(R) = {x ∈ R : ∆R(x) = x⊗1+1⊗ x}, the space of primitive elements. Then

adc x(y) = xy− (x(−1) · y)x(0),x ∈P(R),y ∈ R. (63)
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Hence P(R) is a Yetter-Drinfeld submodule of R. Using (61), show that

adc x(SR(y)) = SR(adc−1 x(y)), x ∈P(R),y ∈ R. (64)

4. Let X be a Yetter-Drinfeld submodule of R. Then SR(k〈X〉) = k〈SR(X)〉.

3.3 Nichols algebras: definitions

We are now ready to address the main objective of this paper. Let H be a Hopf
algebra with bijective antipode.

Let V ∈ H
HY D ; for simplicity of the exposition we assume that dimV < ∞, al-

though this is not needed in most places. Recall that the tensor algebra T (V ) and the
tensor coalgebra T c(V ) are Hopf algebras in H

HY D , see Exercises 24 and 25. By the
universal property of the tensor algebra, there is a morphism of algebras

Ω : T (V )→ T c(V ) such that Ω(v) = v, for all v ∈V. (65)

It is not difficult to see that Ω

• is a morphism in H
HY D ,

• it preserves the coalgebra structure,
• it preserves the grading.

Indeed all properties follow because they hold at the level of V . In short, Ω is a
morphism of graded Hopf algebras in H

HY D . We denote

Ωn = Ω|T n(V ); hence Ω = ∑
n

Ωn.

Definition 7. The Nichols algebra B(V ) is the image of the map Ω .

Let J (V ) := kerΩ ; then J (V ) =⊕n≥2J
n(V ), where J n(V ) = kerΩ n. Then

B(V ) =⊕n≥0B
n(V )' T (V )/J (V ), Bn(V )' T n(V )/J n(V ).

We give now a first alternative description of J (V ). Recall the representation
ρn : Bn → GL(V⊗n) of the braid group Bn, cf. (12). Recall also the Matsumoto
section M : Sn→ Bn, cf. (5).

Proposition 4. If n≥ 2, then

Ωn = ∑
σ∈Sn

ρn(M(σ)) ∈ End(V⊗n). (66)

In particular, the algebra and the coalgebra structures of B(V ) depend on the
braided vector space (V,c) but not on the specific realization in H

HY D .
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For instance, write c1 = c⊗ id, c2 = id⊗c. Then

Ω2 = id+c, Ω3 = id+c1 + c2 + c1c2 + c2c1 + c1c2c1.

Here is an abstract characterization of Nichols algebras.

Proposition 5. [19] The ideal J (V ) is maximal in the set

C := {J =⊕n≥2Jn is a graded Hopf ideal and Yetter-Drinfeld submodule of T (V )}.

Let B =⊕n≥0B
n, E =⊕n≥0E

n be graded Hopf algebras in H
HY D such that

B1 ' E 1 'V in H
HY D .

Assume that B satisfies dimBn < ∞. Then the graded dual of B, denoted by B?,
is again a graded Hopf algebra in H

HY D , see (6).

Definition 8. 1. If B = k〈V 〉, then we say that B is a pre-Nichols algebra. By
definition, there is a surjective map T (V )→B of graded Hopf algebras in H

HY D ;
but the kernel of this map is contained in J (V ) by Proposition 5, so that there
is also a surjective map B→B(V ) of graded Hopf algebras in H

HY D .

2. We say E is a post-Nichols algebra if it is coradically graded. Dually, there are
injective maps B(V )→ E → T c(V ) of graded Hopf algebras in H

HY D .

Indeed, B is a pre-Nichols algebra (of V ) if and only if B? is a post-Nichols
algebra (of V ∗); here we need that dimV < ∞. Thus, for B a pre-Nichols, and E a
post-Nichols, algebra, the situation can be summarized by the following commuta-
tive diagram:

T (V )

Ω

**
// //

'' ''

B(V ) � t

''

� � // T c(V )

B

π

<< <<

E
. �

<<

The next characterization is a natural consequence of this discussion, see [19].

Proposition 6. The graded Hopf algebra B is isomorphic to B(V ) if and only if

1. it is generated as an algebra by V , B = k〈V 〉,

2. it is coradically graded.

We summarize the characterizations, or alternative definitions of the Nichols al-
gebra B(V ), or equivalently the defining ideal J (V ) =⊕n≥2J

n(V ):

• B(V ) =image of Ω : T (V )→ T c(V ). Thus, J (V ) = kerΩ .
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• Ω = ∑n≥2 Ωn, Ωn = ∑σ∈Sn ρn(M(σ)). Thus J n(V ) = ker∑σ∈Sn ρn(M(σ)).

• J (V ) is maximal in the class C of graded Hopf ideals as in Proposition 5.

• B(V ) is the only graded Hopf algebra both coradically graded and generated in
degree 1 (by V ). That is the only pre- and simultaneously post-Nichols algebra
of V (up to isomorphisms).

There is a useful criterion with skew derivations to find relations of B(V ), V ∈
H
HY D ; see e.g. [16] for details. Let f ∈V ∗. Let ∂ f ∈ EndT (V ) be given by

∂ f (1) = 0, ∂ f (v) = f (v), v ∈V, (67)

∂ f (xy) = x∂ f (y)+∑
j

∂ f j(x)y j, where c−1(y⊗ f ) = ∑
j

f j⊗ y j. (68)

Here is the criterion:

• Let x ∈ T n(V ), n≥ 2. If ∂ f (x) = 0 for all f ∈V ∗, then x ∈J n(V ).

Suppose that there are a basis (xi)i∈I of V , with dual basis ( fi)i∈I, and a family
(gi)i∈I in G(H) such that δ (xi) = gi⊗ xi, for i ∈ I. Set ∂i = ∂ fi , i ∈ I. Then (68) for
all f is equivalent to

∂i(xy) = x∂i(y)+∂i(x)gi · y, x,y ∈ T (V ), i ∈ I. (69)

The preceding arguments are the gate to the applications of Nichols algebras to
the classification of pointed Hopf algebras [19, 20, 4], see also [10]. Indeed, let A
be a pointed Hopf algebra and let gr A be the graded coalgebra associated to the
coradical filtration. Then

gr A'R#kG(A), where R =⊕n≥0R
n is a graded Hopf algebra in H

HY D .

Set V = R1. Now R is coradically graded, as it arises from the coradical filtration,
in short it is a post-Nichols algebra of V ; while its subalgebra generated by V is
isomorphic to B(V ). This leads to following problems:

• When is dimB(V )< ∞? For such V , classify its finite-dimensional post-Nichols
algebras.

• When is the Gelfand-Kirillov dimension of B(V ) finite? For such V , classify its
post-Nichols algebras with finite Gelfand-Kirillov dimension.

We do not need only the list of all V positively answering these questions, but
also we need to compute the Nichols algebras explicitly. By this we mean:

• Find a basis of B(V ), hence the dimension or the Gelfand-Kirillov dimension,
and

• describe the defining relations, i.e. a minimal set of generators of the ideal J (V ).

Analogously for the mentioned post-Nichols algebras.
Needless to say, there is no hope presently to solve in full generality these prob-

lems. Towards the first question above, it was proposed in [18]:
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Conjecture 1. Assume that chark= 0 and that H is semisimple. Let V ∈ H
HY D such

that dimB(V )< ∞. Then there is no finite-dimensional post-Nichols algebra except
B(V ) itself.

The conjecture contains the following particular case:

Conjecture 2. Assume that chark = 0. Then every finite-dimensional pointed Hopf
algebra is generated by group-like and skew-primitive elements.

The last Conjecture is definitely false if either chark > 0 or else the finite-
dimensional requirement is dropped.

Theorem 3. [22] Assume that chark = 0. Then every finite-dimensional pointed
Hopf algebra with abelian group of group-likes is generated by group-like and skew-
primitive elements.

3.4 Nichols algebras: techniques

Here we discuss approaches to compute Nichols algebras.

3.4.1 Direct computation

First, let m ∈ N≥2. The m-th approximation of B(V ) is

B̂m(V ) = T (V )/〈⊕2≤n≤mJ n(V )〉= T (V )/
〈
⊕2≤n≤m ker

(
∑

σ∈Sn

ρn(M(σ))
)〉

,

cf. (66). By definition, there is an epimorphism of graded Hopf algebras

πm : B̂m(V )→B(V ).

A brutal approach would be to compute B̂m(V ) for m = 2,3, . . . and at each step try
to figure out whether πm is an isomorphism, using some of the characterizations of
B(V ). In principle, J 2(V ) = ker(id+c) is effectively computable, but the difficul-
ties mount with m, as Ωn is the sum of n! terms acting on a vector space of dimension
(dimV )n. Other drawbacks are that the ideal J (V ) need not be finitely generated,
nor have quadratic relations at all; even to predict the lowest degree relations is not
within reach. A variation of this approach would be:

• Find a set R1 of relations in J (V ); i.e. J 2(V ) or some relations of small order.
• Compute the pre-Nichols algebra B1 = T (V )/〈R1〉, i.e. find a basis B1 of B1.
• Decide whether the image of B1 in B(V ) is linearly independent (here deriva-

tions are the best option). If yes, then B(V )'B1.
• If no, then we would have found a new set of relations R2; set B2 = B1/〈R1〉

and start again.
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Of course the success of this approach depends on great doses of intuition–and luck.

Exercise 27. Let q ∈ k× and let A = Z[q] be the polynomial algebra.

1. Let (n)q = 1+q+ · · ·+qn−1 and (n)!q = (n)q . . .(2)q(1)q ∈A . The q-binomial
numbers are (

n
i

)
q

:=
(n)!q

(n− i)!q(i)!q
, n ∈ N, i ∈ I0,n.

Prove that

qk
(

n
k

)
q
+

(
n

k−1

)
q
=

(
n+1

k

)
q
, k ∈ In. (70)

Conclude that
(n

i

)
q ∈A . Let

(n
i

)
q ∈ k be the specialization of

(n
i

)
q at q.

2. Let A be an associative algebra; let u,v ∈ A be q-commuting elements, i.e. uv =
qvu. Then the quantum binomial formula holds:

(u+ v)n =
n

∑
i=0

(
n
i

)
q
viun−i, for every n ∈ N. (71)

3. Let V be a braided vector space of dimension 1 with braiding c(x⊗ x) = qx⊗ x
for all x ∈V . Fix x ∈V −0. Let

N :=

{
ordq, if q ∈G′∞,
1, otherwise.

Prove that xN ∈P(T (V )). Conclude that

B(V )'

{
T (V )/〈xN〉, if q ∈G′∞,
T (V ), otherwise.

Example 27. [17] Let q=(qi j)∈ (k×)I×I. Let V be a braided vector space with basis

(xi)i∈I and braiding (15); (16) is not assumed. Let Nk :=

{
ordqkk, if qkk ∈G′∞,
1, otherwise,

for

k ∈ I. Suppose that

qi jq ji = 1, for all i 6= j ∈ I.

It is easy to check that

xix j−qi jx jxi ∈J 2(V ), for all i 6= j ∈ I. (72)

Then
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B = T (V )/〈xix j−qi jx jxi, i 6= j ∈ I; xNk
k , qkk ∈G′∞〉 (73)

is a pre-Nichols algebra of V . Using linear algebra arguments, one may check that
B 'B(V ) and that

{xa1
1 xa2

2 . . .xaθ

θ
: 0≤ ak ≤ Nk, if qkk ∈G′∞; 0≤ ak otherwise } is a basis of B(V ).

Definition 9. The algebra presented by generators and relations as in the right-hand
side of (73) is called a quantum linear space.

Notice that there are examples of quantum planes (quantum linear spaces with
θ = 2) that are braided Hopf algebras with respect to braidings not of diagonal type;
this was first noticed in [38].

Example 28. [14] Let (V,c) be a braided vector space. Assume that

• dimV = 2,
• J 2(V ) 6= 0,
• c is not of diagonal type.

Then B(V ) is known. The starting point is the classification of braided vector spaces
of dimension 2 [55]. The outcome is that, as algebras, the examples arising are
variations of quantum planes, variations of the Jordan and super Jordan algebras
(see §4.3) and some strange examples.

3.4.2 Dual

Let V ∈ H
HY D finite dimensional. As we observed after Definition 8, the graded

dual of a pre-Nichols of V is a post-Nichols algebra of V ∗ and vice versa, thus we
have:

Remark 5. The graded dual of B(V ) is isomorphic to B(V ∗).

This gives some new information without extra effort, as V ∗ need not be isomor-
phic to V as braided vector space. For instance, let X = (X ,.) be a rack and q a
2-cocycle as in (27). Let X−1 = (X ,.−1), where x .−1 y = φ−1

x (y), cf. Exercise 8.
Let also q∗ : X−1×X−1→ k× given by

q∗xy = qx,x.−1y, x,y ∈ X .

Then the braided vector space dual to (kX ,cq), is (kX−1,cq
∗
). See [39] for details.

3.4.3 Twisting

V. G. Drinfeld introduced in [29] the twisting of quasi-Hopf algebras, meaning con-
jugation of the comultiplication by a suitable element, to keep account of equiv-
alences of tensor categories. This was specialized to Hopf algebras in [76], with
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the definition of multiparametric quantum groups as application. The dual version,
called twisting of the multiplication, appeared in [27]. We recall this last one. Let H
be a Hopf algebra.

Definition 10. A linear map φ : H⊗H→ k is a unitary 2-cocycle if

φ is invertible with respect to the convolution product ∗, see Exercise 23; (74)
φ(x(1)⊗ y(1))φ(x(2)y(2)⊗ z) = φ(y(1)⊗ z(1))φ(x⊗ y(2)z(2)), (75)

φ(x⊗1) = φ(1⊗ x) = ε(x), (76)

for all x,y,z ∈ H. Let φ be a unitary 2-cocycle and define a new multiplication ·φ in
the vector space H by

x ·φ y = φ(x(1),y(1))x(2)y(2)φ
−1(x(3),y(3)), x,y ∈ H.

Then Hφ = (H, ·φ ,∆) is a Hopf algebra.

Exercise 28. Let G be a group. A unitary 2-cocycle on kG is equivalent to a 2-
cocycle φ ∈ Z2(G,k×), i. e. a map φ : G×G→ k× such that

φ(g,h)φ(gh, t) = φ(h, t)φ(g,ht), φ(g,e) = φ(e,g) = 1, g,h, t ∈ G. (77)

The relation with bosonization was established in [68].

Theorem 4. [68, Theorem 2.7, Corollary 3.4] Let φ : H⊗H → k be an invertible
unitary 2-cocycle.

(a) There exists an equivalence of braided categories Tφ : H
HY D→ Hφ

Hφ
Y D , V 7→Vφ ,

which is the identity on the underlying vector spaces, morphisms and coactions,
and transforms the action of H on V to ·φ : Hφ ⊗Vφ →Vφ ,

h ·φ v = φ(h(1),v(−1))(h(2) · v(0)) 0φ
−1((h(2) · v(0)) −1,h(3)),

h ∈ Hφ , v ∈ Vφ . The monoidal structure on Tφ is given by the natural transfor-
mation bV,W : (V ⊗W )φ →Vφ ⊗Wφ

bV,W (v⊗w) = φ(v(−1),w(−1))v 0⊗w 0, v ∈V,w ∈W.

(b) Tφ preserves Nichols algebras: B(V )φ 'B(Vφ ) as objects in
Hφ

Hφ
Y D . In par-

ticular, the Hilbert-Poincaré series of B(V ) and B(Vφ ) are the same.

Example 29. Let q= (qi j),q
′ = (q′i j) ∈ (k×)I×I satisfying (16). We say that q and q′

are twist-equivalent if

qii = q′ii, i ∈ I and qi jq ji = q′i jq
′
ji, i 6= j ∈ I.

In other words, twist-equivalent means that the matrices q and q′ hace the same
Dynkin diagram, cf. §2.1.3. Let V and V ′ be the braided vector spaces of diagonal
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type associated to q and q′, respectively. If q and q′ are twist-equivalent, then the
Hilbert-Poincaré series of B(V ) and B(V ′) coincide; this consequence of Theorem
4 was observed in [19, Proposition 3.9].

Example 30. Let X be a rack (isomorphic to a conjugacy class in a finite group) and
let q and q′ be 2-cocycles on X . We say that q and q′ are twist-equivalent if there
exists φ : X×X → k× such that q′ = qφ , which is

qφ
xy = φ(x,y)φ−1(x. y,x)qxy, x,y ∈ X . (78)

If q and q′ are twist-equivalent, then the Hilbert-Poincaré series of B(X ,q) and
B(X ,q′) coincide [13, §3.4].

Exercise 29. Let X be a rack, q a 2-cocycle on X and φ : X×X→ k×. Show that qφ

defined by (78) is a 2-cocycle iff for any x,y,z ∈ X , we have

φ(x,z)φ(x. y,x. z)φ(x. (y. z),x)φ(y. z,y)

= φ(y,z)φ(x,y. z)φ(x. (y. z),x. y)φ(x. z,x) (79)

Hence, if X is a subrack of a group G and φ ∈ Z2(G,k×), then φ |X×X satisfies (79).

3.4.4 Discard

There are techniques to prove that a Nichols algebra has infinite dimension, or GK-
dimension. Various of them are related to decompositions, as explained below. Let
(V,c) be a braided vector space. We mention in this line of thought:

• If W ↪→V is a braided subspace, respectively V �W is a quotient braided space,
then B(W ) ↪→ B(V ), respectively B(V )� B(W ). Thus, if V has a braided
subspace or a braided quotient whose Nichols algebra has infinite dimension, (or
GK-dimension), then so has B(V ). There are elaborations of these arguments
specific to rack type that are evoked below.

• Assume that V has a filtration of braided subspaces: 0 = V0 ( V1 · · · ( Vd = V .
Then this filtration propagates to B(V ) and the associated gr B(V ) turns out to
be a pre-Nichols algebra of gr V . Thus, if B(gr V ) has infinite dimension, (or
GK-dimension), then so has B(V ).

3.4.5 Decomposition

Let θ ≥ 2. Assume that (V,c) satisfies

V =V1⊕·· ·⊕Vθ , c(Vi⊗Vj) =Vj⊗Vi, i, j ∈ Iθ . (80)

Here we suppose that the B(Vi)’s are known and seek to infer B(V ). This idea,
mentioned in passing in [1, p. 41], is a roundabout approach, where instead of com-
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puting the relations or the basis, one looks for combinatorial invariants reminiscent
of the Weyl group. The principal actors are the maps

ci j := c|Vi⊗V j : Vi⊗Vj→Vj⊗Vi, , i, j ∈ Iθ .

Exercise 30. [41] If θ = 2 and c21c12 = idV1⊗V2 , then B(V )'B(V1)⊗B(V2).

Here are some particular instances of this situation:

• Assume that dimVi = 1 for all i. Then V is of diagonal type, up to (16); cf. §4.2.

• Assume that there exists a Hopf algebra H such that Vi ∈ H
HY D and is irreducible

in this category. This setting was considered in [16, 50].

• See §4.5 for the case H = kG, G a finite group.

• Assume that either dimVi = 1 or Vi is a block. Then the classification of all V
such that GK-dim B(V ) < ∞ was obtained in [4], see §4.4. Here is a crucial
remark that should be useful in other settings:

Assume that θ = 2 but that either V1 or V2 is not irreducible, or both. The com-
binatorial invariants from [16, 49] are not available but we may proceed as follows.
There are natural morphisms of braided Hopf algebras

π : B(V )→B(V1), ι : B(V1)→B(V ), such that πι = idB(V1) .

As in §3.2, we consider K = B(V )coB(V1), but now in H
HY D . Remarkably,

B(V )' K#B(V1) and K 'B (adc B(V1)(V2)) ,

[50, Proposition 8.6], cf. also [16, Lemma 3.2]. Ingenuously, one may try to com-
pute the Nichols algebra of adc B(V1)(V2); at a first glance this appears more com-
plicated, but sometimes this works.

4 Classes of Nichols algebras

We discuss in the last Section of this paper several classes of Nichols algebras. From
now on k is algebraically closed and chark= 0.

4.1 Symmetries and Hecke type

Here the situation is quite simple:

Proposition 7. Let (V,c) be a braided vector space such that c is either a symmetry
or of Hecke type with label q /∈G∞. Then B(V )' T (V )/〈ker(c+ id)〉.
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See [19, Proposition 3.4]; the argument is taken from a paper by Andrés Abella
and the author. By [42], it follows that B(V ) is a Koszul algebra, see loc. cit.

4.2 Diagonal type

Nichols algebras of diagonal type were studied in depth. In the finite-dimensional
setting, there are two main results:

• The classification of all finite-dimensional Nichols algebras of diagonal type ap-
pears in [45], using the Weyl groupoid introduced in [44].

• The defining relations of the finite-dimensional Nichols algebras of diagonal type
appear in [21, 22].

We refer to the survey [3] for details, since both answers are very long and require
a careful preparation. One of the outcomes is that the theory of Nichols algebras of
diagonal type embeds into Lie theory. Here is a remarkable instance of this affirma-
tion:

Theorem 5. [18, 44] Let V be a braided vector space of Cartan type with Cartan
matrix A, see §2.1.3. Then dimB(V ) < ∞ if and only if A is a finite Cartan matrix
(i.e. corresponds to a finite dimensional simple Lie algebra).

This result was proved in [18] under some restrictions on the matrix q of the
braiding, by reduction to the theory of quantum groups. A proof valid without re-
strictions appears in [44] based on the beautiful theory of the Weyl groupoid.

As for finite Gelfand-Kirillov dimension, the validity of the following Conjecture
would say that the classification follows from [45]. Let (V,c) be a braided vector
space of diagonal type.

Conjecture 3. [4] If GK-dim B(V )< ∞, then its Weyl groupoid is finite.

The following partial results support the Conjecture.

Theorem 6. [5] If either its Weyl groupoid is infinite and dimV = 2, or else V is of
affine Cartan type, then GK-dim B(V ) = ∞.

Let us finally discuss an example with many applications.

Example 31. Let V be a braided vector space of dimension 2, of diagonal type with

braiding matrix q=

(
q q
q q

)
.

• The case q = 1 is not of diagonal type, strictly speaking, by our requirement (16).
Nevertheless, B(V )' S(V ).

• If q =−1, then B(V )'Λ(V ).

• If q ∈ G′N , then V is of Cartan type
(

2 2−N
2−N 2

)
. Thus, if N = 3, then is of

Cartan type A2 and dimB(V ) = 27.
• If N > 3, then GK-dim B(V ) = ∞ = dimB(V ) by Theorems 6, respectively 5.
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4.3 Triangular type

Here we give a glimpse to the main results in [4] on Nichols algebras with finite
GK-dimension over an abelian group. Succinctly, these results consist of

• The classification of braided vector spaces whose Nichols algebras have finite
GK-dim, that admit a decomposition (80) whose components are ±1-blocks or
points, i.e. V =V1⊕·· ·⊕Vt ⊕Vt+1⊕·· ·⊕Vθ where

Vh εh-block, ε
2
h = 1, h ∈ It ; Vi qii-point, qii ∈ k×, i ∈ It+1,θ ,

with c(Vi⊗Vj) =Vj⊗Vi, i, j ∈ Iθ . Set as usual ci j = c|Vi⊗V j . We assume that

– V is not of diagonal type, i.e. t > 0;
– the braiding ci j between a block i∈ It and a point j ∈ It+1,θ has the form (83).

• The classification of Yetter-Drinfeld modules over abelian groups whose Nichols
algebras have finite GK-dim, that admit a decomposition V = V1⊕V2 like (80)
where V1 is a ±1-block and V2 is a point, but c12 does not have the form (83).

We point out that the first classification mentioned assumes the validity of Con-
jecture 3. The explicit formulation requires some preparation, so we refer to [5] for
full details. Instead we discuss here two relevant steps of the proof–steps that do not
require Conjecture 3.

To start with, recall the block V (ε, `), ε ∈ k× and ` ∈ N≥2, cf. Example 6.

Theorem 7. [4, Theorem 1.2, Propositions 3.4, 3.5] The Gelfand-Kirillov dimen-
sion of the Nichols algebra B(V (ε, `)) is finite if and only if `= 2 and ε2 = 1.

The algebras B(V (ε,2)) have GK-dim 2 and are presented by generators x1
and x2 with defining relations

x2x1− x1x2 +
1
2

x2
1, if ε = 1; (81)

x2x21− x21x2− x1x21, x2
1, if ε =−1, (82)

where x21 = x2x1 + x1x2.

This result explains why we restrict to ±1-blocks (recall that these means also
dimension 2).

Next we turn our attention to the setting one block plus one point, i.e. braided
vector spaces V =V1⊕V2, where V1 has a basis (xi)i∈I2 , V2 has a basis (x3). Our key
hypothesis is that the braiding has the shape

(c(xi⊗ x j))i, j∈I3 =

 εx1⊗ x1 (εx2 + x1)⊗ x1 q12x3⊗ x1
εx1⊗ x2 (εx2 + x1)⊗ x2 q12x3⊗ x2

q21x1⊗ x3 q21(x2 +ax1)⊗ x3 q22x3⊗ x3

 , (83)
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with ε2 = 1 and qi j ∈ k×, i, j ∈ I2. We do not want to have c2
|V1⊗V2

?
= id because we

know the answer, see Exercise 30; here ? is equivalent to

q12q21 = 1 and a = 0.

So c2
|V1⊗V2

is determined by q12q21, that we call the interaction, and a, of which

we consider a normalized version, that we call the ghost: G =

{
−2a, ε = 1,
a, ε =−1.

If

G ∈ N, then we say that the ghost is discrete.

Theorem 8. [4] Let V be a braided vector space with braiding (83). Then GK-dim
B(V )< ∞, if and only if the ghost is discrete and V is as in Table 1.

The meaning of the diagrams are:

• �, respectively �, says that V1 is a 1-block, respectively a −1-block.
• The label over the point is q22.

• The edge G says that q12q21 = 1; G is discrete but arbitrary unless explic-
itly given.

• The edge
(−1,1)

says that q12q21 =−1 and G = 1.

Table 1 Nichols algebras of a block and a point with finite GK-dim

V diagram GK-dim generators and relations

L(1,G ) �
G 1• G +3 k〈x1,x2,x3|x2x1− x1x2 +

1
2 x2

1,x1x3−q12 x3x1,
z1+G ,zt zt+1−q21q22 zt+1zt ,0≤ t < G 〉

L(−1,G ) �
G −1• 2 k〈x1,x2,x3|x2x1− x1x2 +

1
2 x2

1,
x1x3−q12 x3x1,z1+G ,z2

t , 0≤ t ≤ G 〉

L−(1,G ) �
G 1• G +3

k〈x1,x2,x3|x2
1,x2x21− x21x2− x1x21,

x1x3−q12 x3x1,x21x3−q2
12x3x21,z1+2G ,

z2
2k+1,z2kz2k+1−q21q22 z2k+1z2k,0≤ k < G 〉

L−(−1,G ) �
G −1• G +2

k〈x1,x2,x3|x2
1,x2x21− x21x2− x1x21,x2

3,
x1x3−q12 x3x1,x21x3−q2

12x3x21,z1+2G ,
z2

2k,z2k−1z2k−q21q22 z2kz2k−1,0 < k ≤ G 〉

L(ω,1) �
1 ω• 2

k〈x1,x2,x3|x2x1− x1x2 +
1
2 x2

1,
x1x3−q12 x3x1, z2, x3

3, z3
1, z3

1,0〉

C1 �
(−1,1) −1• 2

k〈x1,x2,x3|x2
1,x2x21− x21x2− x1x21,

x2
3, f 2

0 , f 2
1 , z2

1, x21x3−q2
12x3x21,

x2z1 +q12z1x2−q12 f0x2− 1
2 f1〉
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We next deal with the following situation: V =V1⊕V2, where V1 has dimension
2 and is of diagonal type, V2 has dimension 1 but the braiding between them is not
diagonal. Concretely, V is a braided vector space of dimension 3 with braiding given
in the basis (xi)i∈I3 , for some ε,qi j ∈ k×, i, j ∈ I2, by

(c(xi⊗ x j))i, j∈I3 =

 εx1⊗ x1 εx2⊗ x1 q12x3⊗ x1
εx1⊗ x2 εx2⊗ x2 q12x3⊗ x2

q21x1⊗ x3 q21(x2 + x1)⊗ x3 q22x3⊗ x3

 . (84)

Theorem 9. [4] Let V be as above. Then GK-dim B(V ) = ∞ if and only if ε =−1
and either of the following holds:

1. q12q21 = 1 and q22 =±1; in this case GK-dim B(V ) = 1.
2. q22 =−1 = q12q21; in this case GK-dim B(V ) = 2.

In conclusion, let G be an abelian group and V ∈ kG
kGY D of dimension 3 but not

of diagonal type. Then GK-dim B(V )< ∞ if and only if as a braided vector space,
it has the shape (83) or (84), and is determined by Theorems 8 and 9.

4.4 Rack type, infinite dimension

From now on, any rack is assumed to be isomorphic to a conjugacy class of a finite
group. The problem we deal with is:

For every finite rack X , every finite-dimensional vector space W and a ev-
ery 2-cocycle q : X × X → GL(W ), see (27), compute the Nichols algebra
B(X ,q) := B(V ), where V = kX⊗W and the braiding is given by (28).

Specifically, decide when dimB(X ,q)< ∞ or GK-dim B(X ,q)< ∞.

This is an enormous task and we are far away from a complete answer.2 Fortu-
nately there are methods to reduce the problem. Before stating them, we make some
comments.

Remark 6. Let X , W and q as above. Suppose that Y is an abelian subrack. Then
U = kY ⊗W is a braided vector subspace of diagonal type of (V,cq). Thus, if
dimB(Y,q|Y×Y ) = ∞, what can be verified from [45], then dimB(X ,q) = ∞.

Remark 7. For every finite rack X and every finite-dimensional vector space W , we
would need first to compute all 2-cocycles q : X ×X → GL(W ), up to some natural
equivalence. When dimW = 1 and X is indecomposable, an explicit description of
these 2-cocycles was given in [40].

2 Technically, it is enough to assume that q is faithful, what means that the map X → GL(V ),
x 7→ (eyw 7→ ex.yqxy(w)) is injective, but we omit this requirement for an easier exposition. As
well, for the classification of finite-dimensional pointed Hopf algebras, it is enough to assume that
q is finite, i.e. that its image is contained in a finite subgroup of GL(W ).
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4.4.1 Criteria of types C, D, F

The optimist sees the opportunity in every difficulty, and we proposed:

Definition 11. [11, 2.2] A finite rack X collapses if dimB(X ,q) = ∞ for any q.

Actually, this Definition accompanied the discovery of the criterion of type D
[11, 3.5]; later we found the criteria of type F [6, 2.4] and C [8, 2.3]. Let us first
state concretely these criteria and then discuss their implications

Definition 12. We say that a rack X is of type

• C when there are a decomposable subrack such that Y = R∏S, with

R = O InnY
r , S = O InnY

s , min{|R|, |S|}> 2 or max{|R|, |S|}> 4;

(see Exercise 8 for InnY ); and elements r ∈ R, s ∈ S satisfying

r. 6= s; (85)

• D if there are a decomposable subrack Y = R∏S, r ∈ R, s ∈ S such that

r . (s. (r . s)) 6= s; (86)

• F if there are subracks (Ra)a∈I4 and elements ra ∈ Ra, a ∈ I4, such that

– Ra .Rb = Rb, a,b ∈ I4;
– Ra∩Rb = /0, a 6= b ∈ I4;
– ra . rb 6= rb for a 6= b ∈ I4.

First of all, these definitions are well adapted to our goal.

Theorem 10. [11, 6, 8]. A rack X of type D, F or C collapses.

The proof of this Theorem follows is based on results from [26, 48, 53].
Second, these criteria can be phrased in group terms; that is, if we realize X as a

conjugacy class in a finite group G, then

• (85) means that rs 6= sr;
• (86) means that (rs)2 6= (sr)2;
• the other requirements can be stated in terms of suitable subgroups of G.

In other words, the criteria are really problems in finite group theory. Third, there
is another advantage, but to state it succinctly, we introduce more terminology.

Definition 13. A rack is austere if every subrack generated by two elements is either
abelian or indecomposable; sober if every subrack is either abelian or indecompos-
able; kthulhu if it is neither of type C, D nor F.

It is easy to see that sober =⇒ austere =⇒ kthulhu. Although the proof of the
following result is straightforward, it shows that the criteria are meaningful.
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Proposition 8. [11, 6, 8] Let X → Y be a surjective morphism of racks. If Y is not
kthulhu, then X is not kthulhu.

In fact, every finite rack projects onto a simple rack, by an evident recursive
argument.

Corollary 1. Let X be a rack that admits a surjective morphism of racks X→Y with
Y simple and not kthulhu. Then X collapses.

In other words, we do not need to compute cocycles, even less Nichols alge-
bras, for racks as in the Corollary (if we are interested in finite-dimensional Nichols
algebras).

Question 1. Are the criteria of types C, D, F valid, or adjustable, to finite Gelfand-
Kirillov dimension?

In conclusion, we arrive at the next problem.

Determine all simple racks that are not kthulhu.

Remembering now Theorem 2, we overview the present status of this problem.
The most substantial results are on simple racks associated to triples (L, t,θ). We
consider only the case t = 1, so that the racks in question are either conjugacy classes
in the non-abelian simple group L or in the semidirect product L o 〈θ〉. Indeed,
the racks associated to triples (L, t,θ) with t > 1 represent an even more serious
challenge. Some partial results appear in [24].

Finally, the affine simple racks seem to be insensible to these arguments. For
instance, the dihedral rack Dn, see Example 12, where n≥ 3 is odd, is sober.

4.4.2 Alternating and symmetric groups

We start by the alternating groups Am, m ∈ N≥5. Recall that AutAm = Sm, except
for m = 6. Thus we need to deal with conjugacy classes in Am and Sm. The conju-
gacy class OSm

σ of σ in Sm is determined by its type (1n1 ,2n2 , . . . ,mnm), saying that
the action of σ on Im has n1 fixed points, n2 orbits of 2 elements, etc. If σ ∈ Am,
then OSm

σ ∩Am is either the conjugacy class OAm
σ in Am, or else the union of two

conjugacy classes that are isomorphic as racks. Thus, the type is also an appropriate
label for them. We need a name for the set

F =

{
p ∈ N : p prime, p =

rk−1
r−1

, where r is a prime power and k ∈ N
}
.

Theorem 11. [11, 34] Let O be either OSm
σ , if σ /∈Am, or else OAm

σ if σ ∈Am. If O
is not listed in Table 2, then it collapses.
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Table 2 Kthulhu classes in a symmetric or alternating group

G type Reference

Sm (1m−2,2) kthulhu, [11, Remark 4.2]
Am (1m−3,3) austere, idem
Ap, p = 5,7 or /∈F (p) sober, [34, Remark 3.2 (b)]
Ap+1, p = 5 or /∈F (1, p) sober, [34, Remark 3.2 (c)]
A8 (24) austere, [11, Remark 4.2]
A7 (22,3) austere, idem
S6 23 kthulhu, isomorphic to the class of type (14,2)
A6 (32), (12,22) austere, [11, Remark 4.2]
S5 (2,3) sober, idem
A5 (1,22) idem

4.4.3 Finite simple groups of Lie type

The first examples of these appeared in the seminal paper of Evariste Galois! We
start by observing:

• The finite simple groups of Lie type are (related to) the kernels of the so-called
Steinberg endomorphisms of simple algebraic groups in positive characteristic.
An exposition of their construction and description, even assuming the classifi-
cation of the simple algebraic groups, is beyond the limits of this monograph.
The interested reader may consult the beautiful account [84] of the classification
of the finite simple groups, or the book [69] for a detailed presentation. Steinberg
endomorphisms of simple algebraic groups fall into three possible classes [69,
21 & 22.5], hence there are three families of finite simple groups of Lie type:
Chevalley, Steinberg and Suzuki-Ree groups. The complete list of the simple
groups in each family also appears in [6, p. 38].

• For each finite simple group of Lie type, the classification of the conjugacy
classes is a classical problem whose answer, again, is long and difficult. How-
ever there are two special classes, namely unipotent and semisimple, a termi-
nology that correctly suggests a relation with the theory of the Jordan form of a
linear transformation.

Here is the main result on these conjugacy classes, summarizing [6, 7, 8, 9].

Theorem 12. Let G be a Chevalley or Steinberg group and let O be a non-trivial
unipotent conjugacy class in G. If O is not listed in Table 3, then it collapses.

Remark 8. Let O be a non semisimple class in a finite simple group of Lie type G.
Then O has a subrack that is a unipotent conjugacy class in a smaller group and we
may argue inductively, as was effectively performed for PSLn(q) in [6]. Semisimple
classes appear to be more difficult to tackle, see partial results in [8].
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Table 3 Kthulhu unipotent classes in a finite simple Chevalley or Steinberg group

G q type Reference

PSL2(q) even or not a square (2) sober, [6, Lemma 3.5]
PSL3(2) (3) sober, [6, Lemma 3.7 (b)]

PSp2n(q), n≥ 2 even W (1)a⊕V (2) austere, [8, Lemma 2.14]
odd, 9 or not a square (1r1 ,2) idem

PSp4(q) even W (2) idem
PSUn(q) even (2,1, . . . ,1) austere, [9, Lemma 5.16]

Remark 9. Since PSL3(2) ' PSL2(7), the unipotent class of type (3) is really a
semisimple class in the former group.

Also, PSL2(q) ' PSp2(q), so we really have two families of kthulhu unipotent
classes in Table 3:

• the class Sp2n,q inside PSp2n(q), n≥ 1, and
• the class SUm,q inside PSUm(q).

They both correspond to the partition (2,1, ....,1), and, up to rack isomorphism,
are represented by xβ (1), where β is the highest root, see [7].

Indeed, the class W (2) in PSp4(q) for q even is due to the existence of a non-
standard graph automorphism in C2, in even characteristic, that interchanges short
with long roots. Hence, this class is isomorphic, as a rack, to Sp4,q.

These families are related: first, if q|q′, then

Sp2n,q ≤ Sp2n,q′ , SU2n,q ≤ SU2n,q′ .

Next the morphism of groups Sp2n(q) ↪→ Sp2n+2(q) implies that

Sp2n,q ≤ Sp2n+2,q.

When q = 2t and m = 2n are even, Sp2n(q)≤ SU2n(q), hence

Sp2n,2t ≤ SU2n,2t .

Finally, there are inclusions between the unitary groups that induce

SUn,q ≤ SUn+2,q, SU2n,q ≤ SU2n+1,q.

Naturally, we are eager to know:

Are there cocycles for Sp2n,q or SUm,q such that the corresponding Nichols
algebras are finite-dimensional?
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4.4.4 Sporadic groups

The classification of the finite simple groups contains, besides the alternating groups
and those of Lie type, 26 more examples that are called the sporadic groups; here we
discuss also the so-called Tits group. We refer to [84, Chapter 5] for an introduction
to these groups.

Theorem 13. [12, 35] Let G be a sporadic simple group different from the Moster
M and let O be a non-trivial conjugacy class in G or AutG. If O is not listed in
Table 4, then it collapses.

The proof of this last result was done using the information in the online version
of the Atlas, with the computer program GAP.

Remark 10. As for the Monster group M, these conjugacy classes are not known to
be of type D: 32A, 32B, 41A, 46A, 46B, 47A, 47B, 59A, 59B, 69A, 69B, 71A, 71B,
87A, 87B, 92A, 92B, 94A, 94B. All the rest are of type D.

The criteria of type C and F were not applied neither to these classes nor to those
in Table 4.

Table 4 Classes in sporadic, or automorphism of sporadic, groups not of type D

Group Classes Group Classes Group Classes

T 2A M11 8A, 8B, 11A, 11B Aut(M22) 2B
M12 11A, 11B M22 11A, 11B Aut(HS) 2C
M23 23A, 23B M24 23A, 23B Aut(Fi22) 2D
Ru 29A, 29B Suz 3A Aut(J3) 34A, 34B
HS 11A, 11B McL 11A, 11B Aut(ON) 38A, 38B, 38C
Co1 3A Co2 2A, 23A, 23B Aut(McL) 22A, 22B
Co3 23A, 23B J1 15A, 15B, 19A, 19B, 19C Aut(Fi′24) 2C
J2 2A, 3A J3 5A, 5B, 19A, 19B J4 29A, 43A, 43B, 43C
Ly 37A, 37B, 67A, 67B, 67C O′N 31A, 31B Fi23 2A

Fi22 2A, 22A, 22B Fi′24 29A, 29B B 2A, 46A, 46B, 47A, 47B

4.5 Rack type, finite dimension

Here we discuss finite-dimensional Nichols algebras of rack type. We first present
some examples that were computed by ad-hoc techniques. Then we summarize the
main results on Nichols algebras of decomposable Yetter-Drinfeld modules from
[53, 54].

The quadratic approximations of Nichols algebras associated to racks an abelian
cocycles are not difficult to describe explicitly by generators and relations, see [37]
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for a general formulation. Thus the problem is either to see whether the Nichols
algebra is quadratic or else to find higher degree relations.

If B(V ) is finite-dimensional, then there exists N ∈ N such that BN(V ) 6= 0,
BN+1(V ) = 0; we call N the top degree of B(V ). Notice that BN(V ) is the space
of integral of B(V ), hence dimBN(V ) = 1 and B(V ) satisfies Poincaré duality
dimB j(V ) = dimBN− j(V ) for all j ∈ I0,N .

4.5.1 Fomin-Kirillov algebras

Let m≥ 3. We consider two Nichols algebras associated to the conjugacy class Om
2

of transpositions in Sm, with respect to the following cocycles:

ε ≡−1; χ(ν ,ζ ) =

{
1 ν(i)< ν( j),
−1 ν(i)> ν( j),

where ζ = (i j), i < j.

The braided vector spaces (kOm
2 ,c

ε) and (kOm
2 ,c

χ) can be realized as Yetter-
Drinfeld modules M1 and M2 over kSm. Furthermore, if M ∈ kSm

kSm
Y D , M 6'M1,M2,

and m > 6, then dimB(M) = ∞ [11, Theorem 1.1].
We start by the quadratic approximations of B(Om

2 ,c
ε) and B(Om

2 ,c
χ).

Definition 14. [36, 70] Let FKm be the algebra presented by generators (x(i j))i< j∈Im

and relations

x2
(i j) = 0, i < j ∈ Im,

x(i j)x(kl)− x(kl)x(i j) = 0, i, j,k, l ∈ Im, all different,

x( jk)x(ik)− x(i j)x( jk)+ x(ik)x(i j) = 0, i < j < k ∈ Im,

x(ik)x( jk)− x( jk)x(i j)+ x(i j)x(ik) = 0, i < j < k ∈ Im.

This is the quadratic approximation of B(Om
2 ,c

χ); it is called the m-th Fomin-
Kirillov algebra since it appeared first in [36], albeit rediscovered in [70].

Proposition 9. If m = 3, 4 or 5, then the dimension, the Hilbert-Poincaré series
HFKm(t) and its top degree of the Fomin-Kirillov algebra FKm are given in Table 5.

Table 5 Fomin-Kirillov algebras FKm and their relatives Bm, m = 3,4,5

m dimension top degree Hilbert-Poincaré series

3 12 4 HFK3 (t) = (2)2
t (3)t

4 576 12 HFK5 (t) = (2)2
t (3)

2
t (4)

2
t

5 8294400 40 HFK5 (t) = (4)4
t (5)

2
t (6)

4
t

We turn to the quadratic approximation of B(Om
2 ,c

ε).
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Definition 15. [70] Let Bm be the algebra generated (x(i j))i< j∈Im with relations

x2
(i j) = 0, i < j ∈ Im,

x(i j)x(kl)+ x(kl)x(i j) = 0, i, j,k, l ∈ Im, all different,

x( jk)x(ik)+ x(ik)x(i j)+ x(i j)x( jk) = 0, i < j < k ∈ Im,

x(ik)x( jk)+ x( jk)x(i j)+ x(i j)x(ik),= 0, i < j < k ∈ Im.

These algebras are closely related; cf. Example 30.

Proposition 10. [83] B(kOm
2 ,c

ε) and B(kOm
2 ,c

χ) are twist-equivalent.

Corollary 2. If m = 3, 4 or 5, then Bm has the same dimension and the same Hilbert-
Poincaré series as those of FKm and thus they are also given in Table 5.

Indeed, it is enough to prove Proposition 9 or Corollary 2, as they are equivalent.
If m = 3 or 4, then Proposition 9 was proved in [36]; if m = 5, is due to Jan-Erik
Roos, with a computer program. If m = 3 or 4, then Corollary 2 was proved in [70]
using Grobner basis.

Theorem 14. If m = 3, 4 or 5, then FKm 'B(Om
2 ,c

χ).

The proof appears in [70] for Bm and m ≤ 4, and verified by Graña for m = 5
using Deriva–see details in [37]. By Proposition 10, it translates at once to FKm.

Let m≥ 6. The following three assertions are open Questions:

• FKm 'B(Om
2 ,c

χ) is a Nichols algebra (i.e. B(Om
2 ,c

χ) is quadratic).
• The dimension of FKm is finite.
• The dimension of B(Om

2 ,c
χ) is finite.

Some authors suggest that the last two assertions are false, see e.g. [67].

Needless to say, the analogous Question is stated for Bm and B(Om
2 ,c

ε); but both
Questions are equivalent by Proposition 10.

The following Example is close to B4.

Example 32. [15] The Nichols algebra of the conjugacy class O4
4 of 4-cycles in S4

with the constant cocycle −1 is quadratic and has the same dimension and Hilbert-
Poincaré series as as those of FK4 and thus are given in Table 5.

4.5.2 Finite-dimensional Nichols algebras of some affine racks

In the Examples below, we consider simple affine racks Aff(Fq,T ) and the constant
cocycle q≡−1. We set B(Fq,T ) :=B(Aff(Fq,T ),q). Notice that Aff(F3,2)'O3

2 ;
as we have seen, dimB(F3,2) = 12 = 3.22 and the top degree is 4 = 22.
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Example 33. [41] Let ω ∈ F4 such that ω2 +ω + 1 = 0. The tetrahedron rack is
T := Aff(F4,ω). Then B(F4,ω) is generated by (xi)i∈F4 with relations

x2
i = 0, i ∈ F4;

xix j + x(ω+1)i+ω jxi + x jx(ω+1)i+ω j = 0, i 6= j ∈ F4;

xω x1x0xω x1x0 + x1x0xω x1x0xω + x0xω x1x0xω x1 = 0.

Also, dimB(F4,ω) = 72 = 4.2.32 (observe that 2 = ϕ(4) where ϕ is the Euler
function) and the top degree is 9 = 32. The Hilbert-Poincaré series is the polynomial

(1+ t)2(1+ t + t2)2(1+ t3) = t9 +4t8 +8t7 +11t6

+12t5 +12t4 +11t3 +8t2 +4t +1.

Example 34. [46] There is a cocycle q on T = Aff(F4,ω) that takes values ±ξ ,
where ξ ∈G′3, such that dimB(T ,q) = 5184. The Nichols algebra B(X4,ω ,q) can
be presented by generators (xi)i∈F4 with defining relations

x3
0 = x3

1 = x3
ω = x3

ω2 = 0,

ξ
2x0x1 +ξ x1xω − xω x0 = 0, ξ

2x0xω +ξ xω xω2 − xω2x0 = 0,

ξ x0xω2 −ξ
2x1x0 + xω2x1 = 0, ξ x1xω2 +ξ

2xω x1 + xω2xω = 0,

x2
0x1xω x2

1 + x0x1xω x2
1x0 + x1xω x2

1x2
0 + xω x2

1x2
0x1 + x2

1x2
0x1xω + x1x2

0x1xω x1

+x1xω x1x2
0xω + xω x1x0x1x0xω + xω x2

1x0xω x0 = 0.

Example 35. (Graña, see [15]). We consider the affine racks Aff(F5,2), Aff(F5,3).
First, B(F5,2) is generated by (xi)i∈F5 with relations

x2
i = 0, i ∈ F5;

xix j + x−i+2 jxi + x3i−2 jx−i+2 j + x jx3i−2 j i 6= j ∈ F5;
x1x0x1x0 + x0x1x0x1.

Also, dimB(F5,2) = 1280 = 5.44 and the top degree is 16 = 42. The Hilbert-
Poincaré series is the polynomial

(1+t)2(1+t+t2+t3)(1+t+2t2+2t3+2t4+t5+t6)(1+t+2t2+2t3+t4+t5)

= t16 +5t15 +15t14 +35t13 +66t12 +105t11 +145t10 +175t9

+186t8 +175t7 +145t6 +105t5 +66t4 +35t3 +15t2 +5t +1.

Next the braided vector space associated to Aff(F5,3) with q≡−1 is dual to the
preceding; hence dimB(F5,3) = 1280 and the Hilbert-Poincaré series is the same.

Example 36. (Graña). We consider the affine racks Aff(F7,3), Aff(F7,5). First,
B(F7,3) is generated by (xi)i∈F7 with relations



An Introduction to Nichols Algebras 51

x2
i = 0, i ∈ F7;

xix j + x−2i+3 jxi + x jx−2i+3 j i 6= j ∈ F7;
x2x1x0x2x1x0 + x1x0x2x1x0x2 + x0x2x1x0x2x1.

Also, dimB(F7,3) = 326592 = 7.66 and the top degree is 36 = 62. The Hilbert-
Poincaré series is the polynomial

(1+ t)2(1+ t + t2)2

× (1+ t +2t2 +3t3 +4t4 +5t5 +4t6 +5t7 +4t8 +3t9 +2t10 + t11 + t12)

× (1+ t + t2 +2t3 +2t4 +2t5 +2t6 + t7 + t8 + t9)

× (1+ t +2t2 +2t3 +3t4 +3t5 +2t6 +2t7 + t8 + t9)

= t36 +7t35 +28t34 +84t33 +210t32 +462t31 +918t30 +1673t29 +2828t28

+4473t27 +6664t26 +9394t25 +12573t24 +16023t23 +19488t22 +22659t21

+25214t20 +26873t19 +27448t18 +26873t17 +25214t16 +22659t15 +19488t14

+16023t13 +12573t12 +9394t11 +6664t10 +4473t9 +2828t8 +1673t7

+918t6 +462t5 +210t4 +84t3 +28t2 +7t +1.

Next the braided vector space associated to Aff(F7,5), q≡−1, is dual to the pre-
ceding; hence dimB(F7,5) = 326592 and the Hilbert-Poincaré series is the same.

It was conjectured that the Examples in this §and the preceding exhaust all gen-
uine finite-dimensional Nichols algebras over groups (besides those of diagonal
type); see [47] for the precise formulation.

4.5.3 Decompositions with 2 summands

We start by the description of some decomposable braided vector spaces of rack
type with finite dimensional Nichols algebra. Then we state the main result of [53].
For simplicity we assume that k is algebraically closed and chark= 0.

Example 37. Let X = D4 = I2 σ

∏
σ I2, σ 6= id, see Exercise 10. Concretely, X =

{1,2}(34)
∏

(12){3,4}. Then kX = V1⊕V2, where V1 is spanned by (xi)i∈I2 , while
V2 is spanned by (x j) j∈I3,4 . Let p,q,r, t ∈ k×, p 6= 1 6= q, and ε,ε ′ ∈ G2. Define a
braiding on kX by
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c|V1⊗V1 is of diagonal type with matrix
(

q εq
εq q

)
,

c|V2⊗V2 is of diagonal type with matrix
(

p ε ′p
ε ′p p

)
,(

c(xi⊗ x j)i∈I2, j∈I3,4

)
=

(
x4⊗ x1 t2x3⊗ x1

ε ′x4⊗ x2 ε ′t2x3⊗ x2

)
,(

c(x j⊗ xi) j∈I3,4,i∈I2

)
=

(
x2⊗ x3 r2x1⊗ x3

εx2⊗ x4 εr2x1⊗ x4

)
.

(87)

Exercise 31. 1. Prove that this is indeed a braiding.
2. Assume that ε = ε ′ = 1. Consider the basis (yh)h∈I4 of kX where

y1 = rx1 + x2, y2 =−rx1 + x2, y3 = tx3 + x4, y4 =−tx3 + x4.

Then c on this basis is of diagonal type, with matrix
q q t −t
q q t −t
r −r p p
r −r p p

 .

If dimB(V ) < ∞, then p = q = −1. (Indeed, by Example 31, p,q ∈ G′2 ∪G′3,
then inspect the list in [45]). In this case the Dynkin diagram is

−1◦
1

rt

−rt

−1◦
3

−rt

−1◦
4

rt −1◦
2
;

if rt = 1 :
−1◦
1

−1

−1◦
3

−1

−1◦
4

−1◦
2
;

if rt =−1 :
−1◦
1

−1 −1◦
3

−1◦
4

−1 −1◦
2
;

Now
−1◦ −1 −1◦ , is a Dynkin diagram of Cartan type A2 at −1. By elemen-

tary arguments, its Nichols algebra has dimension 8. Therefore, if rt ∈ G2, then
dimB(V ) = 64. If rt /∈G2, then dimB(V ) = ∞ by inspection of the list in [45].

3. If ε = ε ′ = −1, then there is a twist φ as in Example 30 that reduces to the
previous case.

When ε,ε ′ ∈ G2 are arbitrary, the same result holds but the proof requires the
Weyl groupoid:

Theorem 15. [48, Theorem 4.6] Let (V,c) = (kD ,c) where c is given by (87). Then
dimB(V ) = 64.

Example 38. Let X =D3
∏{4}. Then kX =V1⊕V2, where V1 is spanned by (xi)i∈I3 ,

while V2 is spanned by x4. Let ω ∈ k×,ζ ∈ G3,q1,q2 ∈ k×. Recall cε from §4.5.1
and define a braiding on kX by



An Introduction to Nichols Algebras 53

c|V1⊗V1 = cε , c(x4⊗ x4) =−ωx4⊗ x4,

c(xi⊗ x4) = q1ζ
i−1x4⊗ xi, c(x4⊗ xi) = q2xi⊗ x4, i ∈ I3.

(88)

Exercise 32. Check that (88) satisfies the braid equation.

Thus kX = V1 ⊕V2 is a decomposition of braided vector spaces where V1 is
(kO3

2 ,c
ε), V2 is a point with label −ω ∈ G′6 and the braiding between them is pre-

scribed in the second line of (88).

Theorem 16. [53, Theorem 8.2] Assume that ω ∈ G′3 and that q1q2 = −ω2. Let
(V,c) = (k(D3

∏{4}),c) where c is given by (88). Then dimB(V ) = 10368 = 3427.

Example 39. Let X = D3
∏{4} as in the previous Example. Let V =V1⊕V2, where

V1 = kD3 is spanned by (xi)i∈I3 , but now V2 is kx4⊗k2. Let y4 = x4⊗ (1,0), y5 =
x4⊗ (0,1). Let ζ ∈G3, q1,q2 ∈ k×. Define a braiding on kX by

c|V1⊗V1 = cε , c|V2⊗V2 =−τ,

c(xi⊗ y4) = ζ
i−1y5⊗ xi, c(xi⊗ y5) = q1ζ

2(i−1)y4⊗ xi,

c(y4⊗ xi) = q2y4⊗ xi, c(y5⊗ xi) = q2xi⊗ y5, i ∈ I3.

(89)

Thus V =V1⊕V2 is a decomposition of braided vector spaces where V1 is (kO3
2 ,c

ε)
as in §4.5.1, V2 = ky4 ⊕ ky5 has dimension 2 and the braiding between them is
prescribed in the second and third lines of (89).

Exercise 33. Check that (89) satisfies the braid equation.

Theorem 17. [53, Theorem 8.4] Let (V,c) be the braided vector space with c given
by (89). Assume that q1q2

2 = 1. Then dimB(V ) = 2304 = 3228.

Example 40. Let X = D3 (45)
∏

(132),(123) I4,5; let σ = (132). Let V = kX = V1⊕V2,
where V1 = kD3 is spanned by (xi)i∈I3 and V2 is spanned by x4,x5. Let ζ ∈ G3,
a1,q1,q2 ∈ k×. Define a braiding on V by

c|V1⊗V1 = cε , c(xi⊗ x j) = a1ζ
2−δi j x j⊗ xi, i, j ∈ I4,5;

c(xi⊗ x4) = ζ
i−1x5⊗ xi, c(xi⊗ x5) = q1ζ

2(i−1)x4⊗ xi,

c(x4⊗ xi) = q2xσ(i)⊗ x4, c(x5⊗ xi) = q2xσ−1(i)⊗ x5, i ∈ I3.

(90)

Exercise 34. Check that (90) satisfies the braid equation and that V = V1⊕V2 is a
decomposition of braided vector spaces.

Theorem 18. [53, Theorem 8.1, 8.3] Let (V,c) be the braided vector space with c
given by (90).

1. Assume that ζ ∈G′3, a1 =−ζ 2 and q1q2
2 = ζ 2. Then dimB(V,c) = 10368.

2. Assume that ζ = 1, a1 =−1 and q1q2
2 = 1. Then dimB(V,c) = 2304.



54 Nicolás Andruskiewitsch

Example 41. Let X = D4 (56)
∏

σ1,σ2
I5,6. Here we number D4 as follows: D4 =

{1,3}σ

∏
σ{2,4}, where σ 6= id; that is, we change the numeration in Example 37

by 2↔ 3. Also, σ1 = (1234), σ2 = (1432). Let V = kX =V1⊕V2, where V1 = kD4
is spanned by (xi)i∈I4 , and V2 is spanned by x5,x6. Let q1,q2 ∈ k×, ζ1,ζ2 ∈ G4.
Define a cocycle on V by

(qi j)i, j∈I4 =


−1 −ζ 2

1 −ζ 2
1 −ζ 2

1
−1 −1 −1 −ζ 2

1
−ζ 2

1 −1 −1 −1
−ζ 2

1 −ζ 2
1 −ζ 2

1 −1

 , (qi j)i, j∈I5,6 =

(
−1 −ζ 3

2
−ζ 3

2 −1

)
,

(qi j)i∈I5,6, j∈I4 =

(
1 q2ζ 3

1 1 q2ζ1
ζ 2

1 q2ζ 3
1 1 q2ζ 3

1

)
, qi j =

{
ζ

1−i
2 , j = 5,

q1ζ
i−1
2 j = 6,

i ∈ I4.

(91)

Exercise 35. Check that (91) satisfies the cocycle relation.

Theorem 19. [52, Theorem 5.4] Let (V,cq) be the braided vector space with q given
by (91). Assume that ζ1ζ2 = q1q2 and ζ2 ∈G′4 . Then dimB(X ,q) = 262144.

Example 42. Let X = T
∏{5}. Let V = kX =V1⊕V2, where V1 = kT is spanned

by (xi)i∈I4 , and V2 is kx5. Let a,q1,q2 ∈ k×. Define a braiding on V by

c|V1⊗V1 = c−1, c|V2⊗V2 = a id,

c(xi⊗ x5) = q1x5⊗ xi, c(x5⊗ xi) = q2xi⊗ x5, i ∈ I4.
(92)

Thus V =V1⊕V2 is a decomposition of braided vector spaces where V1 is (kT ,c−1)
as in Example 33 and V2 = kx5 has dimension 1.

Exercise 36. Check that (92) satisfies the braid equation.

Theorem 20. [52, Theorem 2.8] Let (V,c) be the braided vector space with c given
by (92). Assume that −q1q2 ∈G′3 and aq1q2 = 1. Then dimB(X ,q) = 80621568.

The following remarkable result is the culmination of the series of papers [48,
51, 52, 53].

Theorem 21. [53] Let G be a finite non-abelian group and V = V1⊕V2 ∈ kG
kGY D ,

where V1 and V2 are simple, the support of V generates G and c2
|V1⊗V2

6= id. Assume
that dimB(V ) < ∞. Then as a braided vector space, V is isomorphic to one of the
Examples 37, 38, 39, 40, 41 or 42.

This formulation is simplified for the sake of the exposition; the actual result
gives precise information of the possible groups G, it does not require k to be alge-
braically closed, and it extends to all characteristics, with new examples in charac-
teristics 2 and 3.
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4.5.4 Decompositions with θ > 2 summands

The proof of Theorem 21 uses the Weyl groupoid and a detailed analysis of the
subgroups of the enveloping group of the racks involved. With similar techniques,
the same authors went on and obtained in [54] the analogous classification but for
θ > 2, again without restriction on the characteristic. The outcome is that essentially
Dynkin diagrams of simple Lie algebras are, up to just a few exceptions, the main
characters of the classification!

As the precise formulation of the main Theorem of [54] requires a careful prepa-
ration beyond the scope of these Notes, we refer the interested reader to the original
source [54].
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