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ABsTrACT. This is a survey on Nichols algebras of diagonal type with
finite dimension, or more generally with arithmetic root system. The
knowledge of these algebras is the cornerstone of the classification pro-
gram of pointed Hopf algebras with finite dimension, or finite Gelfand-
Kirillov dimension; and their structure should be indispensable for the
understanding of the representation theory, the computation of the var-
ious cohomologies, and many other aspects of finite dimensional pointed
Hopf algebras. These Nichols algebras were classified in [H3] as a notable
application of the notions of Weyl groupoid and generalized root system
[H1, HeY]. In the first part of this monograph, we give an overview
of the theory of Nichols algebras of diagonal type. This includes a dis-
cussion of the notion of generalized root system and its appearance in
the contexts of Nichols algebras of diagonal type and (modular) Lie su-
peralgebras. In the second and third part, we describe for each Nichols
algebra in the list of [H3] the following basic information: the generalized
root system; its label in terms of Lie theory; the defining relations found
in [Ang2, Ang3|; the PBW-basis; the dimension or the Gelfand-Kirillov
dimension; the associated Lie algebra as in [AAR2|. Indeed the second
part deals with Nichols algebras related to Lie algebras and superalge-
bras in arbitrary characteristic, while the third contains the information
on Nichols algebras related to Lie algebras and superalgebras only in
small characteristic, and the few examples yet unidentified in terms of
Lie theory.

Alles Gescheidte ist schon gedacht worden, man muf nur versuchen
es noch einmal zu denken.
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INTRODUCTION

What is a Nichols algebra?

1. Let k be a field, V' a vector space and ¢ € GL(V ®V'). The braid equation
on c is

(0.1) (c®id)(id®c)(c®id) = (id ®c)(c ® id)(id ®c).

If ¢ satisfies (0.1), then the pair (V,¢) is a braided vector space. The braid
equation, or the closely related quantum Yang-Baxter equation, is the key
to many developments in the last 50 years in several areas in mathematics
and theoretical physics. Ultimately these applications come from the repre-
sentations g, of the braid groups B,, on 7" (V') induced by (0.1), for n > 2.
Indeed, let I, := {1,2,...,n}, where n is a natural number. Recall that B,
is presented by generators (0;);cr,_, with relations

n—1
(0.2)  ojoy =00y, |j—k|>2, ojopo; =o0pojor, |j—Fkl=1
Thus o, applies 0; = idyey-1) ®c @ idygm—j-1).

2. Assume that chark # 2. Let ¢ be a symmetry, i.e. a solution of (0.1)
such that ¢ = id. Then g, factorizes through the representation g, of the
symmetric group S, given by s; := (jj + 1) — idyey-1n @c ® idyem-—j-1).
The symmetric algebra of (V,¢) is the quadratic algebra

Sc(V)=T(V)/(ker(c +1id)) = Bpnen,Se (V).

For instance, if ¢ = 7 is the usual transposition, then S.(V) = S(V), the
classical symmetric algebra; while if V' = V@ V] is a super vector space and ¢
is the super transposition, then S.(V) ~ S(V5)®A(V1), the super symmetric
algebra.

The adequate setting for such symmetries is that of symmetric tensor
categories, advocated by Mac Lane in 1963. In this context, the symmetric
algebra satisfies the same universal property as in the classical definition.
In particular, symmetric algebras are Hopf algebras in symmetric tensor
categories. Assume that chark = 0. Then, as vector spaces,

(0.3) SI(V) =T (V) =Im [, ~T™(V)/ker [,
where [ =3 .5 0n(s): T™(V) = T"(V).

3. The adequate setting for braided vector spaces is that of braided tensor
categories [JS]; there is a natural notion of Hopf algebra in such categories.

Let H be a Hopf algebra (with bijective antipode). Then H gives rise
to a braided tensor category #YD [Dr|, and consequently is a source of
examples of braided vector spaces. Namely, an object M € gyD, called a
Yetter-Drinfeld module over H, is simultaneously a left H-module and a left
H-comodule satisfying the compatibility condition

(0.4) d(h-v)= h(l)v(,l)S(h(g)) & h(g) “(0); he HveV.
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This is a braided tensor category with the usual tensor product of modules
and comodules, and braiding

(0.5)  cun(z®@Y)=2_1) Y@ 2(0), M,N e EYyD, z € M,y € N.

For M € BYD, ¢ = eprr € GL(M ® M) satisfies the braid equation (0.1).

If M € BEYD, then the tensor algebra T(M) is a Hopf algebra in 2D,
whose coproduct is determined by A(z) =z ® 1+ 1® z for z € M. Also
the tensor coalgebra T¢(M) is a Hopf algebra in £YD, with braided shuffle
product. See [Ro3, Proposition 9.

4. Let (V, ¢) be a braided vector space but ¢ not necessarily a symmetry. The
Nichols algebra B(V') = @pen,B" (V) of (V,¢) is a graded connected algebra
with a number of remarkable properties that has at least superficially a
resemblance with a symmetric algebral. For, let M, : S,, — B, be the
(set-theoretical) Matsumoto section, that preserves the length and satisfies
Mn(sj) = 0j. Let Qn =3 s 0n(Mn(0)) and J"(V) = ker Q,,. Define

(0.6) JV) = On22T"(V), B(V)=T{V)/TV).

Despite the similarity of (0.3) and (0.6), Nichols algebras have profound
divergences with symmetric algebras—and various analogies.

(a) The subspace J (V) is actually a two-sided ideal of T'(V'), so that B(V)
is a connected graded algebra generated in degree 1. However J (V)
is seldom quadratic, and it might well be not finitely generated. The
determination of J (V') is one of the central problems of the subject.

(b) Although (0.6) is a compact definition, it hides the rich structure of
Nichols algebras. Indeed, B(V) is a Hopf algebra in YD for suitable
H. Even more, it is a coradically graded coalgebra, a notion dual to
generation in degree one.

(c) If V is a finite-dimensional vector space, then S(V*) is identified with
the algebra of differential operators on S(V') (with constant coefficients).
An analogous description is available for Nichols algebras, being useful
to find relations of B(V).

(d) Nichols algebras appeared in various fronts. In [N], they were defined for
the first time as a tool to construct new examples of Hopf algebras. They
are instrumental for the attempt in [Wo| to define a non-commutative
differential calculus on Hopf algebras. Also, the positive part Uq+ (g) of
the quantized enveloping algebra of a Kac-Moody algebra g at a generic
parameter ¢ turns out to be a Nichols algebra [L3, Ro2, S1].

By various reasons, we are also led to consider:

e Pre-Nichols algebras of the braided vector space (V,c) [Mk, Ang5|;
these are graded connected Hopf algebras in gyD, say B = ®pen,B",
with B! ~ V that are generated in degree 1 (but not necessarily

¢ is customary to omit ¢ in the notation of the Nichols algebra.
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coradically graded). Thus we have epimorphisms of Hopf algebras in
#YD
T(V) B B(V).

e Post-Nichols algebras of the braided vector space (V, ¢) [AAR1]; these
are graded connected Hopf algebras in g)}D, say £ = Bpen, ", with
E' ~ V, that are coradically graded (but not not necessarily gener-

ated in degree 1). Thus we have monomorphisms of Hopf algebras
o H
in 5YD

B(V)S EC T¢(V).
Thus, the only pre-Nichols algebra that is also post-Nichols is B(V) itself.

Classes of Nichols algebras.

5. Nichols algebras are basic invariants of Hopf algebras that are not gener-
ated by its coradical [AS1, AC]; see the discussion in §1.7. One is naturally
led to the following questions:

Classify all V € BYD such that the (Gelfand-Kirillov) dimension of B(V)
is finite. For such V, determine the generators of the ideal J (V) and all
post-Nichols algebras B(V') — & with finite (Gelfand-Kirillov) dimension.

Now B(V) is a Hopf algebra in gyl? but the underlying algebra depends
only on the braiding ¢, and reciprocally the same braided vector space can
be realized in gyD in many ways and for many H’s. That is, we may deal
with the above problems for suitable classes of braided vector spaces.

Also, assume that (V,c) satisfies, for some 6 € N5,
(0.7) V=V &V, cVioVy)=V;eV, i,j € Io.

So, we may suppose that the B(V;)’s are known and try to infer the shape
of B(V') from them and the cross-braidings ¢|y,gy;; this viewpoint leads to a
rich combinatorial analysis [H1, HeY, AHS, HS1, HeV, AAH1].

6. The simplest yet most fundamental examples are those (V,¢) satisfying
(0.7) with dimV; =1, ¢ € I = Iy. Pick ; € V; —0; then (x;);¢r is a a basis of
V, and c(z; @ x5) = qij ¢ @ x4, 1,7 € I, where g;; € k*. We say that (V,c)
is a braided vector space of diagonal type if

qi # 1, for all i € 1.

Notice that this condition, assumed by technical reasons, is not always re-
quired in the literature. See [AAH1, Lemma 2.8|.

This class appears naturally when H = kI', where I" is an abelian group,
but also lays behind any attempt to argue inductively. Other classes of
braided vector spaces were considered in the literature:

(a) Triangular type, see [AAHL, U].
(b) Rack type, arising from non-abelian groups, see references in [A].
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(c¢) Semisimple (but not simple) Yetter-Drinfeld modules, [AAH1, HS2,
HS1, HeV] and references therein.

(d) Yetter-Drinfeld modules over Hopf algebras that are not group algebras,
see for example [AGM, GGi, HX, AGi, AA3|.

Nichols algebras of diagonal type.

7. Assume now that k is algebraically closed and of characteristic 0. The
classification of the braided vector spaces (V,¢) of diagonal type with finite-
dimensional B(V') was obtained in [H3]. (When chark > 0, the classification
is known under the hypothesis dimV < 3 [HeW, W]|). The core of the
approach is the notion of generalized root system; actually, the paper [H3]
contains the list of all (V, ¢) of diagonal type with connected Dynkin diagram
and finite generalized root system (these are called arithmetic). The list can
be roughly split in several classes:

o Standard type [AA1], that includes Cartan type [AS2]; related to the Lie
algebras in the Killing-Cartan classification.

o Super type |[AAY], related to the finite-dimensional contragredient Lie
superalgebras in characteristic 0, classified in [K1].

¢ Modular type [AA2], related to the finite-dimensional contragredient Lie
(super)algebras in positive characteristic, classified in [KaW, BGL].

o A short list of examples not (yet) related to Lie theory, baptised UFO’s.

The goal of this work is to give exhaustive information on the structure
of these Nichols algebras.

8. This monograph has three Parts. Part I is an exposition of the basics
of Nichols algebras of diagonal type. Section 1 is a potpourri of various
topics needed for further discussions. The bulk of this Part is Section 2
where the main notions that we display later are explained: PBW-basis,
generalized root systems, and so on. In Parts I and III we give the list of all
finite-dimensional Nichols algebra of diagonal type (with connected Dynkin
diagram) classified in [H3| and for each of them, its fundamental information.
For more details see Section 3, page 35.

Part I. General facts
1. PRELIMINARIES

1.1. Notation. In this paper, N = {1,2,3,...} and Ny = NU {0}. If
k < 6 € Ny, then we denote I 9 ={n € Ny : k <n < 6}. Thus Iy =1 .

The base field k is algebraically closed of characteristic zero (unless explic-
itly stated); we set k* =k —0. All algebras will be considered over k. If R is
an algebra and J C R, we will denote by (J) the 2-sided ideal generated by
J and by k(J) the subalgebra generated by J, or k[J] if R is commutative.
Also Alg(R,k) denotes the set of algebra maps from R to k.
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For each integer N > 1, Gy denotes the group of N-th roots of unity in
k, and Gy is the corresponding subset of primitive roots (of order N). Also
Goo = UnenGn, G, = Goo — {1}. We will denote by I' an abelian group
and by T the group of characters of T

We shall use the notation for ¢-factorial numbers: for ¢ € k*, n € N,

(0)g! =1,(n)q =1+q+...+¢"(n),! =(1)4(2)g- - (n)q-

1.2. Kac-Moody algebras. Recall from [K2] that A = (a;;) € Z9%% is a
generalized Cartan matriz (GCM) if for all 4,5 € T

(1.1) Qi = 2, Qij < 0, 1 75 j, Qajj = 0 <— Qj; = 0.

It is equivalent to give Cartan matrix or to give a Dynkin diagram, cf. [K2].
Also, A is indecomposable if its Dynkin diagram is connected, see [K2|;
and is symmetrizable if there exists a diagonal matrix D such that DA is
symmetric. Indecomposable and symmetrizable GCM’s fall into one of three
classes:

(a) Finite; those whose corresponding Kac-Moody algebra has finite dimen-
sion, i.e. those in Killing-Cartan classification.

(b) Affine; those whose corresponding Kac-Moody algebra has infinite di-
mension but is of polynomial growth.

(¢) Indefinite; the rest.

Let A be a GCM. We denote by g(A) the corresponding Kac-Moody al-
gebra, see [K2| and §2.8 below. Also Aﬁ denotes the set of positive roots, so

that A4 = Aﬂ U —Aﬂ is the set of all roots. Further, Aﬁ’re ; Aﬁ’im, are the
sets of positive real, respectively imaginary, roots.

1.3. Hopf algebras. We use standard notation for coalgebras and Hopf
algebras: the coproduct is denoted by A, the counit by ¢ and the an-
tipode by S. For the first we use the Heyneman-Sweedler notation A(x) =
> T(1)®T(2); the summation sign will be often omitted. All Hopf algebras are
supposed to have bijective antipode; the composition inverse of S is denoted
by S. Let H be a Hopf algebra. We denote by G(H) the set of group-like
elements of H. The tensor category of finite-dimensional representations of
H is denoted Rep H. If the group of group-likes G(H) =T is abelian, g € T’
and y € f, then P(XLQ)(H) denotes the isotypical component of type x of the
space of (1, g)-primitive elements.
For more information on Hopf algebras see [Mo, R].

1.4. Yetter-Drinfeld modules. The definition of these was given in §3 of
the Introduction.

As in every monoidal category, there are algebras and coalgebras in g)}D:

e (A, p) is an algebra in £YD means that A is an object in YD that bears
an associative unital multiplication g such that p: A® A — A and the
unit u : k — A are morphisms in #YD.
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e (C,A) is a coalgebra in gyD means that C is an object in g)ﬂD that bears
a coassociative counital comultiplication A such that A : C - C® C and
the counit € : C' — k are morphisms in g)}D.

The category of algebras in ZYD is again monoidal; if (A, pa), (B, up)
are algebras in #YD, then A®B 1= (A ® B, paggp) also is, where

(1.2) paewB = (A ® pp)(ida ®cp A ® idR).

Analogously, if (C,A¢), (D,Ap) are coalgebras in gyp, then C®D =
(C® D,Acgp) also is, where

(1.3) AC@D = (idc ®CC,D®idD)(Ac®AD).

We are mainly interested in the case H = kI', where I is an abelian group;
a Yetter-Drinfeld module over kI" is a I'-graded vector space M = @, M;
provided with a linear action of I' such that

(1.4) t- My, = M,, t,hel.

Here (1.4) is just (0.4) in this setting. Morphisms in ¥LYD are linear maps
preserving the action and the grading. Let M € EEIEJJD. Then we set

M} ={ve M :h-v=x(h)v,Vh €T}, tel, xel.
The braiding cyr v : M @ N — N @ M, cf. (0.1), is given by

(1.5) cun(z®y)=t-yQu, xeM,tel,yeN.

1.5. Braided Hopf algebras. Since it is a braided monoidal category,
there are also Hopf algebras in gyD. Let us describe them explicitly when
H = kI, T an abelian group, for illustration. A Hopf algebra in ﬂgyp is a
collection (R, ut, A), where

R € [1.YD;

(R, u) is an algebra in fLYD and (R, A) is a coalgebra in [LYD;

A: R — R®R and € : R — k are algebra maps;

R has an antipode Sg, i. e. a convolution inverse of the identity of R.

Let R be a Hopf algebra in fLYD. Then R#kI' = R®KkI with the smash
product algebra and smash coproduct coalgebra structures is a Hopf algebra,
called the bosonization of R by kI, see [Ma, Theorem 6.2.2].

The adjoint representation ad. : R — End R is the linear map given by

(1.6) ad. z(y) = p(p @ S)(id ®c) (A ®@id)(z ® y), z,y € R.

It can be shown that ad.z(y) = adz(y), =,y € R, where ad is the adjoint
representation of R#KI.
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1.6. Nichols algebras. We are now ready to discuss the central notion
of this monograph. At the beginning we place ourselves in the context of
a general Hopf algebra H with bijective antipode, although for the later
discussion from Section 2 on, H = kI, I" an abelian group, is general enough.

Let V € YD, Clearly the tensor algebra T(V) and the tensor coalgebra
T¢(V) are objects in #YD. Then:
o There is an algebra map A : T(V) — T(V)®T(V) determined by
Av)=v@1+1®0w, veV;
with this, (V) is a graded Hopf algebra in £YD.
o There is a coalgebra map p : T¢(V)QT¢(V) — T¢(V) determined by
pvel)=v=pu(lxwv), veV;
with this, 7¢(V) is a graded Hopf algebra in £YD [Ro3, Proposition 9].

o There is a morphism Q : (V) — T¢(V) of graded Hopf algebras in YD
such that Q; = idy. We denote Q, = Qn (), so that Q=" Q.

Definition 1.1. The Nichols algebra B(V') is the quotient of the tensor
algebra T'(V) by the ideal J(V) := ker(, which is (isomorphic to) the
image of the map Q. Thus, J(V) = @,>2J"(V), where J"(V) = ker {2,,.

Nichols algebras play a fundamental role in the classification of pointed
Hopf algebras, see [AS3] and §1.7 below. As algebras or coalgebras, their
structure depends only on the braided vector space (V,¢) and not on the
realization in YD, cf. Proposition 1.2 (a). We now state various alternative
descriptions of B(V), or more precisely of the ideal J (V) = @&p>2T™(V). To
start with we introduce the left and right skew derivations. See e.g. [AHS]
for more details. Let f € V*. Let 8}4 = 5f € EndT'(V) be given by

(L) o0 >= O5(v) = f(v), P €V,
(1.8) 8f(:1cy x)y + Zl‘ 95,(y), where c ' (f®x) = sz ® fi.

Analogously, let 0F = 9; € End T(V) be given by (1.7) and

(1.9)  Of(zy) = 20¢(y) + Zaf] x)yj, where ¢ N y® f) = Zf] R yj.

Let us fix a basis (z;);e1 of V and let (f;)ier be its dual basis; set 9; = 9y,
d; = 8f, i € I. There is a particular instance where (1.9) has a simpler
expression: assume that there exists a family (g;)icr in G(H) such that
d(x;) = g; ® x;, for every ¢ € I. Then (1.9) for all f is equivalent to
(1.10) Oi(zy) = x0;(y) + 0i(x) g - v, z,y e T(V), iel

Recall the Matsumoto section M, : S,, — B,,, cf. §4 of the Introduction.
Here are the promised alternative descriptions.
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Proposition 1.2. (a) Qn =) s on(Mn(0)).

(b) J(V) is mazimal in the class of graded Hopf ideals J = Gp>2J™ in
T(V) that are sub-objects in LYD.

(c) T (V) is mazimal in the class of graded Hopf ideals J = ®p>2J" in T'(V)
that are categorical braided subspaces of T (V') in the sense of [T2].

(d) J(V) is the radical of the natural Hopf pairing T(V*) @ T(V) — k
induced by the evaluation V* x V — k.

(e) If B = ®n>0B" is a graded Hopf algebra in LYD with BY =k, P(B) =
Bl ~V, B=k(BY), then B~ B(V).

(f) Let x € T™(V), n > 2. If 0¢(x) = 0 for all f in a basis of V*, then
ze J"V).

(g) Let x € T™(V), n > 2. If 5f(:1c) = 0 for all f in a basis of V*, then
zeJ"(V).

The proofs of various parts of this Proposition can be found e.g. in [AGr,
AHS, AS3, L3, Ro2, Ro3, S1|. The characterizations (a), (b) and (c) are
useful theoretically; in practice, (a) is applicable only for small n, mostly
n = 2. In turn, (d), (f) or (g) are suitable for explicit computations; notice
that an iterated application of (f) provides another description of J (V). In
fact the skew derivations 0y descend to B(V') and

() kerd; =k in B(V).
fevx

1.7. Nichols algebras as invariants of Hopf algebras. The applications
of Nichols algebras to classification problems of Hopf algebras go through
the characterization (e). As in every classification problem, one starts by
considering various invariants, seeking eventually to list all objects in terms
of them. To explain this, let us consider a Hopf algebra A (with bijective
antipode). If D, E are subspaces of A, then
DANE:={x€A:A(z) e DR A+ AR E}.

The first invariants of the Hopf algebra A are:
o The coradical Ag, which is the sum of all simple subcoalgebras.
o The coradical filtration (A )nen,, where A, = Ay, A Ap.
o The subalgebra generated by the coradical, denoted Ay and called the

Hopf coradical.
o The standard filtration (Ap,))nen,, where Ay, 1) = Ay A Ajg)-
o The associated graded Hopf algebra gr4 = @,>0gr" A4, g’ A = A,

gt A = Apy)/Ap)-

The first two are just invariants of the underlying coalgebra, while the last
three mix algebra and coalgebra information.

Clearly, Ap is a subalgebra iff Ag = Ap; in this case the method out-
lined below was introduced in [AS1, AS3|, see also [AS4], the extension
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being proposed in [AC|. For simplicity we address the problem of classi-
fying finite-dimensional Hopf algebras, but this could be adjusted to finite
Gelfand-Kirillov dimension. The method rests on the consideration of several
questions. First, one needs to deal with the possibility A = Ajj. Formally,
this means:

Question 1.11. Classify all finite-dimensional Hopf algebras generated as
algebras by their coradicals.

This seems to be out of reach presently; see the discussion in [AC]. Notice
that there are plenty of finite-dimensional Hopf algebras generated by the
coradical; pick one of them, say L. Recall that %J}D is the category of its
Yetter-Drinfeld modules. Let A be a finite-dimensional Hopf algebra and
suppose that A ~ L. Then gr A splits as the bosonization of L by the
subalgebra of coinvariants R, i.e.

gr A ~ R#L,
see e.g. [AS3, Ma| for details. Actually this gives two more invariants of A:
o R = ®&p>oR", a graded connected Hopf algebra in ﬁyD. It is called the
diagram of A.
o V=R»=an object of %yD called the infinitesimal braiding of A.
It is then natural to ask:

Question 1.12. Classify all graded connected Hopf algebras R in %yD such
that dim R < oc.

The subalgebra k(V) of R projects onto the Nichols algebra B(V), i.e.
it is a pre-Nichols algebra of V; this is how Nichols algebras enter into the
picture. Thus the classification of all finite-dimensional Nichols algebras in
f)}D is not only part of Question 1.12 but also a crucial ingredient of its
solution. Even more, in some cases all possible R’s are Nichols algebras. We
introduce a convenient terminology to describe them.

Definition 1.3. An object V € %yD is fundamentally finite if
(1) dim B(V) < oo;
(2) if R is a pre-Nichols algebra of V and dim R < oo, then R ~ B(V);
(3) if R is a post-Nichols algebra of V' and dim R < oo, then R ~ B(V).

Notice that there is some redundancy in this Definition: for example, if V
is of diagonal type such that (1) holds, then (2) and (3) are equivalent.

Thus, if the infinitesimal braiding V of A is fundamentally finite, then
R ~ B(V). In consequence, if every V € LYD with dimB(V) < oo is
fundamentally finite, then any R as in Question 1.12 is a Nichols algebra.

Assume that L is a cosemisimple Hopf algebra, i.e. the context where
Ao = Ajg) [AS3]. Then the subalgebra k(V) of the diagram R is isomorphic
to the Nichols algebra B(V). The question of whether every V € £YD with
dim B(V') < oo is fundamentally finite, when L = kG is the group algebra of
a finite group, is tantamount to
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Conjecture 1.4. [AS2| Ewery finite-dimensional pointed Hopf algebra is
generated by group-like and skew-primitive elements.

For instance, the Conjecture is true for abelian groups [Ang3|; this trans-
lates to the fact all braided vector spaces V' of diagonal type and dim B(V') <
00, are fundamentally finite.

Finally, here is the last Question to be addressed within the method [AC].

Question 1.13. Given L and R as in Questions 1.11 and 1.12, classify all
their liftings, i.e. all Hopf algebras H such that gr H = R#L.

To solve this Question, we need to know not only the classification of
all finite-dimensional Nichols algebras in %y@, but also a minimal set of
relations of each of them.

2. NICHOLS ALGEBRAS OF DIACONAL TYPE

In this Section we present the main features of Nichols algebras of diag-
onal type. The central examples are the (positive parts of the) quantized
enveloping algebras that where intensively studied in the literature, see for
instance [L1, L2, L3, Rol, Ro3, Y]. We motivate each of the notions by
comparison with the quantum case.

2.1. Braidings of diagonal type. In this Subsection and the next, we set
up the notation to be used in the rest of the monograph.

Let @ € N and I =Ip. Let q = (g;;)ijer € (k*)™! such that
(2.1) Gii # 1, for all i € 1.
Let ¢;j := ¢ijqji.- The generalized Dynkin diagram of the matrix q is a graph

with 6 vertices, the vertex 7 labeled with ¢;;, and an arrow between the
vertices ¢ and j only if ¢;; # 1, labeled with this scalar ¢;;. For instance,

C4 1 C4 Iill
given ¢ € G, and k a square root of ¢, the matrices (CH _1>, <R11 _1)
have the diagram:

11
SR

(2.2) o¢*

Let V' be a vector space with a basis (z;);er; define ¢ = c: VeV — VeV
by ¢(z; ®x;) = qij xj @, 1,j € L. Then c is a solution of the braid equation
(0.1). The pair (V,¢) is called a braided vector space of diagonal type.

Two braided vector spaces of diagonal type with the same generalized
Dynkin diagram are called twist equivalent; then the corresponding Nichols
algebras are isomorphic as graded vector spaces [AS3, Proposition 3.9]. If
they correspond to matrices q = (gi;)ijer and p = (pij)ijer, then twist
equivalence means that

4ij%ji = PijDji Qii = Dii forall 7 # j € I

For example, q and q' are twist equivalent.
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Now let I' be an abelian group, (g;)ier a family in T and (x;);er a family in
[. Let V be a vector space with a basis (2;);er; then V € ELYD by imposing
z; € Vo, i € I. The corresponding braided vector space (V,c) with ¢ given
by (1.5) is of diagonal type; indeed

c(x; @ x5) = xj(9:)2; ® i, i,j €l

2.2. Braided commutators. Let (V,c¢) be a braided vector space of diag-
onal type attached to a matrix q as in §2.1. As in [AARI], we switch to the
notation By = B(V), J; = J(V) and so on.

Let (a;)ier be the canonical basis of Z!. Tt is clear that T(V) admits a
unique Z-graduation such that degz; = a; (in what follows, deg is the Z!-
degree). Since c is of diagonal type, Jq is a Z'-homogeneous ideal and By is
Z!-graded [AS3, Proposition 2.10], [L3, Proposition 1.2.3].

Next, the matrix q defines a Z-bilinear form q : Z' x ZI — kX by
q(aj, ag) = g;i, for all j,k € I. Set qup = q(a, B), a, B € ZL; also, qig = qa,s-
Let R be an algebra in ﬁ‘gny. The braided commutator is the linear map
[,]c: R® R — R given by
(2.3) [z,yle = po(id—c)(z®y), z,y € R.

In the setting of braidings of diagonal type, braided commutators are also
called g-commutators. Assume that R = T(V') or any quotient thereof by
a Z!-homogeneous ideal in fLYD, so that R = @,z Ra- Let u,v € R be
ZI-homogeneous with degu = o, degv = 3. Then

(2.4) c(U®V) = (a0 D u.
Thus, if y € Ry, then
(2.5) (i, Yle = iy — dia Y4, i€l

Notice that ad.z(y) = [z,y]c in case x € V and y in R. The braided
commutator is a braided derivation in each variable and satisfies a braided
Jacobi identity, i.e.

(2.6) [u, vw], = [u,v], W+ qas v [u, w],,
(2.7) [uv, w], = qgy [u,w] v+ ulv,w],,
(2'8) Huv ’U]c ) w}c = [u7 [U, w]c]c — Qo v [u7 w]c + qsy [u7 w]c v,

for u, v, w homogeneous of degrees a, 8,7 € N?, respectively.
For brevity, we set

(29) Tij = ad, xi(a:j), 7 75] el
more generally, the iterated braided commutators are
(2.10) Tiqigeif, - (adc .rl'l) s (adc wikfl) (1‘%), 11,12, ,i € L.

In particular, we will use repeatedly the following further abbreviation:

(2.11) T(kl) *= Tk (k+1) (k+2)..1> k<l
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Beware of confusing (2.11) with (2.9). Also, we define recursively (4 1)a;4ma; >
m € N, by

(2.12) T2a,+a; = (ade 2:)%%; = Ty,

T(m+2)a;+(m+1)a; = [x(m+1)ai+maja (adc xi)xj]c-

These commutators are instrumental to reorder products. For example, we
can prove recursively on m that, for all m,n € N,

m
(2.13) ' (ade 1) xe = Z (?) qﬁ(m—j)qgij(adc :L‘1)”+jx2x§”7j,
J:O q11

2.3. PBW-basis and Lyndon words. An unavoidable first step in the
study of quantum groups U,(g) is the description of the PBW-basis (alluding
to the Poincaré-Birkhoff-Witt theorem), obtained for type A in [Bur, Rol, Y]
and for general g in [L1, L2]. Here g is simple finite-dimensional, for other
Kac-Moody algebras see Remark 2.18. Indeed, it is enough to define the
PBW-basis for the positive part U;(g), where it is an ordered basis of mono-
mials in some elements, called root vectors. These root vectors are defined
using the braid automorphisms defined by Lusztig; actually they can be ex-
pressed as iterated braided-commutators (2.10), and there as many as Aﬁ,
where A is the Cartan matrix of g. However they are not uniquely defined
(even not up to a scalar); it is necessary to fix a reduced decomposition of
the longest element of the Weyl group to have the precise order in which the
iterated commutators produce the root vectors. For general Nichols algebras
of diagonal type, there is a procedure that replaces the sketched method,
which consists in the use of Lyndon words, as pioneered in [Khl]|, see also
the detailed monograph [Kh2| (this approach also appeared later in [Ro4]).
In this Subsection we give a quick overview of this procedure, fundamental
for the description of the Nichols algebras of diagonal type.

We shall adopt the following definition of PBW-basis. Let A be an algebra.
We consider

o asubset ) # P C A;
o asubset ) # S C A provided with a total order < (the PBW-generators);
o a function h: S — NU{oo} (the height).

Let B = B(P, S, <, h) be the set
BZ{pS?...S?: teNg, s; €8, peP, s> > s, 0<ei<h(si)}.

If B is a k-basis of A, then we say that it is a PBW-basis. Our goal is to
describe PBW-bases of some graded Hopf algebras R in X.YD (with P =
{1}), following |[Khl1]; by bosonization, one gets PBW-bases of the graded
Hopf algebras R#kI" (with P =T this time).

Remark 2.1. In the definition of PBW-basis, one would expect that
(2.14) h(s) = min{t € N : s" = 0}, seS;
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however this requirement is not flexible enough. For instance, consider the
algebra B = k(x1, zo|zd — 2 z129 — qrox1), where N, M > 2 and q € k*.
Then B has a PBW-basis with P = {1}, S = {x1, 22}, 1 < x2, h(x1) = N
and h(z2) = oo. Kharchenko’s theory of hyperletters based on Lyndon words

does not apply with the stronger (2.14). Indeed let q = (;U_A{ wq > where
M

wy € Gy, wy € G5 then B is a quotient of T'(V) by a Hopf ideal, that
is homogeneous if M = N, so that Theorem 2.6 provides the PBW-basis
described, but without (2.14).

2.3.1. Let X be a set with 8 elements and fix a numeration z1, ...,z of X.
Let X be the corresponding vocabulary, i.e. the set of words with letters in
X, endowed with the lexicographic order induced by the numeration. Let
¢ : X — Ny be the length.

Definition 2.2. An element u € X — {1} is a Lyndon word if u is smaller

than any of its proper ends; i. e., if u = vw, v,w € X — {1}, then u < w.

The set of all Lyndon words is denoted by L.

Here are some basic properties of the Lyndon words.

(a) Let u € X— X. Then w is Lyndon if and only if for each decomposition
u = ujug, where uj,ug € X — {1}, one has ujus = u < ugu;.

(b) Every Lyndon word starts by its lowest letter.

(c) (Lyndon). Every word u € X admits a unique decomposition as a non-
increasing product of Lyndon words (the Lyndon decomposition):

(2.15) u:lllg...lr, liEL,lT§~--§ll;
the words [; € L appearing in (2.15) are the Lyndon letters of u.

(d) The lexicographic order of X turns out to coincide with the lexicographic
order in the Lyndon letters—i.e. with respect to (2.15).

(e) (Shirshov). Let u € X — X. Then u € L if and only if there exist
uy, u2 € L such that u; < ug and u = ujus.

Definition 2.3. The Shirshov decomposition of u € L — X is the decom-
position u = ujue, with ui,us € L, such that uy is the lowest proper end
among the ends of such decompositions of u.

Let us identify X with the basis of V defining the braiding and conse-
quently X with a basis of T(V). Using the braided commutator (2.3) and
the Shirshov decomposition, we define [ ], : L — EndT'(V), by

u, ifu=1lorué€ X;
[u], := < [[v],,[w] e, ifuelL,(u)>1andu=wvw is the Shirshov
decomposition of u.

The element [u], is called the hyperletter of u € L. This leads to define a
hyperword as a word in hyperletters. We need a more precise notion.
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Definition 2.4. A monotone hyperword is a hyperword [ul]lzl . [um]lgm,

where u; > -+ > uy, are Lyndon words.

Remark 2.5. |[Kh2, Lemma 2.3] Let w € L, n = {(u). Then [u], is a linear
combination

[u]c =u + Z pZZ7
u<z€X: deg z=degu
where p, € Z[g;j : 1,5 € 1.

The order of the Lyndon words induces an order on the hyperletters.
Consequently we consider the lexicographic order in the hyperwords. Given
two monotone hyperwords W, V', it can be shown that

W=lwi]....[wn]. >V =[v]....[0d,, wi>-2>wp,, vi>-->1,

ifand only if w =wy ... wy >v=201...0s.

2.3.2. Let I be a homogeneous proper 2-sided ideal of T'(V') such that INV =
0, R=T(V)/I, ®: T(V) — R the canonical projection. Set

GI::{UGX:UGE Z kz—i—[}.

u<zeX

Let u,v,w € X such that u = vw. If v € Gy, then v,w € Gj. Hence every
u € Gy factorizes uniquely as a non-increasing product of Lyndon words in
Gr. Then the set 7(Gy) is a basis of R |[Khl, Ro4].

Assume next that I is a homogeneous Hopf ideal and set P = {1}, Sy :=
GrN L and hy : St — N>g U {oo} given by
hr(u) = min{tEN:ut € Z kz—l—]}.
u<zeX
Let By := B(P,n([S1].),<,hr), see the beginning of this Subsection. The
next fundamental result is due to Kharchenko.

Theorem 2.6. [Khl] If I is a homogeneous Hopf ideal, then By is a PBW-
basis of T(V')/1.

That is, we get a PBW-basis whose PBW-generators are the images of
the hyperletters corresponding to Lyndon words that are in G7.

The finiteness of the height in the PBW-basis of Theorem 2.6 is controlled
by the matrix q:

Remark 2.7. [Kh2, Theorem 2.3] Let v € Sy such that h;(v) < oo, degv = a.
Then oo € Goo and hy(v) = ord gaa-

By Remark 2.7, it seems convenient to consider PBW-basis B(P, S, <, h)
of By with the following constraints:

Definition 2.8. A PBW-basis is good if P = {1}, the elements of S are
Z!-homogeneous and h(v) = ord g for v € S, degv = a.
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Example 2.9. If dim B; < oo, then the PBW-basis Bz, of By as in Theorem
2.6 is good. Indeed, hz,(v) < oo for all v € Sz,. However, there are many
examples of v € Sz, degv = a with gaa € Goo, With h g, (v) = oco.

For instance, take § = 2. Set for simplicity y, = (ad.z1)"z2, n € N.
Assume that there exists k € N such that a = ka1 +as is a root; particularly,
yr # 0. Notice that da(yx) = by 2}, where by = Hj-:é(l — q¥,q12), hence
(k) b # 0. We claim that

a1
(yr)® = 0'in By = Y1 =0, Qoo = —1.
Indeed, (yx)? = 0 iff 1 (y7) = 0 = da(y?); but % holds always. Then
Da(yi) = bi(ynt + g51q22 =iyr)

2.13 k
L | (1 + Goe) et + 30 <]>

]:]_ q11

k(k—j) k—3j k k—j
qi1 12 " 991922 Yk+;jTq

and this is 0 iff oo = —1 and yr41 = 0 (the last implies yp4; = 0 for all
j € N). Thus, if goa = —1 but ygy1 # 0, then y; has infinite height by

-2
Remark 2.7. Concretely, the matrix q with Dynkin diagram o 1 o ,
where g # —1, gives the desired example by k& = 1.

Let us illustrate the strength of Theorem 2.6 in the following example.

Example 2.10. Let ¢ € Gy, N > 1, g1o € k* and q = (qqu_l q;2>’ S0
12
that 6 = 2. Then a PBW-basis of By is
B = {aftatpal 10 < e < N,j=2,12,1}.
Here we use the notation (2.10).

Let us outline the proof of this statement.

o The quantum Serre relations 112 = 0, w221 = 0 hold in B;. This can
be checked using derivations, see Proposition 1.2 (f). Alternatively, apply
|AS2, Appendix].

o The power relations z = 0, 2) = 0, 2, = 0 hold in By. The first two
follow directly from the quantum bilinear formula, and the third from the
quantum Serre relations using derivations. By Remark 2.7, we conclude

that hyg,(z2) = hg,(z12) = hg,(72) = N.

o The set B generates the algebra By, or more generally any R where the
quantum Serre and the power relations hold. This follows because the
subspace spanned by B is a left ideal.

o The element 122 € Sz, = Gz, N L. Now x12 = [21%2]c; hence B, being
a subset of By, is linearly independent by Theorem 2.6. Alternatively,
one can check the linear independence of B by successive applications of
derivations. Together with the previous claim, this implies the statement.
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Remark 2.11. The results of the theory sketched in this Subsection depend
heavily on the numeration of the starting set X, that is on a fixed total order
of X. Changing the numeration gives rise to different Lyndon words and so
on. The outputs are equivalent but not equal.

2.4. The roots of a Nichols algebra. Let (V, c) be a braided vector space
of diagonal type attached to a matrix q as in §2.1. Now that we have the
PBW-basis By of By given by Theorem 2.6, whose PBW-generators (i.e.
the elements of S, ) are Z!-homogeneous, we reverse the reasoning outlined
at the beginning of the previous Subsection and define following [H1]| the
positive roots of By as the degrees of the PBW-generators, and the roots as
plus or minus the positive ones; i.e.

(2.16) Al = (deg u)ues,, , AT=ALU-AL.

In principle, there might be several u € Sz, with the same deg. It is
natural to define the multiplicity of 5 € Z! as

mult 3 = mult, 8 = [{u € Sz, : degu = S}|.

Definition 2.12. |H3| The matrix q (or the braided vector space (V,¢), or
the Nichols algebra By) is arithmetic if |A1| < co.

For instance, if dim By < oo, then (V,¢) is arithmetic. If B, is arithmetic,
then all roots are real, i.e. conjugated to simple roots by the Weyl groupoid;
see the discussion in 2.7.3 below. Using this, one can prove:

Remark 2.13. Assume that By is arithmetic.

o The heights of the generators in Sz, satisfy (2.14).
o A} does not depend on the PBW-basis: if B = B(P, S, <, h) is any PBW-
basis with P = {1} satisfying (2.14), then Al = (degu)ucs. See [AA1].

We next explain the recursive procedure to describe the hyperletters.

Remark 2.14. Assume that q is arithmetic. Then every root has multiplicity
one |CH1J, so we can label the Lyndon words with A%; let I3 be the Lyndon
word of degree 8 € Ai. The Lyndon words Ig’s are computed recursively
[Ang2, Corollary 3.17]: l,, = x;, and for 8 # «,

(2.17) lﬁ = max{l51l52 : 01,00 € Al , 01+ 02 =0, 15 < l52}.

Let xg be the hyperletter corresponding to the Lyndon word lg, 8 € Ai.
Then

To; = i, 1]

(2.18) xg = [X5,,Ts,)e, if lg = l5,1s, is the Shirshov decomposition.

This gives explicit formulas for the PBW-generators of the PBW-basis B,
given by Theorem 2.6.
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Braidings of Cartan type. To explain the importance of the roots as defined
in (2.16), we discuss the class of braidings of Cartan type, closely related
with quantum groups.

Definition 2.15. [AS2| The matrix q (or V, or By) is of Cartan type if there
exists a GCM A = (a;;) such that

(2.19) qijqj5i = qf;j, Vi,j cl.
Assume that this is the case. We fix a choice of A by
(2.20) —N; <a;; <0, Vj # i€l when N; :=ordg; € (1,00).

This was the first class of Nichols algebras to be studied in depth.

Theorem 2.16. [H1|, see also [AS2]. Let q be of Cartan type with GCM A
indecomposable and normalized by (2.20). Then the following are equivalent:

(1) The Nichols algebra By is arithmetic.
(2) The GCM A is of finite type.

Consequently, the following are equivalent:

(1) The Nichols algebra By has finite dimension.
(2) (a) The GCM A is of finite type.
(b) N; € (1,00) for all i € L.

Remark 2.17. If q is of Cartan type as in Theorem 2.16, (2a) holds but
N; = oo (for one or equivalently for any i), then GK-dim B, = |AZ|.
Remark 2.18. Let q be as in Theorem 2.16. Then A% D A%,

(a) [H1, AS2| If A is of finite type, then A] = A%

(b) Assume that A is of affine type. If N; = oo for some (or all) i, then

Ai = Aﬁ [Be, Da]. When N; < oo for all i, the last equality does not
hold.

(c) In any case, A% C A% and thus the function
n— pn = {8 € AL 1 |B] = n}, n €N,
has polynomial growth. Here [3| =", n;, if =), njoy.
(d) If Ais of indefinite type, then we do not know if (g, )nen has polynomial

growth.
We discuss an example for the last claim in (b). Let ¢ € Gy, N > 2, and

q with Dynkin diagram of o ; this is of affine Cartan type Agl), see

(3.3). The height of the (imaginary) root & = aq+ae is infinite since o = 1.
Now the only possible root vector of degree 2« is y = [z1, [z12, Z2]¢]c. Since

(qi2 — 1)(qi1 + 1)(g22 + 1)(q11q12 — 1)(q12g22 — 1) # 0,

we conclude from [AAH2| that y is a root vector if and only if g11(q12)?qo2 #
—1,ff N # 4. Soif ¢? = —1, then 2a ¢ Al.
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Before explaining how to describe the positive roots for an arbitrary q we
need the Drinfeld double of the bosonization of 3.

2.5. The double of a Nichols algebra. The natural construction of the
Drinfeld double of the bosonization of a Nichols algebra by an appropriate
Hopf algebra was considered by many authors. For a smooth exposition, we
start by a general construction as in [ARS]. Let q = (gi;)i je1 be a matrix of
elements in k™ such that ¢; # 1 for all ¢ € I. Let G be an abelian group. A
reduced YD-datum is a collection D,eq = (L;, K;,¥;)ie1 where K;, L; € G,
9; € @, 1 € I, such that

(221) qij = ﬁJ(KZ) = ﬂZ(L]) for all i, €1,
(222) K;L; 75 1 for all 7 € I.
Let us fix a reduced YD-datum as above and define
V = ®icika; € ESYD, with basis z; € Vi, i € 1,
-1
W = @erky; € KGYD, with basis y; € W, i €L

Let U(Dyeq) be the quotient of T(V & W)#kG by the ideal generated by
the relations of the Nichols algebras J (V) and J (W), together with

ziy; — 95 (Ky)yas — 0y (KiLi — 1), i,j €L
Thus U(D;eq) is a Hopf algebra quotient of T'(V @ W)#kG, with coproduct
determined by A(g) =g®g, g € G,
Alx;) =2, @14+ K; ® x4, Aly)) =y @ 1+ L; @y, i€l
Our exclusive interest is in the examples of the following shape.

Example 2.19. Let I' be an abelian group. A realization of q over I is a pair
(g, x) of families g = (gi)ier in I', X = (Xi)ier in I, such that g¢;; = xi(g;)
for all i, J € I. Agy realization gives rise to a reduced datum D,.q over
G=TxT,wherel'=(x;:i1€l) =T, by

K = g;, Li = xi, Ui = (Xi» 94), i€l
To stress the analogy with quantum groups, we set as in [ARS, H4, HeY],
(2.23) E; = x;, F; = yixi_l in U(Dyeq) for i =1,2.

Let U(Dyeq) The the subalgebra of U(D,q) generated by the F;’s, respec-
tively the E;’s.

Example 2.20. We shall consider the following particular instance of Ex-
ample 2.19, where («;)scr is the canonical basis of ZLI:

r=17, 9i = Xi 28— k%, xj(a) = g, i€l
In this context, we set Uy := U(Dyeq).

In the following statement, quasi-triangular has to be understood in a
formal sense, as the R-matrix would belong to an appropriate completion.
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Theorem 2.21. Let D,oq be a reduced datum as in Example 2.19. Then
U(Dyeq) is a quasi-triangular Hopf algebra.

Proof. (Sketch). We argue as in [ARS, Theorem 3.7]. Let H = B(V)#kI'
and U = B(W)#kI'. There is a non-degenerate skew-Hopf bilinear form
(]): H®U — k given by

(zily;) = 05, (vi0) =0, (gly;) =0, (g]9)=9(9), geTl,del,ijel

Then U(Dyeq) ~ (URH),, where 0 : (URQH)®(U®H) — k is the 2-cocycle
given by o(f @ h, f' @ h') = e(f)(h|f")e(R') for f, f € H* and h,h' € H.
Therefore U(D,eq) is the Drinfeld double of H. O

2.6. The Weyl groupoid of a Nichols algebra. The proofs of the claims
on braidings of Cartan type, see §2.4, rely on the action of the braid group
described by Lusztig [L1, L2], as generalized in [H1|. It turns out that this
action has a subtle extension to the context of Nichols algebras of diagonal,
but not necessarily Cartan, type. As we shall see, the adequate language to
express this extension is that of groupoids acting on bundles of sets.

Recall that (V,c) and q are as in §2.1.

Definition 2.22. The matrix q (or V, or By) is admissible if for all i # jin I,
the set {n € No : (n +1)g, (1 — ¢}tgijq;:) = 0} is non-empty. If this happens,
then we consider the matrix C9 = (cgj) € Z™! given by ¢}, = 2 and

(2.24) cgj =—min{n € No : (n+ 1)y, (1 — ¢j;gijq;:) =0}, i #J.

It is easy to see that C9is a GCM. If q is of Cartan type with GCM A, then
C9 = A. Thus the matrix C9 suggests an approximation to Cartan type.

The GCM €9 induces reflections s] € GL(ZY), namely

siaj) = a; — ngai, i, €L
If q is of Cartan type, then these reflections generate the Weyl group W and
lift to an action of the braid group (corresponding to W) on Uy(g) [L1, L2].
In general this is not quite true, but a weaker claim holds. Namely, for ¢ € I,

let p;(q) be defined by
(2.25) pi(@)jx = a(s{(ey). s} (), j.k €L
The new braiding matrix p;(q) might be different from ¢, but nevertheless:

Theorem 2.23. [H1| The reflection s} lifts to an isomorphism of algebras
Ti = Uy — Uy, (q)-

Recall U, from Example 2.20. See [HS2] for a generalization and categor-
ical explanation of this result.

Assume now that GK-dim By < oo, for instance that dim By < oco. Then
q is admissible by [Ro3]; since GK-dim B,,q) < 0o by Theorem 2.23, p;(q) is
also admissible. It can be shown without complications that

(2.26) cgj = c;)j(q) for all 4,5 € L.
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The fact that p;(q) might be different from q is dealt with by considering

(2.27) Xq = {pik "'pizpil(q)> ke No, il,...,ik EH}.

Thus all p € X; are admissible. The set X; comes equipped with maps
pi + Xqg — Xq given by (2.25) for each p € Xy. It is easy to see that p? = id.

Thus each p € X, gives rise to a Nichols algebra with finite GK-dimension
(or finite dimension, according to the assumption). The generalized root
system of the Nichols algebra By is the collection of sets

(2.28) (AP)pex,-
We also have reflections st for i € I and p € Xy; they satisfy
(2.29) sP(AP) = APilP).,

Altogether, the reflections 3';, 1 € I and p € X,, generate the so called
Weyl groupoid W, as a subgroupoid of &y x GL(Z%) x Xy. By (2.26) and
(2.29), the Weyl groupoid W acts on (C?)pex, and on the generalized root
system (AP)pex,, that we think of as bundles of matrices and sets over &j,
respectively. These actions are crucial for the study of Nichols algebras of
diagonal type.

2.7. The axiomatics. The ideas outlined in §2.6 fit into an axiomatic
framework designed in [HeY] for this purpose. We overview now this ap-
proach following the conventions in [AA2]. We denote by Sy the group of
symmetries of a set &

2.7.1. Basic data. All the combinatorial structures in this context are sorts
of bundles over a basis with prescribed changes, that we formally call a basic
datum. This is a pair (X, p), where I # () is a finite set, X # () is a set and
p: I — Sy satisfies p? = id for all i € I. We assume safely that I = Iy, for
some 0 € N. We say that the datum has base X’ and size I (or 6).

We associate to a basic datum (X, p) the quiver
Q, ={0] == (z,1,pi(x)) :iel,x € X}

over X' (i.e. with set of points &), source s(c¥) = p;(z) and target t(o}) =
x, x € X. The diagram of (X,p) is the graph with points X and one
arrow between z and y decorated with the labels i for each pair (z,1, p;(z)),
(pi(x),i,z) such that z # p;(x) = y. Thus we omit the loops, that can be
deduced from the diagram and 6. Here is an example with 6 = 4:
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(2.30) 3@;34 o o
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We say that (X, p) is connected when Q, is connected. Also, we write
x ~ y if x,y are in the same connected component of Q,,.

2.7.2. Coxeter groupoids. we assume that the reader has some familiarity
with the theory of groupoids. For example, if X is a set and G is a group,
then X x G x X is a groupoid with the multiplication defined by

(x’g7y)(y7h7z):($7gh7z)7 x7y7Z€X7 g7h€G7
while (x, g,y)(y, h, 2) is not defined if y # y'. Recall that

¢ A Coxeter matrix of size I is a symmetric matrix m = (my;); jer with
entries in Zx>o U {400} such that m; = 1 and m;; > 2, for all i # j € L.

& The forgetful functor from the category of groupoids over X to that of
quivers over X admits a left adjoint; i.e. every quiver Q over X determines
a free groupoid F(Q) over X', whose construction is pretty much the same
as the construction of the free group.

& Consequently we may speak of the groupoid G presented by a quiver Q
with relations N (which has to be a set of loops), namely G = F(Q)/N,
where N is the normal subgroup bundle of F'(Q) generated by N.

We fix a basic datum (X, p) of size I. We denote in the free groupoid
F(Q,), or any quotient thereof,

T o x Py (=) Piy_1°"Pig (z)
(2.31) 05, Ciy 03, = 030,00y,

i. e., the implicit superscripts are the only possible allowing compositions.

Definition 2.24. A Cozeter datum for (X, p) is a bundle of Coxeter matrices
M = (mx>xe)€; m® = (m%)i,jeﬂ, such that

(2.32)  s((o¥a;)™i) =, i,j €T, T € X,
(2.33) mi; = mip;(x) forallz € X, 4,5 € L.

Alternatively, we say that (X, p,M) is a Coxeter datum. The Cozeter
groupoid YW = W(X, p, M) is the groupoid generated by Q, with relations

(2.34) (0%0;)™i = id,, i,jel, reX.

The requirement (2.32) just says that (2.34) makes sense.
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Example 2.25. A Coxeter grupoid over a basic datum of size one is just a
Coxeter group.

It is equivalent to give a groupoid over a basis X or an equivalence relation
on X together with one group for each equivalence class. Coxeter groupoids
are more intricate than equivalence relations with one Coxeter group for each
class. We now describe all Coxeter groupoids over a basis of 2 elements.
Example 2.26. [AA2] Let (X, p) be the basic datum of size 6 with X =
{z,y} and ¢ loops at each point, that we label as follows:

041,..,0
e ——— @0,
z y
Let m® = (my;); jer and mY = (n;;); jer be Coxeter matrices such that

Myp, Nip € 27, ie€ly, helpr1p, what is tantamount to (2.32),

my; = ngj, k€lpyrp, j €L what is tantamount to (2.33).

By symmetry, m;, = nji, for k € I;4 19, j € I. Set
min  Nip .
=—, 1€y, hel .
7 5 ¢ 41,0

The associated Coxeter groupoid is isomorphic to X x H x X, where H is
the group presented by generators

Cih =

Siy tiv 1€ H(, Uh,s h e ]Iﬁ-i-l,@v h < 07

with defining relations

(SiSj)mij =€ = (titj)mj, i,j c ]Ig;
(sitin)“h = e, t€ly, h €l
u;ﬁqhk = e, h, ke ]I”l,g, h < k.

Here we denote
Upk = URUKL - - U1 = Uy, tin = Upgtittyy, €Ly, h <k €l
In particular, we see that the isotropy groups of a Coxeter groupoid are not

necessarily Coxeter groups.

In a Coxeter groupoid, we may speak of the length and a reduced expres-
sion of any element, as for Coxeter groups.

2.7.3. Generalized root systems. We are now ready for the main definition
of this Subsection (that is not the same as the one considered in [Sel]). Let
R = (X, p) be a connected basic datum of size I = Ip. Recall that {o;}ier
denotes the canonical basis of Z!.

Definition 2.27. [HeY| A generalized root system for (X, p) (abbreviated
GRS) is a pair (C, A), where
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o C = (C%)zex is a bundle of generalized Cartan matrices C* = (c;)i jer,
cf. (1.1), satisfying

(2.35) o= i forall z € X, 4,5 € L.
As usual, these GCM give rise to reflections s? € GL(Z') by
(2.36) si (aj) = aj — ¢, jel, ielzeX.

By (2.35), s7 is the inverse of sfi(x).

e A= (A%),cx is a bundle of subsets A C Z! (we call this a bundle of root
sets) such that

(2.37) AT = AT U A, ? .= +(A°NN]) C £N;;
(2.38) A" N Za; = {:l:Oéi};

(2.39) sT(AT) = APi(@) cf. (2.36);

(240)  (pipy)™ i (x) = (), m; = [A* N (Noo + Noayj),

forallz e X, i#£jel.
We call A%, respectively A”, the set of positive, respectively negative, roots.

Definition 2.28. Let R = (C, A) be a generalized root system.

o The Weyl groupoid W is the subgroupoid of X x GL(Z?) x X generated
by all ¢F = (z,s7,pi(z)), i€,z € X.

o If x € X, then we set m® = (my;); jer, where m{; is defined as in (2.40).
By the axioms above, M = (m*),cx is a Coxeter datum for (X, p).

(

o Let x,y € X. If we W(x,y), then w(A*) = AY, by (2.39). Thus the sets

of real and imaginary roots at x are

(A=) = | J{w(aq) : i €1, we W(y,a)}, (A7 = AT - (A%,

yeX

In analogy with Cartan matrices of finite type, finite GRS are character-
ized by all roots being real. Let R = (C, A) be a generalized root system.
We say that R is finite if |[W| < cc.
Theorem 2.29. (a) [CHI, 2.11| R is finite <= |A*| < oo,Vx € X <=

dr e X |A%| <00 <= [(A™)"]| < oo,Vx € X.

(b) [HeY, Corollary 5| Assume that R is finite. Pick x € X. Then there is a

unique wy € W ending at x of mazimal length £; all reduced expressions
of w¥ have length (. If y € X, then w{ has length (.

(c) |CH1, Prop. 2.12] Assume that R is finite. Pick x € X and fix a reduced
expression wy = oy -+ 0i,. Then

AL ={B;:j €Ly},

where B = s -+ si;_,(ai;) € A%, j € 1y. Hence, all roots are real.
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(d) [HeY]| There is an epimorphism of groupoids W(X, p, M) — W(X, p,C).
If R is finite, then this is an isomorphism.

(e) |HeV, Theorem 4.2| If R is finite, then there is v € X such that C* is
of finite type.

An outcome of the Theorem is that a finite GRS is determined by the bun-
dle C of generalized Cartan matrices. It would be coherent to call arithmetic
root system to a finite GRS.

As expected, Nichols algebras of diagonal type with finite dimension or
GK-dimension give rise to generalized root systems.

Example 2.30. Let (V, c) and g be as in §2.1. Assume that GK-dim B, < oo.
Let (Xy,p) be as in (2.27), let C = (CP)pex, be the bundle of generalized
Cartan matrices defined by (2.24), and let A = (AP),cxy, be as in (2.28).
Then R = (C, A) is a generalized root system for (X, p).

We summarize the relation between generalized root systems and Nichols
algebras:

Remark 2.31. (a) The classification of the arithmetic Nichols algebras of
diagonal type (characteristic 0) was achieved in [H3|, as said.

(b) Later, the classification of the finite generalized root systems was ob-
tained in [CH2|. There are finite GRS that do not arise from arithmetic
Nichols algebras; at least one of them arises from a finite dimensional
Nichols algebras of diagonal type in positive characteristic.

(c) Let R be a finite GRS arising from a Nichols algebra B, of diagonal
type. We say that B, is an incarnation of R; incarnations are by no
means unique, see Remark 3.1.

(d) More generally, let B be the Nichols algebra of a semisimple Yetter-
Drinfeld module. If dim B < oo, then it gives rise to a finite GRS [HS1].
No explicit examples are known, except diagonal type and the following:
The classification of the finite dimensional Nichols algebras over finite
groups, semisimple but neither simple nor of diagonal type (arbitrary
characteristic) was achieved in [HeV]|. It turns out that all GRS appear-
ing here arise also in diagonal type; explicitly they are standard with
’X‘ =1of types A97 B@v 0 > 27 097 0 > 37 D97 0 > 47 E97 NS ]16,87 F47
Glo; the root systems of types Br(2), Br(3), and Brj(2, 3).

(e) When GK-dimB; < oo, it is conjectured that the associated GRS
is finite [AAH1]. There is some evidence: the conjecture is true for
dimV = 2 or for affine Cartan type. We observe that apparently the
imaginary roots of a GRS are not determined by the real ones, contrarily
to what happens with generalized Cartan matrices. See §3.5 for the list
of Nichols algebras with arithmetic root systems and positive GK-dim.

The following Proposition will be used when discussing incarnations.
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Proposition 2.7.1. Let (X,p) be a basic datum and let R = (C,A) and
R’ = R(C,A4") be two generalized root systems for (X,p) with the same
bundle C. Then the bundles A™ = ((A™)?),ex and A = ((A")*) ex are
equal. In particular R is finite if and only if R’ is finite; if this happens,
then R = R'.

Proof. Both R and R’ have the same Weyl groupoid because this is defined
by C, implying the first claim. Now the second claim follows from the first
and Theorem 2.29. [l

2.8. The Weyl groupoid of a (modular) Lie (super)algebra. The gen-
eralized root systems appear in other settings. Important for this monograph
is that of contragredient Lie superalgebras. All results in this Subsection are
from [AA2], unless explicitly quoted otherwise.

Let 6 e N, T =1Ty. We fix

a field IF of characteristic £,

A= (CLZ']') € [FIxI

p = (n) € G, when ( £2

a vector space h of dimension 26 — rank A, with a basis (h;)
a linearly independent family (&;);cr in b* such that

We call p the parity vector; the additive version is |i| = 1;“ €Z)2.
From these data, we define a Lie superalgebra (a Lie algebra whenever
p=1:=(1,...,1)) in the usual way. First we define the Lie superalgebra
g:= g(A, p) by generators e;, f;, i € I, and b, subject to the relations:

(241) [h, W] =0, [he]=¢&Rh)ei, [h fil ==& (M) fi, e fi] = dijhi,
for all 7,5 € I, h,h' € b, with parity given by
el = | fil = |il, i€l |h| =0, heb.

0O O O O O

1€l29_rank A»

This Lie superalgebra has a triangular decomposition g =n, @ h @ n_ that
arises from the Z-grading g = @ g, determined by e; € g1, f; € 9_1, b = go-
keZ

The contragredient Lie superalgebra associated to A, p is

9(A,p) :=a(4A,p)/r
where vt = v @v_ is the maximal Z-homogeneous ideal intersecting b trivially.
We set g := g(A, p), and identify e;, fi, h;, b with their images in g. Clearly

g inherits the grading of g and g =n; @ h S n_, where np =np/ry. Asin
[K2, BGL], we assume from now on that A satisfies

(2.42) a;; = 0 if and only if a;; = 0, for all j # i.
By [BGL, Section 4.3] or [CE, Remark 4.2|, g is Z'-graded by
dege; = —deg f; = g, degh =0, 1 €1, heb.
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The roots, respectively the positive, or negative, roots, are the elements of
VAP = fa e Z —0: g, # 0}, V4 = VAP 0 (£ND).
For instance, the simple roots are o € VAP) j € I. Then

— 9 —

We say that (A, p) is admissible if

(2.43) ad f; is locally nilpotent in g = g(A4, p)

for all ¢ € I, cf. [Se2|. For instance, (A4,p) is admissible when g(A,p) is
finite-dimensional, or £ > 0 [AA2].

If (A, p) is admissible, then we define C'(4P) = (c(A’p)

IxI
i )i,jeﬂ € 7" by

AP =g AP min{m e No: (ad £;)" 1 =0}, i£jel

() ’ 1]
Let SEA’p) € GL(Z") be the involution given by

A A .
(2.44) SZ( ’p)(aj) =y — cz(j ’p)ozi, jel
(4,p)

Let i € I; set pip = (Pj)jer, D; = pjpfij . In [AA2], we introduce a
matrix p; A and the pair p;(A,p) := (pi4, pip).

Theorem 2.32. Let A € F™¥! satisfying (2.42) and p € (Go)'. Assume that
(A, p) is admissible. Then there are Lie superalgebra isomorphisms

(2.45) TUP) - g(piA, pip) — 9(A, ), iel,
such that
(246) TP (g(pid pip)s) = 8(AP) am . B E NG

We consider the equivalence relation ~ in FI*I' x G} generated by

e (A,p) = (B,q) iff the rows of B are obtained from those of A mul-
tiplying by non-zero scalars,

e (A,p) ~ (B,q) iff A is satisfies (2.42) and there exists i € I fulfilling
(2.43) such that p;(A,p) = (B, q).

We denote by X(4P) the equivalence class of (A, p) with respect to ~.

Definition 2.33. A pair (A, p) is regular if and only if every (B, q) € X(4P)
is admissible and satisfies (2.42). Evidently, all (B,q) € X“P) are regular
too. Therefore there are reflections T; for all (B,q) € X“P) and i € I.

If £ > 0, then ‘(A, p) regular’ says that all (B, q) € X(4P) satisfy (2.42).
Let (A, p) be a regular pair. We set

(2.47) APP) —vAP) (o ae VP EeN k> 2},
(2.48) cp) — (]L XAP) (py)ier, (C(B’q))(B,q)exm,p))
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Theorem 2.34. (C(4P), (A(Bﬂ))(B,q)eX(A,p)) is a generalized root system.
This is the point we wanted to reach:

Proposition 2.8.1. Let (A,p) as above, i.e. A€ F>! andp € G). If A
satisfies (2.42) and dim g(A, p) is finite, then (A, p) is regular, thus it has a
generalized root system.

Now the classification of the finite-dimensional contragredient Lie super-
algebras is known and counsists of the following:

o If £ =0 and p = 1, then this is the Killing-Cartan classification of simple
Lie algebras of types A,...,G.

o If £ = 0 and p # 1, then this belongs the classification of simple Lie
superalgebras [K1].

o If £ >0 and p = 1, then the analogous of Lie algebras in characteristic 0,
the Brown algebras br(2;a), br(2), br(3) [BGL, Br, Sk| for £ = 3, and the
Kac-Weisfeiler algebras wt(3;a), wt(4;a) [BGL, KaW] for ¢ = 2.

o If £ > 0 and p # 1, then the analogous of Lie algebras in characteristic 0,
the Brown superalgebra btj(2; 3), the Elduque superalgebra ¢l(5; 3), the Lie
superalgebras g(1,6), (2, 3), 9(3,3), 9(4,3), 9(3,6), 9(2,6), 9(8,3), 9(4,6),
9(6,6), g(8,6) [BGL, CE, E1, E2]| for £ = 3, and the Brown superalgebra
brj(2;5), the Elduque superalgebra el(5;5) [BGL| for ¢ = 5.

2.9. Classification. Recall that (V, ¢) is a finite-dimensional braided vector
space of diagonal type with braiding matrix q as in §2.1. In the celebrated
article [H3|, the classification of the Nichols algebras of diagonal type with
arithmetic root system was presented in the form of several tables.

Roughly, the method of the proof consists in deciding when the Weyl
groupoid is finite, iterating the construction (2.25). The procedure goes
recursively on 6; it could be shortened using the reduction given by Theorem
2.29 (e), see also [HeW].

We propose an alternative organization of the classification. Assume that
q is arithmetic, e.g. that dim By < oo, and let R be its GRS.

o If the bundles of matrices and of root sets are constant, then we say that
(V,¢) is of standard type; braided vector spaces of Cartan type fit here.

o If R is isomorphic to the GRS of a Lie superalgebra in Kac’s list above,
then we say that (V,c) is of super type [AAY].

o If R is isomorphic to the GRS of a contragredient Lie superalgebra in
characteristic £ > 0, as above, then we say that (V,c) is of modular type.

Most of the q with the assumption above fall into one of these three classes,
showing the deep relation between Nichols algebras and Lie theory. From
the list of [H3], there are still 12 examples whose GRS could not be identified
in Lie theory; we call them UFOQO’s. Actually, they come from 11 different
GRS, as one of them incarnates in two distinct Nichols algebras.
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2.10. The relations of a Nichols algebra and convex orders.

2.10.1. Convez orders. We start by the concept of convex order in an arith-
metic root system. Let A be the root system of a finite-dimensional simple
Lie algebra, W its Weyl group and wg € W the longest element. Then a
total order < on A4 is convez if

(249) ao,fe Ay, a<Panda+peA; —a<a+p<p.

A priori, it is not evident why convex orders do exist, but this result gives
them all:

Theorem 2.35. [P| There is a bijective correspondence between the set of
convez orders in Ay and the set of reduced decompositions of wy.

Let now R = (C,A) be an arithmetic root system over a basic datum
(X,p). Fix z € X. Following |Ang2|, we say that total order < on A is
convez if (2.49) holds for all o, 8 € A%Y. Recall w§, Theorem 2.29 (b).

Theorem 2.36. |Ang2| There is a bijective correspondence between the set
of convez orders in A% and the set of reduced decompositions of wg.

The correspondence is easy to describe: given a reduced decomposition
wy = oy -+ 0y, the convex total order in A% is induced from the numeration
given in Theorem 2.29 (c).

2.10.2. Defining relations. We keep the notation (V] ¢), q, etc. from §2.1 and
we assume that q is arithmetic. The total order in the set of simple roots
given by the numeration by I induces a total order in Ai (the restriction of
the lexicographic order) as explained in §2.3. This total order turns out to
be convex (but there are more convex orders than these when 6 > 2). Let
(Bk)ker, be the numeration of Al induced by this order. For every k € I,
let x5, be the corresponding root vector as in Remark 2.14.

Let 1 < j € Iy, niy1,...,nj-1 € Ng. Because the total order is convex, we
conclude that there exist cgfi’i)h,,m i1 € k such that
_ i nj—1 Ni41
(250) [xﬂla xﬂj] c - Z Cq(mi+)1,...,nj_1 mﬂ;,]_ tee x6i+1 :

Nit1,.-,nj-1€Ng
The scalars cﬁfgfh.__,njfl can be computed explicitly [Ang2, Lemma 4.5|. No-
tice that if > ngBy # Bi + B, then 07(’}1'71)1,---7nj—1 =0, since By is N§-graded.
Let 8 € AL; we set Ng = ordqgg. If Np is finite, then

Npg
Tg
Theorem 2.37. [Ang2, 4.9] The relations (2.50), i < j € Iy, and (2.51),
B e Al with Ng finite, generate the ideal Jy defining the Nichols algebra By.

(2.51) =0.

The proof of this Theorem does not appeal to the classification in [H3], but
to the theory of finite GRS [H1, HeY] and the study of coideal subalgebras
in [HS1|. Starting from Theorem 2.37, the defining relations of B, for the
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various ¢ in the list in [H3| was given explicitly in [Ang3, Theorem 3.1].
The approach in loc. cit. does not follow the list but the possible local
subdiagrams, i.e. of rank 2,3,4, up to insuring the existence of the Lusztig
isomorphisms T;, analogous to those in Theorem 2.23. The final argument
uses that the bundle of Cartan matrices determines the GRS.

2.11. The Lie algebra of a finite-dimensional Nichols algebra. A
finite-dimensional Nichols algebra B of diagonal type gives rise to some

remarkable objects: its distinguished pre-Nichols algebra gq [Ang3, Ang5|,
its Lusztig algebra £q [AARI1] and its associated Lie algebra g [AAR2]. If q

is of Cartan type (with entries of odd order), then By is isomorphic to the
positive part of the quantum group defined by De Concini and Procesi [DP],
while L, is the positive part of the algebra of divided powers introduced

by Lusztig [L2, L3]. We expect that these algebras gq and Ly would give
rise to interesting representation theories. We discuss succinctly these three
notions.

2.11.1. The distinguished pre-Nichols algebra. We start with the concept of
Cartan roots [Angb| and then discuss the definition of B,.

9.
First, i € I is a Cartan vertez of q if ¢;jq;; = qici”7 for all j € I. Then the
set of Cartan roots of q is
O = {s] siy ... 54, () € A% : i € Tis a Cartan vertex of pj, ... pi,pi (q)}.
Thus O = 0% UOT, where O] = 09N AL

The distinguished pre-Nichols algebra is defined in terms of the presenta-
tion of J; evoked above. To explain this, we need the notation:

q
ac Al

~ Ny =ordqae ifa¢ O,
0 if a € 01,

Let Z; C Jy be the ideal of T'(V) generated by all the relations in [Ang3,
Theorem 3.1|, but

e excluding the power root vectors e, o € (91,
e adding the quantum Serre relations (ad. xi)l_cgja:j for those i # j
q
Cii
such that qii] = Qiiji = Qi;.

Definition 2.38. [Ang3| The distinguished pre-Nichols algebra Eq is the
quotient T'(V') /Z,.

This pre-Nichols algebra is useful for the computation of the liftings; it
should also be present in the classification of pointed Hopf algebras with
finite GK-dim. See [Ang5| for the basic properties of By.
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2.11.2. The Lusztig algebra and the associated Lie algebra. For an easy ex-
position, we suppose that ¢ is symmetric, and by technical reasons, that

(2.52) Gy =1, Va, 8 € O".

Definition 2.39. The Lusztig algebra Lq of (V,c) is the graded dual of the
distinguished pre-Nichols algebra By of (V*,q); thus, By C L,.

To describe the associated Lie algebra, we begin by considering the sub-
algebra Z; of B, generated by Igﬂ, B € O1. Then Z; is a commutative

normal Hopf subalgebra of gq [Ang5|. In turn, the graded dual 34 of Z; is
a cocommutative Hopf algebra, isomorphic to the enveloping algebra U(ng)
of a Lie algebra ng. Then £, is an extension of braided Hopf algebras:

By < Lq — 34

Theorem 2.40. [AAR2, AAR3| The Lie algebra ng is either 0 or else iso-
morphic to the positive part of a semisimple Lie algebra gq.

The proof we dispose of this Theorem is by computation case-by-case. If
q is of Cartan type, then gy corresponds to the same Cartan matrix, except
in even order and type B or C, in which case is of type C or B. If q is of
super type, with corresponding Lie superalgebra g, then g4 is isomorphic to
the even part go. Assume that q is of modular type. Then the Theorem
shows, in particular, that the modular Lie algebras or superalgebras listed
above give rise to Lie algebras in characteristic 0. However, the latter do not
control completely the behaviour of the former.

Remark 2.41. There is a bijection from the set O% to the set of positive roots
of g4. Thus O% bears a structure of root system, albeit we do not dispose of
a direct proof of this fact.

2.12. The degree of the integral. Again, (V,c) and q are as in §2.1. We
assume that dim By < co. We introduce an element of the lattice 7! which

is a relative of the semi-sum of the positive roots in the theory of semisimple
Lie algebras. Let Ng = ord(gs) = h(zg) for 8 € Al. Let

(2.53) a= Y (Ng—1)BeZ

BeAl
Suppose that q is of Cartan type. If ord g;; is relatively prime to the entries
of the Cartan matrix A, then Ng = N is constant and s = (N —1) ZBeAﬁ B.

Since By = @08y is finite-dimensional, there exists d € N such that
Bqd # 0 and By = 0 for n > d. Then By is unimodular with Bg equal to
the space of left and right integrals, dim B¢ = 1 and dim B = dim By 7 if
J € lp4. See [AGr] for details. We set top = d. Then

(2.54) a = deg ByP.
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Let now I" be a finite abelian group and (g, x) a realization of g, cf. §2.5,
with g = (gi)ier, X) = (Xi)ier Then we have morphisms of groups Z' — I'

~

and Z! — T given by
B gs, Jo; = i B — X3, Xa; = Xi> i €L

We refer to [EGNO, §8.11] for the basics of ribbon Hopf algebras. Here is
an application of s.

Proposition 2.42. The distinguished group-likes of H = B(V)#kD are
9= Xar and g = g

The Drinfeld double (D(H),R) is ribbon if and only if there exist 6 € T,
x €T such that 6% = jupy = gg, K% =uy = Xgl and

(2.55) a;t = xi(6)x(gi), for alli € 1.
Proof. The first claim follows from [Bu, 4.8, 4.10] and the discussion above.
The second claim is a consequence of [KR, Theorem 3|. O

We next discuss how the preceding construction behaves under the action
of the Weyl groupoid. Let us fix i € I and set ' = piq = (¢} )jker- First we
notice that the degree of the integral corresponding to ¢’ is

(2.56) g’ = s](s) +2(N; — 1)y
Indeed,
a = Z (N,B - 1)5 - Z (st(’y) - 1)5;](7) + (Nl - 1)042‘
Bea? yeA] —{a}
= ) (N, = Ds]() + (Vi = Dai = (1) +2(Ni = Da.
yeAl —{a;}

Now g’ = (g;)je1, X' = (X)jen gives a a realization of q" where
/ *C?j / 76?]‘ ;
(257)  45=9i9 " =990,  Xj=XiXi = Xsl(a,)r JEL
Corollary 2.43. The distinguished group-likes of H' = By#kI' are

2(Ni—1 2(1-N;
ap =gy, and A = apgi .

If (D(H),R) is ribbon, then (D(H'),R') is also ribbon.
Proof. The first claim follows by a direct computation from (2.56). Let
6 =69 NieTl, x =Nl el
Clearly, (6')2 = aly, (/)% = d/;. We check that (2.55) holds. Let j € L
Since 6, x satisfy (2.55) and qg’ =1, we have

— —C?v *Ni _ *Ni —C?-
X6 x) M) = xaxg 7 (6g; )T g Y (g59, )

_ _ —c9. 20?-(Ni—l),_v —N;
= x;(6)(x) 1(9]’) (Xz'(6)>K 1(gi)) g Qijl Ni
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o1y 2 1N, 1N, -1 € 1-N; 1-N;
=955 % 9% %5 95 0 — 4955 9% %5 45 -
Now
o 1 ~¢ 1-N; 1-N; _ —1 -2 2-2N; _ 1
o If j =i, then qz/'i = @i, and 455 93 ]qij 4j; =4 % 9 =dq; -
o If j # i and q;;’ = gijqji, then ¢j; = g;;, and
~1 ¢ 1-N; 1-N, -1 —cy e (I=Ni) g
G G Gy G = Gy G i = %5 -
L .
o If j # 1 and q;” # ¢ijqji, then C?j =1—N,;, so
1 1-N; 1-N; 1 —()? el o T 1
455 9 quj 4j; =45 4y ! qiquji] =x5x; ‘(959 ") = (qg‘j) .

Thus X;-(6’)(>K’)_1(g;) = (q‘;j)_1 for all j € I; Proposition 2.42 applies. [

Part II. Arithmetic root systems: Cartan, super, standard
3. OUTLINE

3.1. Notation. In what follows ¢ € k* — {1}, N := ordq € [2,00]. Recall
that (c;);er denotes the canonical basis of ZI.

The matrices q considered here belong to the classification list in [H3|;
they may form part of an infinite series—or not. In the second case, we often
use ¢ to denote the root «;, and more generally

(3.1) 1172 . . . 1y denotes oy, + oy, + ..., € ZH;

also i?lz’}f - zZ’“ denotes hioy, + hoov, + ... hyoy, € 7!

The implicit numeration of any generalized Dynkin diagram is from the
left to the right and from bottom to top; otherwise, the numeration appears
below the vertices.

Basic data are described either explicitly or by the corresponding diagram
as in page 24.

If a numbered display contains several equalities (or diagrams), they will
be referred to with roman letters from left to right and from top to bottom;
e.g., (4.5 ¢) below means :ré\lil) =0,k<I.

If X, is a generalized Dynkin diagram (or a subset of Z™ or any variation
thereof) with m vertices and o € S,,, then o(X,,) is the generalized Dynkin
diagram (or the object in question) with the numeration of the vertices
after applying o to the numeration of X,,. In this respect, s;; denotes the
transposition (ij), what should not be confused with the reflection s;. For
brevity, we abbreviate some permutations in S4 and S5 as follows:

K1 = S1234, R2 = 5234, K3 = 812834, K4 = 513524,
K5 = S142, K6 = 81324, K7 = S134, Rg = 5324.

W1 = 5155234, W2 = 8354, W3 = 515523, W4 = 5345, W5 = 514523-
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Along the way, we recall the Cartan matrices of types A, B, C, D, E, F
and G with the numeration we use; see (4.2), (4.7), (4.15), (4.23), (4.28),
(4.35), (4.43). We also need some other generalized Cartan matrices:

o
n+1
o o o o o
1 2 3 n—2 n—1 n
(3.3) Agl) : o<t—>o0
1 2
(2) —
(3.4) A ° (=9
(3.5) C7(L1) o=—>o0 o o o<— o
1 2 3 n—1 n n+1
2
(3.6) AP o
o=—>o0 o o o o
(3.7) ASL) o<—o o o o<«—— o
1 2 3 n—1 n n+1
(3)
(3 8) D4 C1> C2> < <§
(3 9) EéQ) o o o<—o o
1 2 3 4 5
3.10) FY 6o 0——0=>0—0
1 2 3 4 5
(3.11) T mAgH
o o o / \ o o o
1 2 m m—+1 m+2 m+n
(3.12) 1@
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(3.13) 7@ o

N
~

O O<LZ—=o0
1 2 3
(3.14) T 0
o o \o
1 2 3
(3.15) oV o o=—>o0 o o o<= o
1 2 3 4 n—1 n n+1
(3.16) CE,: o
o o o 0 <= o
1 2 n—3 n—2 n—1
(3.17)  Cf T o o o=—>o0<=o0
1 2 3 4 5
(3.18) F4(1)/\ : o o o o=—>0 o
1 2 3 4 5 6
(3.19) Eéz)/\ : o o o o<=o o
1 2 3 4 5 6
(3N .
(3.20) D, o 0 ° o
(3.21)  H.g: ?Cd% cd >4

We also abbreviate ,,7 = ,,, 11, Agl) =T].

3.2. Information. In this Part, we give information on Nichols algebras By
for matrices q satisfying (2.1) such that q is arithmetic, see Definition 2.12,
and has a connected Dynkin diagram.

We organize the information as follows.

e We first describe the (abstract) generalized root system R, including
— The basic datum (X, p).
— The bundles (C*)ex of Cartan matrices and (A%),ex of sets of roots.

— The Weyl groupoid, see Definition 2.28. Actually, since the basic
datum is connected, the groupoid is determined by the isotropy group
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at any point; so we describe this last one—see [AA2] for details of the
calculations.

— The Lie algebra or superalgebra realizing the generalized root system
as explained in §2.8, when it exists.

e The possible families of matrices (q%)cx (actually the Dynkin diagrams)
with the prescribed GRS. We call them the incarnations. Concretely, we
exhibit families of matrices (q%)zcx such that

(a) the Cartan matrix C%" defined by (2.24) equals C® for all z € X.

(b) The matrix p;(q*) defined by (2.25) equals q”®) for all i € I, z € X.

By (a) and (b), the Weyl groupoid of R is isomorphic to the Weyl
groupoid of (q%)zex. It follows at once that R and (q*),cx have the same
sets of real roots. But R is finite, so all roots are real, hence (q%),ecx has
a finite set of real roots, and a fortiori it is finite.

e The PBW-basis, consequently the dimension or the GK-dimension. That
is, we give the formulae for the root vectors as defined in (2.18) in terms of
braided commutators, see §2.2. Notice that the definition of the Lyndon
words depends on the ordering of I, which is in our context the order of
the Dynkin diagram. Furthermore this order happens to be convex.

e The defining relations.

e The set 09 of Cartan roots; notice that the concept of Cartan vertex
depends on ¢, not just on the root system.

e The associated Lie algebra, see §2.11 and the degree s of B,

Remark 3.1. The same generalized root system could have different incarna-
tions: of course, there is a dependence on the parameter ¢ but there could
be more drastic differences. For instance, the GRS B(j|0 — j), j € Iy_1 has
incarnations described in §5.2 and another in §6.1. Notice that the Cartan
roots and consequently the associated Lie algebra are different in these incar-
nations; thus some of the data above does not depend just on the generalized
root system. Besides this, it can be shown that all possible incarnations are
as listed in the corresponding Subsection.

3.3. Organization. This Part is organized as follows:

o Section 4 contains the treatment of the matrices q of Cartan type, Defi-
nition 2.15, with Subsections devoted to each of the types A, B, ..., G.
Here the Weyl groupoid is just the Weyl group.

o In Section 5 we deal with the matrices q of super type, meaning that the
generalized root system coincides with that of a finite-dimensional contra-
gredient Lie superalgebra in characteristic 0 (no a priori characterization
is available); Cartan type is excluded. Thus we have Subsections devoted
to the types A(m|n), B(m|n), D(m|n), D(2,1;a), F(4), G(3).
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o Section 6 contains the treatment of the matrices of standard, but neither
Cartan nor super, type. Recall that standard means that all Cartan ma-
trices are equal. There are such diagrams only in types B, Subsection 6.1,
and G, Subsection 6.2.

In Part 3, we deal with Nichols algebras of:

e matrices q of modular type, meaning that the generalized root system
coincides with that of a finite-dimensional contragredient Lie algebra
in characteristic > 0 (no a priori characterization is available); Car-
tan type is excluded. Thus we have Subsections devoted to the types
of the Lie algebras w#(4, a) (char 2), bt(2,a) and br(3) (char 3);

e matrices q of super modular type in characteristic 3, not in the pre-
vious classes, meaning again coincidence with the generalized root
system of a finite-dimensional contragredient Lie superalgebra (no a
priori characterization is available). There are Subsections devoted
to the types of the Lie superalgebras btj(2; 3), ¢l(5;3), g(1,6), g(2,3),
9(3,3), 9(4,3), 9(3,6), 9(2,6), 9(8,3), 9(4,6), 9(6,6), 9(8,6);

e analogous to the preceding but in characteristic 5. There are Sub-
sections on the types of the Lie superalgebras btj(2;5) and el(5;5);

e (yet) unidentified generalized roots systems, i.e. that so far have not
been recognized in other areas of Lie theory. These are called ufo(1),

.., ufo(12), except that there is no ufo(8). There is a Subsection
for each of the corresponding Nichols algebras loosely called ufo(1),
..., ufo(12)-here ufo(8) has generalized root system ufo(7).

3.4. Attribution. The presentations of the Nichols algebras that we de-
scribe here appeared already in the literature. A general approach to the
relations was given in [Ang2, Ang3]. Of course, those of Cartan type, giv-
ing the positive parts of the small quantum groups, were discussed in many
places, first of all in [L1, L2, L3], for a parameter ¢ of odd order (and rela-
tively prime to 3 if of type G2). For Cartan type Ay, there are expositions
from scratch in [T1] for generic ¢, [AD] for ¢ = —1, [AS3] for ¢ € Gy,
N > 3. Other Nichols algebras of rank 2 were presented in [BDR, Hg, H2].
Standard type appeared in [Angl]|; this paper contains a self-contained proof
of the defining relations of the Nichols algebras of Cartan type at a generic
parameter, i.e. the sufficiency of the quantum Serre relations. Nichols alge-
bras associated to Lie superalgebras appeared first in the pioneering paper
[Y]; see also the exposition [AAY]. The explicit relations of the remaining
Nichols algebras were given in [Ang4].

3.5. Gelfand-Kirillov dimension. As we said, the classification of the ma-
trices q such that GK-dim By < oo is not known.

Conjecture 3.2. [AAH1| If GK-dim By < oo, then q is arithmetic.

The Conjecture is true when q is of affine Cartan type or § = 2. For
convenience, we collect the information on the arithmetic Nichols algebras
with matrix q such that 0 < GK-dim B; < oo.
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Cartan type. Let q be of Cartan type with matrix A; we follow the con-
ventions in §4. Then 0 < GK-dim By if and only if ¢ ¢ G, in which case
GK-dim B, = |A%|.

Super type. Let q be of super type; we follow the conventions in §5. Then
0 < GK-dim B, if and only if the following holds:

e Type A(j—110 —j),j € HLEJ’ see §5.1.8: ¢ ¢ G, in which case
2

: (i 0—J
GK-dim B, = <2> + < 5 >
e Type B(j|0 — j), 7 € Ip_1, see §5.2.6: q ¢ G, in which case
GK-dim By = 6% — 2j(6 — j — 1).
e Type D(j|0 — j), 7 € Iy_q, see §5.3.11: ¢ ¢ G, in which case
GK-dim By = (6 — j)(0 — j — 1) + j2.

e Type D(2,1; ), see §5.4: Here q,r,s # 1, grs = 1; the condition is that
either exactly 2 or all 3 of ¢,7,s do not belong to G, in which case
GK-dim B; is either 2 or 3, accordingly.

o Type F(4), see §5.5.5: ¢ ¢ G, in which case GK-dim B, = 10.
e Type G(3), see §5.6.5: q ¢ G, in which case GK-dim B4 = 7.

Modular type. Let q be of modular type. Then 0 < GK-dim By if and only
if the following holds:

o Type wk(4), see §7.1.4: ¢ ¢ G, in which case GK-dim B, = 6.
e Type br(2), see §7.2.4: ¢ ¢ G, in which case GK-dim B, = 2.

4. CARTAN TYPE

Here the basic datum has just one point, hence there is just one Cartan
matrix and the Weyl groupoid W is the corresponding Weyl group W. All
roots are of Cartan type. Throughout, we shall use the notation

(4.1) aij= Y ap, i<jel
kel; ;

4.1. Type Ay, 0 > 1.

4.1.1. Root system. The Cartan matrix is of type Ay, with the numbering
determined by the Dynkin diagram, which is

(4.2) o

o o .
2 0—1 0

The set of positive roots is

(4.3) A* = {ay; | k,j € 1 k < .
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4.1.2. Weyl group. Let s; € GL(ZY), si(i) = —ay, si(ay) = o + oy if
li—jl =1, si(a;) =ajif i —j| >1,4,j €. Then W = (s; : i € I) >~ Sy
[Bo, Planche IJ.

4.1.3. Incarnation. The generalized Dynkin diagram is of the form

-t 1 oq q ¢ q
(@] (] (@]

(4.4) 3

4.1.4. PBW-basis and (GK-)dimension. The root vectors are

Loy = Loy = Tiy 1 €1,
maij = x(lj) = [mi7xai+1j]c7 1 <] S ]I,
cf. (2.11). Thus
{J;Ze(’x?;:ig)xgi_lw_l .. .1‘?1199) Ce l‘?n ‘ 0< ni; < N}
is a PBW-basis of B;. If N < oo, then

9+1)

dim B, = N(2
If N = o0 (that is, if ¢ ¢ G ), then

GK-dim By = (9 s 1).

4.1.5. Relations, N > 2. Recall the notations (2.9), (2.10), (2.11). The
Nichols algebra By is generated by (z;);er with defining relations

(45) @y =0, i<j—1; wy=0, [j—il=1 ajy=0 k<L
If N =o00,ie q¢ Gy, then we omit the last set of relations.

4.1.6. Relations, N = 2. The Nichols algebra B, is generated by (z;);er with
defining relations

(4.6) =0, i<j-1 [2Gize),Tiple=0;  afy =0, k<L
4.1.7. The associated Lie algebra and si. The first is of type Ay, while
a=(N-1)) i0—i+ 1o

1€l

4.2. Type By, 0 > 2. Here N > 2.

4.2.1. Root system. The Cartan matrix is of type By, with the numbering
determined by the Dynkin diagram, which is

(4.7) 0

(e} O —— 0.
2 0—1 0

Recall the notation (4.1). The set of positive roots is
(4.8) AJr:{aij‘iSjGH}U{ai9+aj9’i<j€H}.
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4.2.2. Weyl group. Let i € I and define s; € GL(Z") by

—ag, =7,
) o+, li—jl=1,i<8,
G =0 o+ 20p. j= 0 1.i=06,
aj, i —j[>1,

j €L Then W = (s; :i € I) ~ (Z/2)? x Sy [Bo, Planche II].

4.2.3. Incarnation. The generalized Dynkin diagram is of the form

(4 9) %2 q72 q2 q72 q2 q2 q72

q
(¢]

4.2.4. PBW-basis and (GK-)dimension. The root vectors are

Laj; = Loy = Tiy 1€l
Tay = T(@ij) = [Ti Tagy);les i<jel
Tag+ag = [Tas, Tole, 1 € lp_1,
Lag+oje = [xai0+a(j+1)97xj:|c7 1< g €lp_q,

cf. (2.11). Let M = ord ¢*>. Thus

ni1

n mg_1¢ ng—10, MNo—10—1 m
{x 06 12 )

O AT 0/ . i TN LT i
|O§’I’Li9<N;O§’I’Lij<M,j7é¢9;0§m¢j<M}
is a PBW-basis of By. If N < oo, then
dim B, = M-V N,
If N = oo (that is, if ¢ is not a root of unity), then
GK-dim B = 6°.

4.2.5. Relations, N > 4. The Nichols algebra B, is generated by (z;);er with
defining relations

(4.10) i1 =0, i<6; i; =0, i<j—1; xg900-1=0;
N .
x, =0, ac{qqgliel};

(411) taig|i €1y N = 2M even.
zo =0, a¢{agliell,

(4.12) 2N =0, acA,, N odd.

If N =o00,ie q¢ G, then we have only the relations (4.10).
4.2.6. Relations, N = 4. The Nichols algebra B, is generated by (z;);er with
defining relations
rij =0, i<j—1; xege9-1=0; [T(ii42),Tit1]e=0, <6

4.13
( ) :Ci:(), agé{aiG’Z‘E]I}; miZO, CYE{OQ‘@HE]I}.
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4.2.7. Relations, N = 3. The Nichols algebra By is generated by (z;);er with
defining relations

rij =0, 1<j—1 Tiiix1 =0, 1< 0;
(4.14) !
(2006102, Tog—1]c = 0; =0, acA,.

4.2.8. The associated Lie algebra and si. If N is odd (respectively even), the
associated Lie algebra is of type By (respectively Cy), while

A=Y [(M—1)i(20 —i—1)+ (N —1)(6 - i))o.
i€l
4.3. Type Cyp, 6 > 3. Here N > 2.

4.3.1. Root system. The Cartan matrix is of type Cp, with the numbering
determined by the Dynkin diagram, which is

(4.15) 0

(e} O <——=o.
2 6—1 0

Recall the notation (4.1). The set of positive roots is
(4.16) AT ={a;;li<jel}U{aig+ajo1|i<j€lp1}.

4.3.2. Weyl group. Let i € I and define s; € GL(Z') by

—ay;, =7,

SZ‘(Oéj): aj+ozi, ‘i—j‘:1,j<9,
209 1+ g, j=0,i=0-1,
Qs |i_j‘>1a

j el Then W = (s; :i €1) ~ (Z/2)? x Sy [Bo, Planche III].

4.3.3. Incarnation. The generalized Dynkin diagram is of the form

-1 —1 —2 2
q q q q q q q
(4.17) o o o o 0

4.3.4. PBW-basis and (GK-)dimension. The root vectors are

Loy = La; = iy 1 €1,
Lay; = L(ig) = [wi’xai-&-lj}a 1<jel,
Lajg+aig_1 = [x(i€)7x(i9—l)]67 1 €lp_q,
Tajg+ag 1 = [T(ig)s To—1]es i€ly_q,
Lajg+ao_1 = [xa¢9+aj+1971737j]w 1< g €ly_o,

cf. (2.11). Let M = ord ¢*. Thus

ngg, . MO—10—1 ng—10 , No—16—1 mio mig—1
{xﬂ xa9—19+049—19—1x(@—lG)IG—l “Laggtagg_1 - Lorgtag_1o-1 "

x?fg)...x?ll‘(]ﬁnw<M;0§m’j <N,j#6;0<my <N}
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is a PBW-basis of By. If N < oo, then
dim B, = MIN?O-1),
If N = oo (that is, if ¢ is not a root of unity), then
GK-dim B, = 6°.

4.3.5. Relations, N > 3. The Nichols algebra B, is generated by (z;);er with
defining relations
(4.18) w;=0, i<j—1; Tij =0, j=i+1,(i,5)# (0 —1,0);
(419) T — 0, i=0- 1;

:L‘év =0, «ae€ A; short;

4.20 ' N = 2M even.
(4.20) e =0, ac Ay long.

[0}

(4.21) 2N =0, aecA,, N odd.

If N =o00,ie q¢ G, then we have only the relations (4.18), (4.19).

4.3.6. Relations, N = 3. The Nichols algebra B, is generated by (z;);ecr with
defining relations

(4.22) ’ ) N

z, =0,

[[95(9729)7 To-1]e, To—1]c = 0; ae Ay

4.3.7. The associated Lie algebra and . If N is odd (respectively even), the
associated Lie algebra is of type Cy (respectively By), while

A=Y [(N=1)i(20 —i—1)+ (M —1)(0 — i)]o.

1€l
4.4. Type Dy, 0 > 4.

4.4.1. Root system. The Cartan matrix is of type Dy, with the numbering
determined by the Dynkin diagram, which is

(4.23) o

o
1

N O
T
N
>

|

-

Recall the notation (4.1). The set of positive roots is

AT ={ayjli<jel (i,§) # (0 —1,0)}

(4.24) . . .
U {062‘972 + ap | 1€ ]19,2} U {Oéi@ + aj9-2 |Z <jJe€ ]19,2}.
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4.4.2. Weyl group. Let i € I and define s; € GL(Z") by

—Qy, = j7
si(la) = aj+aoi, |i—jl=1,4,5€lp_q, or {i,j} = {6 — 2,0},
aj, otherwise,

jel Then W = (s;:i €1) ~ (Z/2)~! x Sy [Bo, Planche IV].

4.4.3. Incarnation. The generalized Dynkin diagram is of the form

o

(4.25)

4.4.4. PBW-basis and (GK-)dimension. The root vectors are

Loy = Loy = Ti, 1 €1,
Lai; = L(ij) = [$1,$ai+1j}c, i <j€lp,
Loy atap = [T(i9—2)> T0les i€lys,
Loy = [$a¢972+a97 fol]c; 1 €ly_o,
Tag+ajg_o = [$a¢e+aj+19727xj]0’ 1 <j€lyg_g,

cf. (2.11). Thus

ngg .. MO—160—1,,M09—20 ng—20 ng—20—1 ng—20—2 mi12
{g" g ag_otagT(9-20)T(9—20-1)To—2  + Tajgtasg_o "
mig—2 nig ni1 . .
Togtop_zo_z  T(10) " - L1 |0 < mnyj, mij < N}

is a PBW-basis of B;. If N < oo, then
dim By = N9O-1,
If N = oo (that is, if ¢ is not a root of unity), then

GK-dim B, = 6(6 — 1).

4.4.5. Relations, N > 2. The Nichols algebra B, is generated by (z;);er with
defining relations

T(o-1)0 = 0; zij =0, i<j—1,(i,j) # (0 —2,0);
Ti9—2) = 0, i =0; N =0, acA,.

If N =o00,ie q¢ Gy, then we omit the last set of relations.
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4.4.6. Relations, N = 2. By is presented by (x;);er with defining relations

zi; =0, 1<j—1(i,7) #(0—2,0); @ 1)9=0;
(4.27)  [T(iv2), Tit1]e =0, <0 —3; [2(9—3)(0—2)0> To—2]c = 0;
0, o C A+.

2
Lo

4.4.7. The associated Lie algebra and si. The first is of type Dy, while

6(0 —

a1 = (N— 1)( Z j(29—j— 1)ai+u(ag,1 —|-059)).

i€lg_o
4.5. Type Ey, RS ]16,8-

4.5.1. Root system. The Cartan matrix is of type FEp, with the numbering
determined by the Dynkin diagram, which is

(4.28) o

—0
N O
T
w
T
)
S
|
—

Recall the notation (3.1). The positive roots of Fg are

{1, 12,2,123,23,3,1234,234, 34,4, 12345, 2345, 345,45, 5, 122334256, 122324256,
(4.29) 12232456, 1223246, 12324256, 1232456, 123246, 2324256, 232456, 23246,
1223242562, 123456, 23456, 3456, 12346, 2346, 346, 1236, 236, 36, 6}

={B1,..., P36}

The set of positive roots of E7 is

{1, 12,2,123,23,3,1234, 234, 34, 4, 12345, 2345, 345, 45, 5, 123456, 23456, 3456,
456,56, 6,12233435267, 12232435267, 12232425267, 1223242567, 122324257,
1232435267,1232425267, 123242567, 12324257, 232435267, 232425267, 23242567,
(4.30) 2324257,1223%344536272, 122334453672, 123425267, 23425267, 3425267,
122334452672, 12342567, 2342567, 342567, 122334352672, 1234567, 234567, 34567,
122324352672, 12324352672, 1234257, 123457, 12347, 2324352672, 234257, 23457,

2347, 4567, 34257, 3457, 347,457, 47, 7}

={B1,...,B63}
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The set of positive roots of Fg is

{1,1272,123,23,3,1234,234,34,4,12345,2345,345,45,5,123456,23456,3456,
456, 56, 6, 1234567, 234567, 34567, 4567, 567,67, 7, 1223343536278, 1223243536278,
1223242536278, 1223242526278, 122324252678, 12232425268, 123243536278
123242536278, 123242526278, 12324252678, 1232425268, 23243536278, 23242536278,
23242526278, 2324252678, 232425268, 12233445°647282, 12233445563 7282
122334%5563782, 12342536278, 2342536278, 342536278, 12233445463 7282,
122334%5%63782, 12342526278, 2342526278, 342526278, 12233435463 7282,
12233435%63782, 1234526278, 234526278, 34526278, 122334455564 7283,
1233%4°55647283 1233345462782, 1223435462782, 12233435362 782,
(4.31) 12232435%637282,1232435%637282, 1234252678, 123452678, 12345678
1223243546782, 1232435463782, 123425268, 12345268, 1234568, 12233455%647283,
122334%55647283,1223%4455647283, 2324354637282, 232435463782, 4526278,
12232435%62782,12232435%62782, 234252678, 23425268, 1232435462782,
1232435362782, 34252678, 3425268, 12233445%637283, 12233445%63783,
12232425362782, 1232425362782, 123425362782, 123458, 232435462782, 23452678,
3452678, 452678, 232435262782, 2345678, 345678, 45678, 232425362782,
23425362782, 2345268, 234568, 23458, 3425362782, 345268, 34568, 3458, 5678

45268, 4568, 458, 568, 58, 8} ={B1,...,B120}.
For brevity, we introduce the notation
ds = 36, d7 = 63, dg = 120.

Notice that the roots in (4.29), respectively (4.30), (4.31), are ordered from
left to right, justifying the notation fB1,..., Bq,, 0 € Igg.

4.5.2. Weyl group. Let i € I and define s; € GL(Z") by

— Oy, Z:]a
si(aj): O[]'—f—Oéi, ‘Z_.]’ = ]-57;7.]. 6]19—1’ or {2’3}2{9_379},
aj, otherwise,

j € I. Then W = (s; : i € I) [Bo, Planches V-VII].

4.5.3. Incarnation. The generalized Dynkin diagram is of the form

q
(4.32) o
qfl
qg ¢ ¢q g ¢! q ¢! ¢
(] (@] (@] (] (e]




48 ANDRUSKIEWITSCH; ANGIONO

4.54. PBW-basis and (GK-)dimension. The root vectors xg, are explicitly
described in |[Angl, pp. 63 ff], see also [LaR|. Thus a PBW-basis of By is

{azgzszzj ot [0<n; < N} :
If N < oo, then dim By is N%. If N = oo, then GK-dim By is dy.
4.5.5. Relations, N > 2. By is generated by (x;);c1 with relations
(433) x;=0, Gj=1 x45=0, G;#1;, 2 =0, acA,.
If N =00, ie q¢ Gy, then we omit the last set of relations.
4.5.6. Relations, N = 2. By is generated by (x;);c1 with relations
(4.34) 2;5=0, Gy=1 [Tijr,]ce=0, Gj,@r#1; 72=0,a€ A4
4.5.7. The associated Lie algebras and s. Those are of type Fy, while
Eg: s=(N—1)(16a1 + 30 + 423 + 304 + 165 + 2206),
E;: a=(N—-1)(27a1 + 529 + 75as + 96y + 66a5 + 3das + 49a7),

Es: a=(N—1)(58 + 11das + 168a3 + 22004 + 27005
+ 18205 + 927 + 1360as3).

4.6. Type Fy. Here N > 2.

4.6.1. Root system. The Cartan matrix is of type Fy, with the numbering
determined by the Dynkin diagram, which is

(4.35) 0

O<—2o o .
2 3 4

The set of positive roots is
AT ={1,12,2,1%2%3,1223,123, 223,23, 3,122%334, 122434,
(4.36) 1223324,1222324, 122234, 123324, 122324, 12243342,
12234, 1234, 223%4, 2%34,234, 34,4} = {B1, ..., Boa}.
4.6.2. Weyl group. Let i € I and define s; € GL(Z') by
—ay, =7,
o+ i, |i—jl=1,(i,7) # (2,3)
az + 22, (i,7) = (2,3),
Qj, |Z - ]| > 1,
j €L Then W = (s; : i € I) > ((Z/2)* x S4) x S3 [Bo, Planche VIII|.

si(aj) =

4.6.3. Incarnation. The generalized Dynkin diagram is of the form

-1 -2 2 -2 2
a ¢ g q 7 q
(4.37) o ° ° °
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4.6.4. PBW-basis and (GK-)dimension. Let M = ord¢®. The root vectors
wg, are explicitly described in [Angl, pp. 65 ff], see also [LaR]. Thus a
PBW-basis of By for type Fy is
{xgji:cgjg . xgi |0 <nj <N if B is short; 0 <n; < M if B; is Iong}.
If N < oo, then dim By = M2 N2 If N = oo, then GK-dim B, = 24.

4.6.5. Relations, N > 4. The Nichols algebra B, is generated by (z;)ier,
with defining relations

(4.38) x4 =0,i<j—1; w203 =0; 24; =0, [ —i| =1, (i,7) #(2,3);

xév =0, «a¢€ A, short;

(4.39) N =2M even,

e =0, aec Ay long.
(4.40) 2N =0, aecAy, N odd.
If N =o00,ie g ¢ Gu, then we have only the relations (4.38).
4.6.6. Relations, N = 4. The Nichols algebra B, is generated by (z;):er,
with defining relations
[ (24), T3] = 0; x221 = 0; w112 =0;
(4.41) T =0, 1<j—1 L2223 = 0;
i =0, ae€ A, short; 22 =0, acA, long.
4.6.7. Relations, N = 3. The Nichols algebra B, is generated by (z;):er,
with defining relations
xij =0, 1<j—1; (%2234, 23] = 0;
25 =0, j=i+1,(i,5) #(2,3); 23=0, acA;.

4.6.8. The associated Lie algebra and si. The first is of type Fy, while

(4.42)

a=(12M + 10N — 22)a + (24M + 18N — 42)as
+ (18M + 12N — 30)as + (10M + 6N — 16)ay.

4.7. Type Gy. Here N > 3.

4.7.1. Root system. The Cartan matrix is of type Gg, with the numbering
determined by the Dynkin diagram, which is

(4.43) o<&=o.
1 2

The set of positive roots is
(4.44) Ay = {Ozl, 3aq + ao, 201 + g, 31 + 200, a1 + o, 042}.
4.7.2. Weyl group. Let s; € GL(ZY), sij(c) = —au, s1(a2) = ag + 3oy,

so(a1) = a1 + ag. Then W = (s; : i € I) is the dihedral group of order 12
[Bo, Planche IX].
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4.7.3. Incarnation. The generalized Dynkin diagram is of the form

a3 ¢
O

(4.45) J

4.7.4. PBW-basis and (GK-)dimension. The root vectors are
Ta; = Tiy  Tmajtas = ade 21" (T2) = T1.12,  T3a;+200 = [T112, T12]e,
cf. (2.11) and (2.12). Let M = ord ¢®. Thus
{25 213255 |00, P17 T1221° | 0 < na1,mg,m5, < M, 0 < ng,ng,ne < N}.
is a PBW-basis of By. If N < oo, then
dim By = M3N?.
If N = o0 (that is, if ¢ ¢ G), then GK-dim B, = 6.
4.7.5. Relations, N > 4. The Nichols algebra By is generated by (x;)ier,
with defining relations

(4.46) T11112 = 05 221 = 0;
N N N
x7 =0; x119 = 0; 19 = 0;
(4.47) iy " 12 N =3M € 3%,
=0; =0; 23 =0;
L1112 y o L3 +2an y T2 ;
(4.48) e =0, acA,, N ¢ 3Z.

If N =00,ie q¢ Gy, then we have only the relations (4.46).

4.7.6. Relations, N = 4. The Nichols algebra By is generated by (x;)ier,
with defining relations

(4.49) [x3a1+2a2,x12]c = 0; 921 = 0; Ty = 0, o€ A+.
4.7.7. The associated Lie algebra and si. The first is of type Ga, while
a=(6M +4N — 10)a; + (4M + 2N — 6)ao.

5. SUPER TYPE

In this Section we consider the matrices q of super type, i.e. with the
same generalized root system as that of a finite-dimensional contragredient
Lie superalgebra (not a Lie algebra) in characteristic 0.

We start by a useful notation. As always§ € Nand I =Iy. Let q € k*—Ggo
and let J C I. Let Ag(q;J) be the generalized Dynkin diagram

q11 qi2 q22 go-16-1  Gdo—10 q00
o ———— 0 o -  ©

where the scalars satisfy the following requirements:
(1) a = ggyd0—106;
(2) ifi e J, then qii = —1 and aifli = a?zil’
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(3) if i ¢ J, then Gi—1; = q;;* = Gii+1 (only the second equality if i = 1, only
the first if ¢ = 0).

This is a variation of an analogous notation in [H3|. We notice that the
diagram Ag(q;J) is determined by q and J, that ¢; = q™' if i ¢ J, and that
Giiv1 = q ! for all i < 6:

2 ~ 0
o If 0 € J, then ggg = —1, hence gy_19 = q.
o If0 ¢ ], then gp_1¢ ® qgel; hence ggg w qand gg_19 =q~ L
e Let j €1, 7 < 6. Suppose we have determined ¢;; and g;—1; for all
i > j. Then (2) and (3) determine ¢j; and g;_1;.
If J={j}, then Ag(q;J) is

' q qt -1
o o
J

[OFe]
Q
[oF¢]

Below we shall specialize q to our parameter ¢ or variations thereof. Also,
the symbol Ay(q;J)

& means a diagram with 6 + 1 points; the first

6 of them span Ag(q;J), there is an edge labelled p between the 6 and the
0 + 1 points, the last labelled by r. Symbols like this appear here and there.

Given J C I, J = {i1, ..., i} with 43 < ... < g, we shall need

> (=1

=1
Notice that J = (), if and only if 2Ky = 0, if and only if Ay(q;J) is of
Cartan type Ay (because q ¢ Ga).

5.1. Type A(j— 110 —j), j € HLMJ' Here N > 2. We first define
2

(51) agyj:{JgH:)KJ:j}.

Observe that for k € I, {k} € ay; if and only if k = j.

H{J =

5.1.1. Basic datum, 1 < j < 9%1. The basic datum is (Ag ;, p), where

and p: T — Sy, ; is as follows. If 7 € [, then p; : Ay ; — Ay ; is given by
J, i¢],
) Ju{i =104+ 1}, ieli—1,i+1¢1J,
(5.3) pill) = J-—{iF1HU{i+l}, iiFlelitl¢l,
J—{i+1}, ii—1li+1el.

If ¢ = 1, respectively 0, then 7 — 1, respectively ¢ + 1, is omitted in the
definition above. It is not difficult to see that
e p; is well-defined and p? = id. Hence (Ag j, p) is a basic datum.
o Let J € Ap;. Then there exists k € I such that J ~ {k}. Hence
(Ag j, p) is connected.
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Indeed, we see that p;(ag ;) = ag j, pi(age+1—;) = age+1—; if i < 6, but
pe(J) € ag0+1—j ifJe ae’j,(g el

5.1.2. Basic datum, 0 odd, j = 9%1, Here 5 = 6 +1 — j and we need to
consider two copies of ag j, see (5.1). Let ag; = {j :J e a97j} be a disjoint
copy of ag j. Then the basic datum is (Ag j, p), where

(5.4) Bpj = a9, Uag;.

and p: [ — Sy, ; defined as follows. If i € I, ¢ < 6, then p; : ag; — ag; and
pi 3dg; — ag; are given by (5.3). If i =60 and J € ay j, then

P \ J @
0¢1] J J
gel,0-1¢J|Ju{d—-1} Ju{fd-1}
bel,0-1el|J-{0—-1} JT—-{0—-1}

It is not difficult to see that

e p; is well-defined and p? = id. Hence (&g j, p) is a basic datum.
e (Ag j,p) is connected.

(5.5)

5.1.3. Root system. The bundle of Cartan matrices (CJ)JeAg’j is constant:
CY is the Cartan matrix of type Ay as in (4.2) for any J € Ag ;.
The bundle of sets of roots (AJ)JGAQJ. is constant:
AV = {4a;;i,j €10 <5}

Hence the root system is standard, with positive roots (4.3). Notice that
this is the generalized root system of type A(j — 1|0 — j), i. e. of sl(j|0 — 7).
5.1.4. Weyl groupoid. The isotropy group at {j} € Ag ; is

W({j}) = (sizi€Li#5) ~S; x Sg_jr1 < GL(Z.
5.1.5. Lie superalgebras realizing this generalized root system.

Let py : Z' — Gy be the group homomorphism such that
(5.6) pr(ag) = -1 <= ie].

We say that o € Z! is even, respectively odd, if pj(a) = 1, respectively
py(a) = —1. Thus J is just the set of simple odd roots.

To describe the incarnation in the setting of Lie superalgebras, we need
the matrices Ag(J) = ((Ifj)i’jgﬂ e k™1 J € Ay, where for i, € I,

, 1, i¢lj=ixl
Sl gl al.={ 1, i€l j=i+1,
& 0, 7€, t 0 i— > 2
) 1—=7 = 4.

The assignment
(57) J'_>(A9(J)7PJ)

provides an isomorphism of generalized root systems, cf. §2.8.
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0+1
2

{Ae(q;J), if 2Ky = j;
J—

5.1.6. Incarnation, 1 < j < . The assignment

5.8
(58) Ap(g 1), ifKy=60+4+1—j.

gives an incarnation. Indeed, let q be the matrix corresponding to Ag(q; {j}).

o First, the map (5.8) Ap; — Ay is bijective. By the definition (2.25),
pi(Ay(q; 1)) equals Ag(qt'; ps(J)), depending on 2Ky, cf. (5.3), for all i € I
and J € Ag ;. Thus the basic data (¢, p) and (Xy, p) are isomorphic, cf.
Proposition 2.7.1.

o By the definition (2.24), C4¢(%9) is the Cartan matrix of type Ag for all
J € Ay, thus coincides with CJ. By Proposition 2.7.1, the generalized
root systems are equal.

5.1.7. Incarnation, j =

”Tl . The assignment

(5.9) I —Ap(q;J), T—Ap(qg™ D), J € ap,

gives an incarnation. Indeed, let q be the matrix corresponding to Ag(q; {j}).

o First, the map (5.9) Ay ; — Ay is bijective. By the definition (2.25), cf.
(5.3), we see that the basic data (A ;,p) and (Xy, p) are isomorphic, cf.
Proposition 2.7.1.

o By the definition (2.24), and Proposition 2.7.1, the generalized root sys-
tems are equal.

5.1.8. PBW-basis and (GK-)dimension. Let J € Ag ;. The root vectors are

Loy = La; = Liy 1 €1

1

Tai; = T(ij) = [Tir Tagiy e i<jel,
with notation (2.11). Recall the super structure defined in §5.1.5. Then

706, 10-10 o101 ey o 0 <mn;; <N if a; is even,
0 TO-10)70=1 A0 L]0 <y < 2if ayj is odd

is a PBW-basis of B;. Notice that it depends on J. If N < oo, then
dim By = 20D NG+,

If N = oo (that is, if ¢ is not a root of unity), then

GK-dim B, = (;) + (9 2‘7>.
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5.1.9. Presentation. First, the set of positive Cartan roots is
01 ={ayj € Al : a;j even}.
The Nichols algebra By is generated by (z;);er with defining relations
zij =0, 1<j—1 Tigix1 = 0, qii # —1;
(5.10) [Z(i—1i41): Tile =0, g = —1; 2?7 =0, gi=-1;
xgi], =0, € (’)1.
If N =00,ie q¢ Gy, then we omit the last set of relations.

5.1.10. The associated Lie algebra and si. As the roots of Cartan type are
the even ones, the associated Lie algebra is of type A;_1 x Ag_;.

H:(N—l) Z (ai+ai+1—|—-'-+aj)—|— Z (Oél'—|-05i+1—|—-'-+04j).

aij even a;j odd

5.1.11. Type A(1]|1), N > 2. We illustrate the material of this Subsection
with the example 0 = 2. Here 2K({1}) = K(I3) = 1 and 2K({2}) = 2 =
2+1—1. Thus Ay = {{1},I,{2}}. The diagram of (A1, p) is

1 2
° ® o .
{1} I {2}

In all cases, xo, = 21, Tay, = T2, Tay, = T1T2 — ¢1222T] = T12.

- -1
J={1}: This is Aa(q;{1}), i.e. o —% I Here a1 and aqo are

odd; the PBW-basis is {z5?z]322]" |0 < ng < N,0 < ni,niz < 2}.
Also By is generated by (z;);er with defining relations

(5.11) Troo1 = 0; .r% = 0, ZCéV =0.

J =1Iy: Thisis Aa(q; I2), i.e. P . Here a1 and ay are the odd

roots; the PBW-basis is {z5?z75%2}" |0 < nia < N,0 < ny,ng < 2}.
Also By is generated by (z;);er with defining relations

(5.12) 2 =0, z3 =0, N, =0,
1 _
J = {2}: This is Aa(q~1;{2}), i.e. §— T ' Here ay and a9 are

odd; the PBW-basis is {z5?z]3?2" |0 < n; < N,0 < ng,ni2 < 2}.
Also By is generated by (x;);er with defining relations

(5.13) r112 =0, 3 =0, N =0.

Clearly, there is a graded algebra isomorphism with the Nichols algebra
corresponding to Ay(q; {1}), interchanging =1 with zs.
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5.1.12. Ezample Az . Here agzo = {{2},{1,3},I3}. We exemplify the incar-
nation when j =60+ 1 — j in the case 8 = 3, j = 2. We give the diagram of
the basic datum and its incarnation:

AB({Q}vq)
[ ] [ J
2 2
[} [ ]
/ Y 1/ AB(H&Q) \3
° ° O A3({1.73}7Q) A3({17§}7q71)
X . / N
2 2
[

[}
AS({2})q71)
5.2. Type B(j|0 —j), j € Iy_1. Here q ¢ Gy.

5.2.1. Basic datum. The basic datum is (Bg,;, p), where
By ={J C1: 2Ky =j}

and p : T — Sg,  is defined by (5.3) if i € Ty_1, while pg = id. We see that

o If k €I, then {k} € By ; if and only if k£ = j.

e p; is well-defined and p? = id. Hence (Bgj, p) is a basic datum.

e Let J € By;. Then there exists & € I such that J ~ {k}. Hence
(Bg,j, p) is connected.

5.2.2. Root system. The bundle of Cartan matrices (CJ)JeBM is constant:
C7 is the Cartan matrix of type By as in (4.7) for any J € B,
The bundle of sets of roots (AJ)MBH’], is constant; AY is given by (4.8).

Remark 5.1. There exists a bijection

Bgj — Boo—j, J—J=

Ju{6}, 60¢17;
J—{6}, 6¢el.

Notice that p;(J) = p;(J) for all J € Bg; and all i € I, so the bijection above
establishes an isomorphism of basic data between (Bgj,p) and (Bgg—;,p),
which gives an isomorphism between the root systems. Otherwise, the GRS
of type B(j|0 — j) and B(k|0 — k), j, k € Ip_q with k # j,0 — j are not
isomorphic, e.g. compute |[W({j})|.
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5.2.3. Weyl groupoid. The isotropy group at {j} € By ; is
Wiy = (§9 e £ )
~ ((Z/2) xS;) x ((Z/2)°77 x Se—;) < GL(ZY).

Ejj} = g]{j}ng e $0-159S0—1---S5 € W({j}). In other words, it is
generated by 6 — 1 loops and one cycle (which is not a loop).

where

5.2.4. Lie superalgebras realizing this generalized root system.
Let py : Z' — Go be the group homomorphism as in (5.6).

To describe the incarnation in the setting of Lie superalgebras, we need
the matrices By(J) = (bfj)i’je]l e k™1 J € Ay j, where for i,7 € I, i # 6,

. -1, Z%J,]:Zﬂ:l, 2, ]:97
J 27 Z¢J7 J . . . J .
b = ] b, =< 1, 1€l,j=ix£1, b,. =< —2, j=0-1,
i 07 ZEJ; i 67 .
0, li—jl>2 0, j<6-2

Then g(Bg(J), py) ~ 0sp(2j + 1,2(6 — j)). The assignment
(5.14) J—(Bs(J), py)

provides an isomorphism of generalized root systems between the GRS of
type B(j]0 — j) and the root system of osp(25 + 1,2(6 — j)), cf. §2.8.

Remark 5.2. The bijection in Remark 5.1 gives also an isomorphism between
the GRS of type B(j|0 — j) and the root system of osp(2(0 — j) + 1,25) 2
osp(2j + 1,2(0 — 7).

5.2.5. Incarnation. The assignment
Ag1(¢%)) ————o, 0¢J;
(5.15) J—
Ag 1(¢%))——— o , 0ET

gives an incarnation. Here the diagram in the second row in (5.15) is obtained
from the first one interchanging ¢ by —¢~!. Below we give information for the
diagram in the first row; the information for the other follows as mentioned.

Remark 5.3. The bijection in Remark 5.1 provides another incarnation of
B(j]6 — j), which is different from the first one.

5.2.6. PBW-basis, dimension. With the notation (2.11), the root vectors are

Loy = Loy = Ti, 1 €1
flfogij = 37(1]) = [mi’wa(i+1)j]57 1< )€ ]L
Lag+ap = [xocwawO]c, i €lp_q,

xaw-f—ozjg = [xai9+a(j+1)0, 'rj]w i <] € ]19717
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Let N, = ord gue; it takes different values when IV is even. Thus

LY mG 16 ng—10 MNoe—160—1 mi2 mig nig n11
{x Lag_19+ageTao-10To—1 “Tajgtazg * Tajgtagy " LTarg -+ L1

\0 < nij < Noy;3 0 <myy < Nai9+aj9}
is a PBW-basis of By. Let M = ord ¢?, P = ord(—q). If N < oo, then
dim B, = 92j(0—j—1) p y0?—0-2j(0—j—1) \jO—i pi
If N = oo (that is, if ¢ is not a root of unity), then

GK-dim By = 6% — 2j(6 — j — 1).

5.2.7. Relations, N > 4. The set of positive Cartan roots is

(5 16) Oj_ :{aij 1< j e 19—1,%]' even} U {Ozig NS ]19_1}
' U{aig +ajg 1 i < j € llp, ;1) even}.

The Nichols algebra By is generated by (x;);er with defining relations
zij =0, 1<j =1 @i =0, 1<0,qi # —L
(5.17) Zopo(o—1) = 03 [@-1it1),2ile =0, ¢i=—1
B0, gi=-l =0 acOl

7

If N =00,ie q¢ Gy, then we omit the last set of relations.

5.2.8. Relations, N = 3. The set of positive Cartan roots is also (5.16). The
Nichols algebra By is generated by (x;);er with defining relations

zij =0, 1<j—1 [Z(i—1i41): Tile = 0, g = —1;
(5.18) Tiiiz1) = 0, @i # =15 [Zoo0-1), To-nle = 0, go-10-1 = —15
' [Zo0(9—1)(6—2)> To(o—1)]c = 0;
27 =0, gi=-1; gNe =0, aeOl.

5.2.9. The associated Lie algebra and a. If N is odd (respectively even), then
the associated Lie algebra is of type C; x Bg_; (respectively C; x Cyp—;), while

1= Z Oé”‘i‘ Z ( az]+ Z —1(129

1<j€ly 1, 1<j€ly_1, i€lly,
Qij odd Q;j even a;p odd
+ E — 1 0419 + E (Oéig + Oéj@) + E (M — 1)(0@9 + Oéjg).
i€lly, i<jé€ly, i<j€ly,

a9 even a;(j—1) odd Q;(j—1) even
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5.2.10. Types B(2|1) and B(1|2). We exemplify the incarnation in the case
0 =3, 7 =1,2. To describe the first example, we need the matrices:
2 2 2 2

q -1 ¢ -1 g7 ¢ ¢ q° -1 q¢° -¢
o, p(z):o ) o, p(?’):o o .

1 q712 q2 q
p( 2 % A

-2

Here Bg1 = {{1},{1,2},{2,3}}. The basic datum and the incarnation are:

{13 1 {12} 2 {23} p g p@ g p®
[ ] [ ] [ ] s ® [ ] [ ]
For the second example, we need the matrices:
2 g2 1 g2 1 g2 1 ¢® gt 1 @ q2 ¢ gt
q(l) N qO 1 (e) a g’ q(2) . O i (e) 1 % N q(3) . 0 g qO 1 % .

Here B3 o = {{2},{1,3},I3}. The basic datum and the incarnation are:

20 2 1 1 {13} a® o g@ o ¢®
[ ] [ ] [ ] y [ ] [ ] o .

By Remark 5.1, B(2|1) and B(1]2) are isomorphic, but the incarnations
are not.

5.3. Type D(j|0—j), j € [yp_1. Here N > 2. We consider different settings,

according to whether j is <, = or > g. Below ¢, ¢, d are three different

symbols alluding to Cartan types C and D.

5.3.1. Basic datum, j < %. We first recall (5.2): Ag_1,; = ag_1,; Uap_10—j,
and define p’ : Tg_1 — Sy,_, ; asin (5.3). The basic datum is (Dg,j, p), where

(5.19) Dg,j = (ag-1,; x {c,c}) U (ag-1,0-; x {d}).
and for i € I, p; : Dy j — Dy ; is given by

(

(J),C), i € lgo,

(), d), i=0-1€l,

p 1(J)’C)7 i=0-1¢17,

J,c), 1=0;

),¢), i€l

J),d), i=0, when § —1 €],
0),¢), i=86, when6—1¢ 1],
), i=0-1;

(J) d s 7 € ]19,2,

/
1
ol
pi(J,c) == /Z

(
(
(
(
(
G20y p@=4
(
(
(
(
(

. L p_l(J),C), ZZH—IGJ,
pilJ, d) := py_1J),¢), i =06, when 0 —1¢€],
J,d), i€{0—1,0}, when 0 —1¢J.
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5.3.2. Basic datum, j > g. Here we extend (5.2) as follows:

. 0
Ag 1 =Rp 19 j=ap19-;Uag_1;, for 5 <j<é.

Then we define p' : Ip_y — Sy,_, ; as in (5.3); with this, the basic datum is
(Dg,j, p), where Dg ; and p are defined exactly as in (5.19) and (5.20).

5.3.3. Basic datum, j = g. We first recall (5.4): Ag_1, = ag_1,; Uap_1,,
and define p' : Ty_; — Sy,_, ; asin (5.5). The basic datum is (Dg ;, p), where

Do,; = (ag—1,; x {c,c}) U (@o—1; x {d}),

and p; : Dgj — Dy ;, © € I, is defined as follows. If J € ag_y j, then

(p'/z(“]])ac)v iEHg_g,
. R (0/0—1(0]])761)7 1=0-1 Eq]],
PJ =N (Do) i—0-1¢ 7,
L (J,0), 1 =0,
(IO'IL(J 75)7 Z‘6}19727
, ) (py_1(J),d), i =06, wheno—1¢€],
pi(J, ) := (pp_1(D),¢), i=10, when 6 —1¢]J,
L (J,0), i1=0-1,;
(p;(j ad)a iEH@—Qv
o ) (Ppi)e), i=0-1€],
piJ.d) = (py_1(J),¢), i=0, when 6 —1 €],
(1,4d), i€{0—1,0}, when 6 —1¢J.

Here and in the previous cases, all p;, i € Iy, are well-defined, and (Dg j, p)
is a connected basic datum.

5.3.4. Root system, j # g. The bundle of Cartan matrices (C(J””))(J,z)@g,j
is the following;:

o Let Jcag ;. f6—1¢J, then CJ:9) is the Cartan matrix of type
Cp as in (4.15). If  — 1 € J, then C0¢) is and of type Ay as in (4.2).

o CU9 has the same Dynkin diagram as CJ9), but changing the nu-
meration of the diagram by 6 — 1 +— 6.

o Let J €agp_19-j. If0—1¢ 1], then CUd) s the Cartan matrix of
type Dg (4.23). If  — 1 € J, then the Dynkin diagram of CJ4) is of
type g_2T", see (3.11).

As in (5.6), let py : Z9~' — Gy be the group homomorphism such that
py(ax) = —1iff £ € J. Using this parity vector, we define the bundle of root
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sets (A(J’x))(J,a;)eDM as follows:

AW = Loy i < j € THU{E(asg +ajp1) i < j €T}
U{x(aig—1+aip): i €1, pylaso—1) =1},

ATD — 50 10 (A(J,c))7

oy AN ={Fayr 1<i<i<0.65)# 0~ 1.0))

U{£(ag_1 + o) : pylag_1) = —1}
U{*(aig_o+ap) i€y}
U{F(aip + ajo-2) 10 < j €Ty o}
U {:I:(Oéi,e + Oéi,g_g) 21 € Tlg_o, pJ(ai,G—l) - _1}'

5.3.5. Root system, j = g. The bundle of Cartan matrices (C(J@))(J,m)@g’j
is the following, where J € ag_; ;:

o CU9 and €09 are exactly as in §5.3.4.

o If § —1 ¢ J, then CU9 is the Cartan matrix of type Dy (4.23). If
0 —1 € J, then the Dynkin diagram of CU9 is of type g_oT, see
(3.11).

The bundle of root sets (A(M))(LI)EDQJ is defined analogously: AU and
ATD) are as in (5.21), while ATD is as ATD in (5.21).

5.3.6. Weyl groupoid. The isotropy group at ({j},c) € Dy ; is

Wi} = 7 P e i # )
~ (2/22)"~' % S;) x (Z/22)°77 x Sp_;) < GL(Z").
Ej.j} _ %{J‘}

where A1+ SH-15959—-1-- - S5 € W({i})-

5.3.7. Lie superalgebras realizing this generalized root system, j # g. Let

(J,x) €Dy ;. Let p(yq) 7! — G4 be the group homomorphism such that

o If z =c, then py () = -1 <= i€l

o If z = ¢, then p(j3) is p(y,) but changing the numeration by 6 — 1 «— 0.

o If x = d, then p(j 4)(a;) = —1 <= eitheri € Jorelsei=0,0—-1¢].
To describe the incarnation in this setting, we need matrices

Co(J) = (cfj)m@ e kI*L J € ay j, where for 4,5 €L,

Jdof2 ¢l o) FL el j=itl6,))# (01,0
i 0, ieJ, Ci 2, i=0—1,j=0,



FINITE DIMENSIONAL NICHOLS ALGEBRAS OF DIAGONAL TYPE 61

e Dy(J) = (d“fj)meﬂ e k™I J € agy_;, where for i,5 €I,

2, igl, o o
O, ZEJ, 17 Z7JGH9—171¢J7]_Zi17

dJ; = dy =13 Fl, i,je€lgriclj=itl,

ii 2, i=0,0—1¢]7, J S
0, i=0,0—1€], 0, #jelprli-jl=2

-1, 7=0-2, -1, 1=60-2,
P 2, j=0-1¢€], - -1, j=0-1¢€],
0; 0, j=0-1¢17], w0, =0—-1¢1J,
0, 7 €lg_3. 0, 7 €lg_3.

Then g(Co(J), p(y,e)) ~ 05p(24,2(6 — j)). The assignment

(J,¢) —(Co(1), Py,
(5.22) (7,8) — (s9-10(Co (1)), Pz
(J,d) —(Dg(J), Pg,a))-
provides an isomorphism of generalized root systems between (Dg j, p) and

the root system of osp(27,2(6 — 7)), cf. §2.8.

5.3.8. Lie superalgebras realizing this generalized root system, j = g.
There is an incarnation of Dy ; as follows: (J,c), respectively (J,¢), (I, d),
maps to the pairs in (5.22), accordingly.

5.3.9. Incarnation, j # %. Here is an incarnation of Dy ;:

q72 2

(5.23) (JLC) — A9_1(q;J) 5

o

G214) (10— s010( AvalD) —— ),

(5.25) (J,d) —> S 1€,
q ! V
-1
Ay o(g;INTp_g) —2 01,
-1
(5.26) (J,d) —> % 6—1¢1J.
q
Ag_o(g TN Tos) %,

5.3.10. Incarnation, j = g, There is an incarnation of Dy ; as follows: (J,c),
respectively (J,¢), (J,d), maps to the Dynkin diagram in (5.23), respectively
(5.24), (5.25) or (5.26), accordingly.
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5.3.11. PBW-basis and (GK-)dimension. The root vectors xg, are described
as in Cartan type C', D, c.f. §4.3.4 and 4.4.4, k € [p2_g, ;. Thus

92 045 M62_0+4j—1
T Ty e a2a |0 <np < Ng, ¢
/89279+j ﬁ92,9+j,1 /82 51 k

is a PBW-basis of B;. Let M = ord q*. If N < oo, then
dim By = 92(0—3) py0—i N (O—3—1)*+5%—1

If N = oo (that is, if ¢ is not a root of unity), then
GK-dim By = (6 — j)(0 — j — 1) + j°.

o The set of positive Cartan roots for (5.23) is

(5.97) Of ={ay;:i<jel, pJ(C.Vij) : 1}

U{aig+ajo—1:1<7€lg1, prlagg + aje—1) =1}

o The set of positive Cartan roots for (5.24) is sg_19 of the set described in
(5.27).
o The set of positive Cartan roots for (5.25) or (5.26) is
O ={ayj i < jely, pylayj) =1}
(5.28) U{aig—2+ap i €lg_a,, prloyg_o) + ag) =1}
U{aig+ajp2:i<j€ly g, pylais+ajo2) =1}
We now provide the defining relations of the Nichols algebras according

to the Dynkin diagram (5.23), (5.25) or (5.26). The relations for the Dynkin
diagram (5.24) follow from those in (5.23) applying the transposition sgp_jg.

5.3.12. The Dynkin diagram (5.23), qp—19—1 # —1, N > 4. The Nichols
algebra B, is generated by (x;);er with defining relations

zi5 =0, 1 <j—1 w1 =0, ic€lg_1 —J;
Tg—19-10-2 = 0; Tg—10-10-10 = 0;

Togo—1 = 0; [2(i—1i+1), Tile =0, i€Thp oNT;
zi=0, i€l i =0, aeOl,

If N =o00,ie q¢ Gy, then we omit the last set of relations.

5.3.13. The Dynkin diagram (5.23), qp—19—1 # —1, N = 4. The Nichols
algebra By is generated by (z;);er with defining relations

[Z(6—20), To—10]c = 0;  Tizix1 = O, i1 €lgo—J;

zg—10—-10—2 = 0; x5 =0, 1<jg—1
(5.30) )

To—_10-10—10 = 0; [T(i—1i41), Tile =0, i €lhp oNT;

x?:O, 1€ J; a:g“: , ae(’)i.
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5.3.14. The Dynkin diagram (5.23), qo—19—1 # —1, N = 3. The Nichols
algebra By is generated by (2;);er with defining relations

[ (0—20), To—1]es To—1]e = 0;  yii+1 = 0, i€lpo—I;

zg—10—-10—2 = 0; x5 =0, 1<jg—1
(5.31) .

zgog—1 = 0; [T(i—1i41), Tile =0, i €lyp oNT;

=0, iel; aNe =0, ae 0.

5.3.15. The Dynkin diagram (5.23), q9_19-1 = —1, N # 4. The Nichols
algebra B, is generated by (x;);er with defining relations

[z0-20-1, T (9—20))cs To—1]c = O, 0—2€el;
[z (6—30) To—1]e, To—2]c, To-1]e = 0, 0 —2 ¢ J;
(5.32) [Z(i—1it1):Tile =0, i€lap oNJ; zy5=0, i<j—1
Tijiz1 =0, 1 €lpo—J; Togg—1 = 0;
x%z(), 1€ J; wg‘l:O, 046(91.

If N =00,ie q¢ Gy, then we omit the last set of relations.
5.3.16. The Dynkin diagram (5.23), qs_19—-1 = —1, N = 4. The Nichols
algebra By is generated by (x;)ier with defining relations
[[z0-30), To-1]c, To—2]cs To-1]c =0, 0 —2 ¢ J;
[[*o—20-1, T(9—20)]c, To—1]c = 0, 0—-2¢€l;
(5.33) Tii+1 =0, 1€ Tg_o—J; zij =0, i<j—1
[@(i-1i41),Tile =0, i€lp9oNJ; x7=0, i€J;
aNe =0, aec 0 z3_ 19 =0.

5.3.17. The Dynkin diagram (5.25), qp—29—2 # —1, N # 4. The Nichols
algebra By is generated by (z;);er with defining relations

zg-29-29 = 0; Tijig1 =0, 1 €Iy o —T;
5.34 Tij = 07 i < j - 17 0 — 27 [m(i—li—l-l)v xi]c = 07 (&S ]I973 N J7
(5.34) =0, iel; zNe =0, aec0l;

T(0—20) = Go—20-1(1 — ¢*)T9_1T0-20 — qo—10(1 + ¢~ ") [To—20, To—1]c-
If N =00, ie q¢ Gy, then we omit the relations xéva =0,a€ Oi.
5.3.18. The Dynkin diagram (5.25), qp—20—2 # —1, N = 4. The Nichols
algebra B, is generated by (x;);er with defining relations
Tiir1 =0, 1 €lg2—T; [T4-1i41),Tile =0, i€lp3NJ;
To_2¢9_29 = 0; zij =0, 1<j—1,0-2
(5.35) =0, i€l zle =0, ae0i;

T(9-20) = Q0—20—1(1 — ¢*)To—179-20 — Go—10(1 + ¢~ ") [w0—20, To-1]c-
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5.3.19. The Dynkin diagram (5.25), qp—20—2 = —1, N # 4. The Nichols
algebra By is generated by (2;);er with defining relations

[T9—30-20, To—2]c = 0; Tijit1 = 0, i €lg_oNJ;
rij =0, i<j—1,0-2 [24_1i41),7ile=0, i€lp3NJ;
5.36
(5.36) 7 =0, i€l; aNe =0, ae Ol

T(0—20) = Go—20-1(1 — ¢*)Tg_120-20 — qo—10(1 + ¢~ ") [To—20, To—1]c-

If N =o00,ie q¢ Gy, then we omit the relations 2 =0, a € ol.

5.3.20. The Dynkin diagram (5.25), qpg_29—2 = —1, N = 4. The Nichols
algebra By is generated by (z;);er with defining relations

Tisie1 =0, 1€lpo—J; x;; =0, i<j—1,0-2
[T9-36-20,T0-2]c = 0; [T(i—1i41): Tile =0, 1 €Tp 3N
(5.37) =0, i€l ale =0, aec0i;
T(9—20) = 2q9—20-129—1T0—20 — Qo—10(1 + ¢ ") [zo—20, To—1]c-

5.3.21. The Dynkin diagram (5.26), qp—20—2 # —1, N # 4. The Nichols
algebra B, is generated by (x;);er with defining relations

(5.38)
Tiiie1 = 0, i € g2 — I Tg—29-20 = 0; xg_19—19—2 = 0;
2y =0,i<j—1,0-2; zg—10 = 0; Zopg—2 = 0;

[x(i_1i+1),$i]c = 0, 1€ ]19_3 ﬂJ, $Z2 == 0, 1€ J, I’é\[a == 0, o€ Oj_

If N =o00,ie q¢ Gy, then we omit the last set of relations.

5.3.22. The Dynkin diagram (5.26), qp—29—2 # —1, N = 4. The Nichols
algebra By is generated by (x;);er with defining relations

Tggg—2 = 0; Tizi+1 = 0, 1€lyp_o—J;
39 Tg-20-20=0;  [T(i—1i41),Tile =0, i €lp3NJ;
B39) e =0; 2y =0, i<j-1,0-2
Tg_19 = 0; :c?zO, 1 € J; :U,]lv‘” =0, aEOi.

5.3.23. The Dynkin diagram (5.26), qp—29—2 = —1, N # 4. The Nichols
algebra By is generated by (x;)ier with defining relations

(5.40)
Tijit1 = 0, 1 € lgo — J; Toog—2 = 0; xg-10-19—2 = 0;
[T(i—1it1): Tile =0, i €Tg_2NT; 2919 = 0; [T9-30-26,Tg—2]c = 0;
2 =0,i<j—1,0—2 2?2 =0,i€l; z*=0, acOl

If N =o00,ie q¢ Gy, then we omit the last set of relations.
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5.3.24. The Dynkin diagram (5.26), qp_29—2 = —1, N =
algebra By is generated by (2;);er with defining relations

4. The Nichols

29_16 = 0 iy =0, P<j—1,0—2:
(5.41) [T9—36-20, To—2]c = 05 [Z(i—1i41), Tile = 0, i€ Ip—>NJ;

Tgog—2 = 0; Tiiix1 = 0, i €lgo—1J;

Zg—19—19—2 = 0; =0, i€l; zle =0, a € O1.

5.3.25. The associated Lie algebra and s. If N is odd (respectively even),
then the corresponding Lie algebra is of type D; x Cy_; (respectively D; x
By_;). We present = for each generalized Dynkin diagram.

o For (5.23),

Zaz]+ Z _lazj‘i‘ Z

az@ 1+a20)

1<j€ly, 1<j€ly, 1€y,
a;; odd Q;; even 91 even
+ g (vig + vjo—1) + g (N = 1)(cig + ajo-1)-
i<j€lg_q, i<j€lg_q,
a1 odd Q-1 even

o The expression of g for (5.24) follows from the previous case by changing
the numeration of the diagram by 8 — 1 <— 6.

o For (5.25) or (5.26),
> o+ Y, (N=Dag+ 3, (N-Daw-1+a)
1<j€ly, i<j€ly, i€ly_o,
Qg odd Qg5 even Q;0—1 odd
+ Z (aig—2 + ag) + Z (cvip + ajg—2)
iEHQ,Q, i<j€]19,2,
a;9—2 €ven Qi1 odd

DI

i<j€lg_q,
Q-1 even

— Do +ajoa) + Y (M —1)(cug + crig—2).

ieH@*Q’
ai9—1 odd

5.3.26. Ezample Dyo. Here agzo = {{2},{1,3},I3}. We exemplify the incar-
nation when j = 6 — j in the case # = 4, j = 2. Here is the basic datum:

({2}’6) 2 (H3vc) 1 ({1’3}’8)
[} [ ] [ ]
3 3
{13rd) 1 @d) 2 ({239
[ J [ ) [
4 4
({2t 2 (30 1 ({1,340
] [ ] [ ] .
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To describe the incarnation, we need the matrices (q();cr,, from left to right
and from up to down:

at q -1qt q ¢? ¢ 1gt a1 g -1 g% -1oq gt g -1 g% ¢?
07070707 0707070, 07070707
1 1 gt
(] (@] (@]
2 2
q q
q! \ qat \ q
N | -1oqg -1 gt | -1
O O O, o () o, g a o) a qo .
Now, this is the incarnation:
[ ] [ ] [ ]
3 3
B N (O NP ()
[ ] [ ) [ ]
4 4

s3a(qM) 2 s3a(@®) g 834(:1(3))

5.4. Type D(2,1;«). Here , q,r,s # 1, qrs = 1. D(2,1;), o # 0,—1,
is a Lie superalgebra of superdimension 9|8 [K1, Proposition 2.5.6]. There
exist 4 pairs (A, p) of (families of) matrices and parity vectors as in §2.8

such that the corresponding contragredient Lie superalgebra is isomorphic
to D(2,1; «).

5.4.1. Basic datum and root system. The basic datum (X, p), where X =

{a; : j € I4}; and the bundle (C%);¢y, of Cartan matrices are described by
the following diagram:

Az

°
ay
2
A AL A
s12(A3z) 1 2 3 s23(A3)
) [} [ ] .
as a3 as

Here the numeration of A3 is as in (4.2) while Agl) is as in (3.11) and below.

Using the notation (3.1), the bundle of root sets is the following:
A ={1,12,123,12?3,2,23, 3}, AP = s15(AY),
AP ={1,12,13,123,2,23, 3}, ALt = 593(AT).

We denote this generalized root system by D(2,1).
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5.4.2. Weyl groupoid. The isotropy group at a; € X is
W(a1) = (", 65 3616362, 551) ~ Z/2 x Z/2 x 72 < GL(Z").
5.4.3. Lie superalgebras realizing this generalized root system.

To describe the incarnation in the setting of Lie superalgebras, we need
parity vectors p = (1,—1,1), p’ = (-1, -1, 1) € G3, and matrices

2 -1 0 0 1 —-1-«
D(@:=[|1 0 al, Di(a):= 1 0 a , a#{0,—1}.
0 -1 2 l+a —« 0

Let a # {0, —1}. The assignment
(5.42) ay — (D(Oé),p), a2'H312(D(_1_a)7p)7
. az— (D' (a),p’), a4 so3 (D (-1 - a_l) P),

provides an isomorphism of generalized root systems, cf. §2.8. Moreover,
the Lie superalgebras associated to (D () ,p), (D (B) ,p) if and only if

Be{at, —(1+ o), —(1+a HF}.
5.4.4. Incarnation. Here is an incarnation of D(2,1):

gt =1 1 7 g ¢! -1 st

q - s
ap—— O o o, a2+ O o o,

1 2 3 2 1 3

T 7'_1 —1 s_l S
CREIN Bt bl e

-1
— o
3
7N\
—1 q —1
O —— o
1 2

We set N = ord q (as always), M = ordr, L = ords. Also,
71232 := [T123, T2]c-
5.4.5. The generalized Dynkin diagram (5.43 a), q,r,s # —1. The set
{31 25325 2153 025375017 |0 <y < M, 0 <ng < L,0<n7 <N,
0 < ng,ng,ns,ng < 2}.
is a PBW-basis of By. If N, M, L < oo, then
dim By = 2'LMN.
If exactly two, respectively all, of N, L, M are oo, then
GK-dim By = 2, respectively 3.
The set of positive Cartan roots is O% = {1,12%3, 3}. The Nichols algebra
B, is generated by (z;)ier, with defining relations
a2y =0;  23=0; 23 =0; afy,=0;

(5.44)
2112 = 0; w332 =0; x13 =0.
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If N =o00,ie q¢ Go, respectively L = oo, M = oo, then we omit the
relation where it appears as exponent.

The degree of the integral is s = (L 4+ N)ag + (2L + 2)ag + (L + M)as.

5.4.6. The generalized Dynkin diagram (543 a), ¢ = —1,r,s # —1. The
Nichols algebra By is generated by (z;);er, with defining relations

x% =0; x% =0; xg/[ =0; $1L2372 =0;
(5.45) i
2o = 0; w332 =0; w13 =0.

If L = oo, respectively M = oo, then we omit the relation where it appears
as exponent. The PBW basis, the dimension, the GK-dimension, the set of
Cartan roots and a are as in §5.4.5.

5.4.7. The generalized Dynkin diagrams (5.43 b and d). These diagrams are
of the shape of (5.43 a) but with s interchanged with ¢, respectively with r.
Hence the corresponding Nichols algebras are as in §5.4.5 and §5.4.6.

5.4.8. The generalized Dynkin diagram (5.43 ¢). The set
{ayrab2aba s, x 515" |0 <ng < M, 0<ng < L,0<ns <N,
0 <ni,ng,ng,ny < 2}.
is a PBW-basis of B;. The dimension and the GK-dimension are as in §5.4.5.

The set of positive Cartan roots is O1 = {12,13,23}. The Nichols algebra
B, is generated by (z;)ser, with defining relations

:r%:O; :Eg:O; :r%z();
(5.46) Y, = 0; x5 = 0; zl =0;
gl — gl — $)raris =0
T(13) — — |13, T2)c — — s)xaz13 = 0.
(13) g3l —1) 13, L2[c — 412 2713

If N =o00,ie q¢ Go, respectively L = oo, M = oo, then we omit the
relation where it appears as exponent. The degree of the integral is

a=(L+ N)ay+ (L+ M)az+ (M + N)as.
5.4.9. The associated Lie algebra. This is of type A1 x A1 x Aj.

5.5. Type F(4). Here N > 3. F(4) is a Lie superalgebra of superdimen-
sion 24|16 [K1, Proposition 2.5.6]. There exist 6 pairs (A, p) of matrices
and parity vectors as in §2.8 such that the corresponding contragredient Lie
superalgebra is isomorphic to F(4).
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5.5.1. Basic datum and root system. Below, Ay, Cy, Fy and 2T are numbered
as in (4.2), (4.15), (4.35) and (3.11), respectively. Also, we denote

Ko = (14)(23), k1 = (1234), Ko = (234) € Sy.

The basic datum and the bundle of Cartan matrices are described the
following diagram, that we call F(4):

k2(Cy)
°
ag

4

ko(Fa) 4 As 3 T 2 s130T) 1 r1(A4)
[ ] [ ] [ ] [ ] [ ) .
al a2 as aq as

Using the notation (3.1), the bundle of root sets is the following;:

A ={1,12,2,123,1273%,123%, 23,237, 3,123%4, 1223%4, 123%4, 2374, 12°3%4%, 1234, 234, 34,4},
A2 ={1,12,2,123,23,3,12%3%4, 12%3%4, 123%4,23%4,12°3%47, 1234, 12234,
123242 234,232%42, 34,4},
A ={1,12,2,123,23,3,12%34,12%4,1234,12°3%47, 234, 12347, 34, 1234%, 124, 2347, 24, 4},
At =s13({1,12,2,12%3,123,12%3%, 23, 3,1%2%3%4, 12%3%4, 12%3%4,12°34, 1234, 124, 234, 24, 34, 4}),
A =k1({1,12,2,123,23,3,12%3%4,12°3%4,1°2°3%47 1234, 1233447 1223147, 23%4,1273%4,
1234,234, 34,4}),
AL =k ({1,12,127,2,12%3,123,23,3,1723%4, 123324, 12%3%4, 123%4, 12734, 1234, 23%4, 234, 34,4}).

5.5.2. Weyl groupoid. The isotropy group at a; € X is
Wiar) = (si,s5", <5", sf essasisasisassss) = W (Bs) x Z/2 < GL(Z").
5.5.3. Lie superalgebras realizing this generalized root system.

To describe the incarnation in the setting of Lie superalgebras, we need
parity vectors py as in (5.6), J C I, and matrices

2 -10 0 21721018 21701(2)(1)
_[(-12-10 N - N

Al = 02 2 -1)> Ay = 0201 ]> Az = 0201 />

0 0 10 0010 0-1-12

98 %7 59 %1 %39%%

Ay = 0-12 0 |> As = 0-12 0 |» Ag = 0-120]-

3100 3-10 0 -10 02

The assignment

a1 — (A1,pqqy), ag — (A2,pg3,43), a3 +— (A43,P233),

(5.47)
as — (A1, Ppi24), as— (As5,pp13),  as — (A6, Ppay),

provides an isomorphism of generalized root systems, cf. §2.8.
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5.5.4. Incarnation. Here it is:

(5.48)
q2 q—2 q2 q—2 q q—l -1 2 —2 q2 q—2 1 q -1
al —— O (e] (@] (@] a,2 —— O [e] (@] (o)
1 2 3 4 2 3 4
q 1
asz —r o a4 — o)
4 4
—1 -3
- y q/ ‘q
@ g2 -1 ¢® -1 -1 ¢* -1 42 ¢
o o] O (@] (@] o
1 2 3 1 2 3
e?® @ —1q¢?% ¢ g% ¢ a3 @ —1q! a? ¢
a5 — (@] O (@] O a6 — O (@] (@] o .
4 1 2 3 1 4 2 3

5.5.5. PBW-basis and (GK-)dimension. Notice that the roots in each A%,
1 € Ig, are ordered from left to right, justifying the notation (1, ..., Bis.
The root vectors xg, are described as in Remark 2.14. Thus
{xgizxg;; xgrgt |0 <my, < Nﬁk} .
is a PBW-basis of B;. Let L = ord ¢, M =ordg® If N < oo, then
dim B, = 2 LM?*N°.
If N = oo (that is, if ¢ is not a root of unity), then GK-dim B; = 10.
5.5.6. The generalized Dynkin diagram (5.48 a), N > 4. The Nichols algebra
B, is generated by (z;)ier, with defining relations
r13=0; 214=0; w24 =0;
(5.49) r112 =05 @221 = 0; @223 =0; 2334 =0;
w33z =0; a7 =0; x)*=0, a€O;
where O = {1,12,2,123,12%32,1232,23,232,3,1223%42}. If N = oo, ie.
q ¢ G, then we omit the last set of relations. Here
a=(L+4M + N —2)ag + (2L + 6M + 2N — 2)as
+ (BL+6M +3N)as + (2L + 6)ay
5.5.7. The generalized Dynkin diagram (5.48 a), N = 4. The Nichols algebra
B, is generated by (z;)ser, with defining relations
713 =0; 714 =0; [z(13),72]c = 0;
(5.50) T334 =0; 24 =0; [723,%(20)]c = 0;
T3332 = 0; 23 =0; z)* =0, a € 0O%;

here, (91, s are as in §5.5.6.
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5.5.8. The generalized Dynkin diagram (5.48 b), N > 4. The Nichols algebra
B, is generated by (z;)ier, with defining relations
z13=0; 214a=0; 224=0; w112=0;

(5.51) T291 = 0; T223 = 0; [[743, Ta32]c, T3] = 0;

No
«

where O = {1,12,2,1223%4,1234, 1223242 123242, 234,23%42 34}. If N =
00, i.e. ¢ ¢ G, then we omit the last set of relations. Here

:v%:O; xi:(); x :0,046(9i;

a=(L+4M + N —2)oy + (2L +6M + 2N — 2)ap
+ (BL+6M+3N)az+ (L +6M+ 3N —4)ay.
5.5.9. The generalized Dynkin diagram (5.48 b), N = 4. The Nichols algebra
B, is generated by (z;)ser, with defining relations
113 =0; 214 =0; [2(13),72]c = 0;

(5.52) Tos =0; 253 =0; [[743, Taz2]c, v3]c = 0;

ar%z(); xizo; xga:O, 046(91;
here, Ol, s are as in §5.5.8.
5.5.10. The generalized Dynkin diagram (5.48 ¢), N > 4. The Nichols alge-
bra By is generated by (z;)ic1, with defining relations

r13=0; 214 =0; 2112 = 0;
(5.53) Taa2 = 0; w443 =0; [z(13), T2]c = 0;

3 =0; x%zO; mgazo,ani;

T(2a) — q34q[24, T3]e — qa3(1 — ¢ )w3mas = O;
where O = {1,123,23,12%4, 1234, 1223242 234, 1234%,234% 4}. If N = oo,
i.e. ¢ ¢ Goo, then we omit the relations 2> = 0, € O}. Here
a=(L+4M + N —2)ayg + (2L 4+ 6M + 2N — 2)ao
+ (6M + 2N —4)ag + (L +6M + 3N — 4)ay.

5.5.11. The generalized Dynkin diagram (5.48 ¢), N = 4. The Nichols alge-
bra By is generated by (z;)sc1, with defining relations

z13=0; 214 =0; a,=0;
(5.54) Taaz = 0; Taa3 =0; [z(13), 22 = 0;

x%zo; x%zO; xév‘xzo,ae(’)q;

T(24) — ¢34q[T24, T3] — qa3(1 — ¢~ )w3was = 0;

here, (91, st are as in §5.5.10.
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5.5.12. The generalized Dynkin diagram (5.48 d), N > 4. The Nichols alge-
bra By is generated by (z;)ic1, with defining relations

z13=0; x1a=0; [z124,22]c=0;

(5.55) z112 =0y @ =0; [[zs2, 2321]c, 22)e = O;
2=0; 22=0; xf&:@,aeoi;
_ q3 3
T(24) + Q341_7q2[97247 r3]e — q23(1 — ¢ °) w3204 = 0;

where O = {1,123,12232,23,1223324,1233%4,12%34,124,24,34}. If N =
00, i.e. ¢ & Goo, then we omit the relations zY =0, a € O1. Here
= (6M + 2N —4)ag + (10M + 4N — 6)as
+ (L +6M+3N —4)ag+ (L+4M + N — 2)ay.
5.5.13. The generalized Dynkin diagram (5.48 d), N = 4. The Nichols alge-
bra By is generated by (z;)ic1, with defining relations

13 =0; x14=0; [T124,22]c =0;

(5.56) x%Q = 0; 1'421 = 0; [[$32,$321]C,$Q]C = 0;
x%zO; x§:0; xg“:O,aEOq;
_ q3 3
T(24) + Q341_7q2[3624, r3]e — q23(1 — ¢ °) w3204 = 05

here, (’)i, st are as in §5.5.12.
5.5.14. The generalized Dynkin diagram (5.48 e), N # 4,6. The Nichols
algebra By is generated by (z;);er, with defining relations

z13=0; 214 =0; 224=0; z112=0;
(5.57) To21 = 0; @923 = 0;  [[[wa32, ¥3]c, [T4321, T3]c)e, T32]c = 05

443 = 0; x%zO; xév" =0, ae(’)i;
where O1 = {1,12,2,122324,1%233%42 12324,1233%4% 1223142 2324, 4}. If
N = 00, i.e. ¢ ¢ Goo, then we omit the last set of relations. Here

g = (6M + 2N — 4)ay + (10M + 4N — 6)ar
+ (12M + 6N — 6)as + (L 4 6M + 3N — 4)ay.

5.5.15. The generalized Dynkin diagram (5.48 ), N = 6. The Nichols alge-
bra By is generated by (z;)ic1, with defining relations

213=0; 214a=0; 224=0; w112 =05
(5.58) Too1 = 0; @23 =05 [[[as2, T3]c, [Ta321, 23cle, 232]c = 0;

x§4:0; :c%zO; xév‘xzo,ae(’)q;

here, (91, s are as in §5.5.17.
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5.5.16. The generalized Dynkin diagram (5.48 ), N = 4. The Nichols alge-
bra By is generated by (z;)ic1, with defining relations
r13=0; x14=0; [2013),T2]c = 0;
(5.59) w24 =0; 443 = 0; [[[T432, T3], [T4321, T3]c)e, T32)e = 05
x%3:0; 1,‘%:0; xév‘* =0, ani;

here, (’)1, st are as in §5.5.14.
5.5.17. The generalized Dynkin diagram (5.48 f), N # 4,6. The Nichols
algebra By is generated by (z;)ier, with defining relations

z13=0; 214=0; 22 =0;
(5.60) z112 = 0; @201 =05 @23 =0

Tq43 = 0; a:?)):O; a:g“ =0, anl;

([ (14), T2)es 3]e — q23(0° — @) [[@(14)> T3e, T2)e = O;

where O1 = {1,12,122,2,1%23324,123324,122324,123%4,23%4,4}. If N =

00, i.e. ¢ & Goo, then we omit the relations ) =0, a € (’)i. Here

= (6M + 2N —4)ag + (10M + 4N — 6)as
+ (8M + 2N —2)az + (L +4M + N — 2)ay.

5.5.18. The generalized Dynkin diagram (5.48 f), N = 6. The Nichols alge-
bra By is generated by (z;)ic1, with defining relations

r13=0; 114 =0; x99 =0;
(5.61) z112 = 0; @201 = 05 @223 = 0;
z3, =0; 22 =0; 2l =0, ae 0l

([ (14), @2]e, @3] — q23(¢” — Q) [[T(14), T3], T2)e = O;

here, O%, s are as in §5.5.17.

5.5.19. The generalized Dynkin diagram (5.48 f), N = 4. The Nichols alge-
bra By is generated by (z;)sc1, with defining relations

r13=0;  214=0; 224 =0;
(5.62) To23 = 0; o291 =05  [212,2(13))c = 0;
T443 = 0; 23=0; z)*=0, acOl;

([ (14), T2]e, T3] — q23(¢” — Q) [[T(14), T3] T2)e = O;

here, 0%, s are as in §5.5.17.

5.5.20. The associated Lie algebra. This is of type A1 X Bs.
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5.6. Type G(3). Here N > 3. G(3) is a Lie superalgebra (over a field of
characteristic # 2, 3) of superdimension 17|14 [K1, Proposition 2.5.6]. There
exist 4 pairs (A, p) of matrices and parity vectors as in §2.8 such that the
corresponding contragredient Lie superalgebra is isomorphic to G(3).

5.6.1. Basic datum and root system. Below, As, Bs, Df’) and 7@ are num-
bered as in (4.2), (4.7), (3.8) and (3.12), respectively. Also, we denote
k = (123) € S3. The basic datum and the bundle of Cartan matrices are
described by the following diagram, that we call G(3):

D 1 Ay 2 T® 3 w(Bs)
[ ] [ ] [ ] o .
ay az as a4

Using the notation (3.1), the bundle of root sets is the following:
AT = {1,12,123,12%3,1233,12332 12432, 2, 23,223, 3,233, 2337},
AP ={1,12,23,12?3,1%233,172°3% 172137, 2,123, 17273, 3, 1233, 1°2°37},
A% ={12,1,3,13,173,1%23% 13232, 2,123, 1723, 23, 1°23, 172237},
A% = {123%,13,3,1,1%3,1723,1°23% 23,123, 17232, 2,1°23° 132233},
5.6.2. Weyl groupoid. The isotropy group at a; € X is
W(a1) = (1166351635261, 651, 651) = Z/2 x W (Ga).

5.6.3. Lie superalgebras realizing this generalized root system.
To describe the incarnation in the setting of Lie superalgebras, we need
parity vectors py as in (5.6), J C I, and matrices

0 1 0 01 0 2-1-2 20 -2
A1:<—12—3>, AQ:(10—3>, A3:<1073), A4:(0271>.
0 —1 2 0-1 2 11 0 13

The assignment
a1 = (A1,ppy), a2 = (A2, Pp19}),
az +— (A37 p{2,3})) aq (A47p{1,3})7

provides an isomorphism of generalized root systems, cf. §2.8.

(5.63)

5.6.4. Incarnation. Here it is:

-1 q¢' ¢ ¢32 & -1
a; —> o o o, @+ O
1 2 3 1

1
az —— e}
(5.64) 5 3
q—/ Y”
q q! -1
o o 5
1 2
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5.6.5. PBW-basis and (GK-)dimension. Notice that the roots in each A9,
1 € Iy, are ordered from left to right, justifying the notation Sy, ..., 813.
The root vectors xg, are described as in Remark 2.14. Thus

{ahane . alpal |0 <my < Ny, |

is a PBW-basis of B;. Let L = ord —q, M = ord ¢. If N < oo, then
dim B, = 2°LM?* N3,

If N = oo (that is, if ¢ is not a root of unity), then GK-dim By = 7.
5.6.6. The generalized Dynkin diagram (5.64 a), N # 4,6. The Nichols al-
gebra By is generated by (x;)icr, with defining relations

z13 =0; 221 =0; w332 =0;
(5.65) A 2 _ . o Ne_ q.
T3 =0; 271 =0; z,° =0, a€ OL;
where O = {2,3,23,223,233,1223,233%}. If N = o0, i.e. ¢ & Goo, then we
omit the last set of relations. Here

g = (L + 5)a; + (2L + 6M + 4N)ag + (L + 4M + 2N — 1)as.

5.6.7. The generalized Dynkin diagram (5.64 a), N = 6. The Nichols algebra
B, is generated by (z;)icr, with defining relations

r13=0; To21 = 0; [712,7(13)]c = 0;
(5.66) N 2 Na 0
€22223 = Oa ) = 0, maa - 0’ o€ O-H
here, (91, st are as in §5.6.6.
5.6.8. The generalized Dynkin diagram (5.64 a), N = 4. The Nichols algebra
B, is generated by (z;)ier, with defining relations
(5.67) 13 =0; 2221 =0; [[[$(13)>x2]cax2]07$2]c =0;
' x330 =0; 2} =0; zhe =0, a € 0;
here, (91, st are as in §5.6.6.

5.6.9. The generalized Dynkin diagram (5.64 b), N # 6. The Nichols algebra
B, is generated by (x;)ic1, with defining relations

x13 =0; 332 =0; [[x12,[T12, 2(13)]c)es 2] = 0;
(5.68) . 4

2 =0; z2=0; xﬁ“zO,aEOl;

where O = {3,12,123,12%3,1%223,1%233,13233%}. If N = o0, i.e. ¢ ¢ G,
then we omit the last set of relations. Here

a = (L+6M +4N —3)ay + (2L +6M +4N)ay + (L +4M +2N — 1)as.



76 ANDRUSKIEWITSCH; ANGIONO

5.6.10. The generalized Dynkin diagram (5.64 b), N = 6. The Nichols alge-
bra By is generated by (z;)ic1, with defining relations

(5.69) z13=0; 233 =0; [[212,[212,2(13)]c]e, T2]c = 0;

. 2=0; x2=0; ng‘*:(),ae(?i;

here, Oi, st are as in §5.6.9.

5.6.11. The generalized Dynkin diagram (5.64 ¢), N # 6. The Nichols alge-
bra By is generated by (z;)ic1, with defining relations

13 =0; T332 =0; a1112=0; 23=0; z)*=0, a €0l
(w1123, wale]e = T2

9y 9 1 + q
where O = {1,3,12,123,12223,1%233,132%3%}. If N = o0, i.e. ¢ ¢ G,
then we omit the relations z)e =0, a € O1. Here

5.70 _ _
(5.70) (712, T123)c — (71 — ¢~ 3 qr2q132123712;

a=(L+6M+4N —3)ay + (L +4M + 2N — 1)ag + (4M + 2N — 2)as.

5.6.12. The generalized Dynkin diagram (5.64 ¢), N = 6. The Nichols alge-
bra By is generated by (z;)ic1, with defining relations

2 o .2 Ne _ )
z13=0; 253 =0; [z112,712]e =0; 25=0; z,°=0, a€O;

q12432
[901,[90123,962]c]c= 1+4

here, (’)i, st are as in §5.6.11.

5.71 _ _
(5.71) (712, T123)c — (7" — ¢ ) q12q137123712;

5.6.13. The generalized Dynkin diagram (5.64 d). The Nichols algebra By is
generated by (z;)ier, with defining relations

1112 = 0; JZ% = 0; x% = 0; :L’go‘ =0, a € Oj_,
1-¢°
I—gq
where O = {1,12,23,123,1223,1323,13223%}. If N = o0, i.e. ¢ & Goo, then
we omit the relations 2> = 0, a € O}. Here

(5.72)

w113 = 0; T(13) + ¢ g3 (213, T2]e — q12(1 — ¢*)aow13 = 0;

a = (L 4+ 6M + 4N — 3)ag + (6M + 2N)agy + (4M + 2N — 2)as.
5.6.14. The associated Lie algebra. This is of type A1 X Ga.
6. STANDARD TYPE
6.1. Standard type By, § > 2, j € Iy_;. Here ¢ € G}.

6.1.1. Basic datum and root system. The basic datum is (Bg;,p) and the
root system is B(j]0 — j), j € [p_1 as in §5.2.2; hence the Weyl groupoid is
as in §5.2.3. But we have new incarnations.
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6.1.2. Incarnation. The assignment

oy

Ag-1(=C;J) 0 ¢J;

(6.1) T

Api(—GI)—§, ael.

gives an incarnation. Notice that albeit 6 is not a Cartan vertex, pg = id.

6.1.3. PBW-basis and dimension. The root vectors are

Laj; = Loy = Tiy 1€l
Ta;; = T(i5) = [xivma(iﬂ)j]c, 1< jgel,
Tatap = [Taie, Tole i €ly_q,
Lojg+azy = [xai9+a(j+1)9’ Zjle, 1 <jely,
cf. (2.11). Thus
{ag w0 Loy ra Tyl 2 a0 e

|0 < ngj < Naij; 0< mij < Nai0+aj0}
is a PBW-basis of B;. Hence
dim B, = 2000-137*+(0=3)*,
6.1.4. Presentation. The set of positive Cartan roots is
(6.2) Oj_ :{Oéij, Qi + Q1) - 1< j€elygq, Qg even}.

Assume that 8 = 2. Then (91 ={aj,a1 + 2z} if a1 is even, i.e. J =), and
0% =0if ay is odd, i.e. J = {1}.
The Nichols algebra By is generated by (z;);er with defining relations

zij =0, 1<j—1 [T(i—1i+1), Ti]e = 0, i €J;
(6.3) l’z;(iﬂ) =0, Z €lp1 =I5 [zogo—1)(6—2)s To—1)lc = 0;

zy =0, i el [To9(9—1)> To(o—1)]c = 0, 0—1el;

zp =0; xS =0, ac 0.

6.1.5. The associated Lie algebra and s. This is of type D; x Dy_;. In this
case, the Weyl group of the associated Lie algebra is isomorphic to a proper
subgroup of the isotropy group of the Weyl groupoid. Here

z o + Z Savjj + Z 2049

1<j€lp_1, i<j€ly_1, i€l
Qg odd Qjj even
+ Z Oéze + a]G + Z 5(6%9 + Oéje).
i<j€ly, 1<j€lp,
Qg5 —1 odd Qij—1 even

6.2. Standard type Ga. Here ¢ € Gg.
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6.2.1. Basic datum. This is described by the diagram

6.2.2. Root system. The bundle of Cartan matrices (C%)jer, is constant:
C% is the Cartan matrix of type G2 as in (4.43) for any j € I3.
The bundle of root sets (A%);er, is constant:

A% ={+ta1,+(3a1 + a2), £(20q + a2), £(3a1 + 2a), £(a1 + a2), Tas}.

6.2.3. Weyl groupoid. The isotropy group at a; € X is

W(ar) = (s{*sac16261,65%) ~ Z/2 x 7./2 < GL(Z").

6.2.4. Incarnation. We assign the following Dynkin diagrams to a;, ¢ € I3:

¢ ¢ < ¢ ¢ ¢ ¢ -1
(64) ajr—— 0 o, agr—>= 0 o, a3+—=29 o.

6.2.5. The generalized Dynkin diagram (6.4a). The set
{25 213253, 120, 71127111221 [ 11, na € Loz, n2,m6 € Tos, n3,n5 € loa}
is a PBW-basis of By. Hence dim B; = 224282 = 4096.

The Nichols algebra By is generated by (z;);er, with defining relations

(6.5) 21 =0; @201 =0; [T30, 1200, T12]c = 0;
. 25 =0; af, =0.

In this case, (’)q+ = {2,201 + a2} and g = 26y + 20as.

6.2.6. The generalized Dynkin diagram (6.4 b). The set

niy ng N3 n4g N5 ne
{z5 T19%30, 4205 T1127111271 | n2,ns € lo7,

n4,ne € los, n1,n3 € o1}
is a PBW-basis of B;. Hence dim B, = 224?82 = 4096.

The Nichols algebra By is generated by (z;);er, with defining relations

q
xéll =0; ‘T% = 0; [xlax3a1+2a2]c + 1 2 x%12 = 0;
(6.6) -

8 __ n. 8 _
279 = 0; 27772 =0.

In this case, Oi ={a1 + az,3a;1 + az}. and g = 40a; + 20as.
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6.2.7. The generalized Dynkin diagram (6.4 ¢). The set

{23 23255 420, 211221 11221° | 13,106 € o7,
ng,ng € loz, ni,ms €1}
is a PBW-basis of B;. Hence dim B, = 22428% = 4096.
The Nichols algebra By is generated by (2;);er, with defining relations
af =0; z11112 = 05 [¥301+20s, T12]c = 0;
x5 = 0; $§a1+2a2 =0.
In this case, Oq+ = {a1,3a1 + 2as}. and a = 401 + 22as.

(6.7)

6.2.8. The associated Lie algebra. This is of type A1 x A;.

Part III. Arithmetic root systems: modular, UFO
7. MODULAR TYPE, CHARACTERISTIC 2 OR 3

7.1. Type wk(4). Here = 4, g # +£1. Let F be a field of characteristic 2,
a € F —TFy and

01 00
1010 i
0 a0 1]|EF

Let tot(4, ) = g(A) be the corresponding contragredient Lie algebra. Then
dimwt(4,a) = 34 [KaW]. Notice that there are 4 other matrices A’ for
which w#(4, «) ~ g(A’"). Here is the root system wk(4) of w€(4, a), see [AA2]
for details.

7.1.1. Basic datum and root system. Below, A4 and 1T are numbered as in
(4.2) and (3.11), respectively. The basic datum and the bundle of Cartan
matrices are described by the following diagram:

Ay 3 1T 2 513(17T) 1 k1(Aq)
° e ——— ¢ —— o
al as as a4
4] 1|
534(A4) k2 (Ag)
° °
as ag
2 2|
r3(Aa) 1 ka(1T) 4 s2a(u7) 3 s24(A4)
° ° ° °
ar asg ag aio

Using the notation (3.1), the bundle of root sets is the following:
A ={1,12,2,123,23,3,12%3%4,12%3%4, 123%4,23%4,12°3%47, 1234, 234, 34,4},
A2 ={1,12,2,123,23,3,12%34,12%4,1234,234,12°347, 34,124, 24,4},
A ={1,12,2,12°3,123,23,3,12%3%4,123%4, 23%4,12°34, 1234, 234, 34, 4},
AL =s13(A77), AL =ki(AY), AL =k2(AT), ALY =k3(AL),
A =gy (A%2), A =sp4(A%2), AU =5y (AY).
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7.1.2. Weyl groupoid. The isotropy group at a; € X is

Woai) = (51,65, 55" 26164616263, 54 ) ~ W (A2) x W (As).

7.1.3. Incarnation. To describe it, we need the matrices (q*));cr, corre-
sponding to the following Dynkin diagrams, from left to right and from

up to down (also denoted below as a,. .., e as customary).
¢ ¢! q gt -1 —q—q" ¢ —q¢ —¢' —q¢ -1q" ¢
O O O O O o O O
¢ ¢' -1 -1 -1 —q —q "
o o o
(71) —1 -1
(e) (e)
—1 -1
/ ‘ _qfl / ‘q
-1 -1 -1
q q -1 q -1 - -q -1 -1
o) (¢] (¢} qo a o g [e)

Now, this is the incarnation:

a1 — qW, as — q, as — slg(q(4)), ag — m(q(l)),
a5 = 531(a%),  ag = ra(q®),

a7 — k3(q?),  ag— ra(@®),  ag > $24(4®)),  aig > s24(q?).

We set N =ordq, M = ord —¢q 1.

7.1.4. PBW-basis and (GK-)dimension. Notice that the roots in each A%,
1 € I, are ordered from left to right, justifying the notation 1, ..., f15.
The root vectors xg, are described as in Remark 2.14. Thus

{apizapn . afal |0 < my < Np, |-
is a PBW-basis of B;. If N < oo, then
dim By = 27 M3 N3,
If N = oo (that is, if ¢ is not a root of unity), then GK-dim B, = 6.

7.1.5. The Dynkin diagram (7.1 a).
The Nichols algebra By is generated by (x;);er, with defining relations

23=0; x3=0; 214=0; w94 =0;
(7.2) T112 = 0; T221 = 0; $év = 0, o€ {1, 2, 12};
Tooz3 = 0; aaa3=0; M =0, o€ {4,1223%4,12?3%4%},
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If N =o00,ie q¢ G, then we omit the relations ) = 0, 2z = 0. Here
the degree of the integral is

= (2M 4+ 2N)aq + (4M + 2N + 2)ag + (6M + 6)az + (4M + 2)ay.

7.1.6. The Dynkin diagram (7.1 b).
This diagram is of the shape of (7.1 a) but with —¢~! instead of ¢. Thus
the information on the corresponding Nichols algebra is analogous to §7.1.5.

7.1.7. The Dynkin diagram (7.1 c).
The Nichols algebra By is generated by (z;)ic1, with defining relations

2 . — 0 — 0 — 0
IQ = 07 13 = 07 T14 = 07 T24 = 07

22=0; 23;=0; 2} =0, ac{l1,23%4,123%4},
T2 =0; 2443 =0; M =0, e {4,1223,12234};

1+gq
l—gq
If N =00, ie q¢ G, then we omit the relations Y = 0, 2 = 0. Here
the degree of the integral is

s = (2M +2N)oy + (4M + 2N + 2)ay + (2M + 4N + 2)as 4 (2M + 2N)ay.

7.1.8. The Dynkin diagram (7.1 d).
The Nichols algebra By is generated by (z;)ic1, with defining relations

(7.3)

[ (14); T2]es 23]e — g3 ([ (14)> Z3]e; T2]e = 0.

r112 =0; w13 =0; 214 =0; [7(13),22]c = 0;
2=0; 23,=0; z =0, ae{1,23,123};
22=0; 23=0; zM =0, o€ {34,12%4,12234%};

(1+ Q)Q43[

2

If N =00, ie q¢ G, then we omit the relations ) = 0, 2 = 0. Here

the degree of the integral is
1= (2M + 2N)ag + (4M + 2N + 2)ag + (2M + 2N)az + (4M + 2)ay.

7.1.9. The Dynkin diagram (7.1 e). This diagram is of the shape of (7.1 d)
but with —¢~! instead of ¢q. Thus the information is as in §7.1.8.

(7.4)

T(24) + T24, 23]c — qo3(1 + q_1)$3$24 =0.

7.1.10. The associated Lie algebra. This is of type Ay x As.

7.2. Type br(2). Here 6 =2, ( € Gs, ¢ ¢ G3. Let F be a field of character-
istic 3, a € F — T3,

(2 -1 C (2 1) o
A_<a, 2)’ A_<—1—a Q)EF

Let br(2,a) = g(A) ~ g(A’), the contragredient Lie algebras corresponding
to A, A’. Then dimbr(2,a) = 10 [BGL]. We describe now the root system
br(2) of br(2,a), see [AA2] for details.
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7.2.1. Basic datum and root system. Below, Bs is numbered as in (4.7). The
basic datum and the bundle of Cartan matrices are described by the diagram:

By 2 Ba s12 Ca 1 Cs
) o—— .

This is a standard Dynkin diagram, that might be called of type Cs; indeed
Br is not isomorphic to B(1|1). We include it here because of the relation
with the modular Lie algebra bt(2,a). The bundle of root sets (A% );¢r, is
constant:

A% ={+ay, (201 + a9), (a1 + a2), as}.
7.2.2. Weyl groupoid. The isotropy group at a; € X is
Wiar) = (s s261,65",) ~ Z/2 x Z/2.
7.2.3. Incarnation. We assign the following Dynkin diagrams to a;, i € Is:

—1 2 -1
(7.5) a1|—>g 1 3, a2|—>c<> SR

The Dynkin diagram (7.5 b) has the same shape as (7.5 a) but with (¢!
instead of q. Thus, we just discuss the latter.

7.2.4. PBW-basis and (GK-)dimension. We set N = ordq, M = ord(q~'.
The root vectors xg, are described as in Remark 2.14. Thus

{zg* e 1327327 |0 <ng < M,0<ng <N, 0<nj,ng <3}

is a PBW-basis of By. If N < oo, then dim By = 32MN. If N = co (that is,
if ¢ is not a root of unity), then GK-dim By = 2.

7.2.5. Relations, ¢ = —1. The Nichols algebra By is generated by (x;)icr,
with defining relations

(76) 23=0; 23,=0; a2%,=0, 23=0; [r112,212]c = 0.
Here the degree of the integral is
a = 13a1 + Yas.

7.2.6. Relations, ¢ # —1. The Nichols algebra By is generated by (x;)icr,
with defining relations

(7.7) xi{’ =0; 95?2 = 0; 95%2 =0, 9097 =0; 221 = 0.

If N =00, ie q¢ Gu, then we omit the relations 22 = 0, z}, = 0. Here
the degree of the integral is

a=2M + N —1)a; + (M + 3)as.

7.2.7. The associated Lie algebra. This is of type A1 x A;.
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7.3. Type br(3). Here § = 3, ( € Gj. Let F be a field of characteristic 3
and

Let br(3) = g(A) ~ g(A’), the contragredient Lie algebras corresponding to
A, A’. Then dim br(3) = 29 [BGL]. We describe now the root system br(3)
of br(3), see [AA2] for details.

7.3.1. Basic datum and root system. Below, B3 and Af) are numbered as
in (4.7) and (3.7), respectively. The basic datum and the bundle of Cartan
matrices are described by the following diagram:

By 3 T(AY)
oe—————————— @ .
al az

Using the notation (3.1), the bundle of root sets is the following:
AY ={1,12,123,17233% 12232 12233 1223%1233% 1232, 2, 23?, 23, 3},
AP ={1,122,12,123% 12332 1%2%3% 12737 123, 1223, 2,23 23, 3}.
7.3.2. Weyl groupoid. The isotropy group at a; € X is
Wiar) = (s, 55", 63" Gas3) =~ W (B3).

7.3.3. Incarnation. We assign the following Dynkin diagrams to a;, ¢ € Ia:

4
(7.8) ai b g < g < Co as t g < Co < Co

7.3.4. PBW-basis and dimension. Notice that the roots in each A, i € Iy,
are ordered from left to right, justifying the notation f,..., 813.
The root vectors xg, are described as in Remark 2.14. Thus

{ahisahiz . afal |0 < me < N |
is a PBW-basis of B;. Hence dim B; = 3499 = 322,

7.3.5. The Dynkin diagram (7.8 a). The Nichols algebra By is generated by
(x4)ic1, with defining relations

213 =0; z112=0; x5 =0; [[r332,73321]c, T32]c = O;
(7.9) :

To91 = 0; @223 =10; z,=0, acO%;

where O = {1,2,12,23% 1232 1223212234 1233% 172°3%}. Here the degree
of the integral is

g = 68aq + 120ae + 156as3.
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7.3.6. The Dynkin diagram (7.8 b). The Nichols algebra By is generated by
(x;)ic1, with defining relations

(7.10) 213 =0; @112 =0; 2291 =0; wo3=0; ), =0, a € O%;

. 23 =0; (14 ¢H[zas), v2le v3le = qsl[ras), v3]e, vale;

where O1 = {1,2,12,12%,23% 123% 1223%,12332,122332}. Here the degree
of the integral is
g = 68aq + 120ce + 88as.

7.3.7. The associated Lie algebra. This is of type Bs.

8. SUPER MODULAR TYPE, CHARACTERISTIC 3

In this Section F is a field of characteristic 3.

8.1. Type brj(2;3). Here § =2, ( € Gj,. Let

(0 1 (0 1 n_ (2 -1 2x2,
=) =B (G ) e
pP= (_]-a 1)’ p” = (_1?_1) € G%

Let btj(2;3) = g(A,p) ~ g(A',p) =~ g(A”,p"), the contragredient Lie super-
algebras corresponding to (4, p), (4’,p), (A”,p”). We know [BGL] that

sdim btj(2;3) = 10]8.
We describe now the root system brj(2;3) of btj(2;3), see [AA2] for details.

8.1.1. Basic datum and root system. Below, Agl), C5 and Aéz) are numbered
as in (3.2), (4.15) and (3.7), respectively. The basic datum and the bundle
of Cartan matrices are described by the following diagram:

A gy A

[ ] [ ] o .
al az as

Using the notation (3.1), the bundle of root sets is the following:
AP ={1,172,1°2% 12,122 2}, A% ={1,172,1%22112° 12,2},
AP ={1,1"2,1%2,1?2,12,2}.
8.1.2. Weyl groupoid. The isotropy group at ags € X is
Wiaz) = (5125261, 9%6152) ~ Z/2 X Z/2.
8.1.3. Incarnation. We assign the following Dynkin diagrams to a;, ¢ € [3:

- ¢ ¢ ¢ - -2 ¢ -1
(81) ar+— o o, ag+— o o, a3+ o o .
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8.1.4. PBW-basis and dimension. Notice that the roots in each AY, i € I3,
are ordered from left to right, justifying the notation 5y, ..., Bg.
The root vectors xg, are described as in Remark 2.14. Thus

{wheehiohiobioh: 10 < me < Ny, |
is a PBW-basis of B;. Hence dim B, = 223%18% = 11664.

8.1.5. The Dynkin diagram (8.1 a). The Nichols algebra B is generated by
(x4)iec1, with defining relations

. C7QI2 2

x%s = 0; m% =0; [z1,[z12, T2]c]e = mzw;

(8.2)
r1112 — O; l‘%g =0.
Here O = {1,12} and the degree of the integral is

a = 4201 + 25a0.

8.1.6. The Dynkin diagram (8.1 b). The Nichols algebra By is generated by
(x4)ic1, with defining relations

(83) 3}:1)’ = 0; x% = 0; [CUHQ, [.73112, Zvlg]c]c = 0; x%% = 0; x%g =0.
Here OF = {1?2,12} and the degree of the integral is
a = 63a1 + 42as.

8.1.7. The Dynkin diagram (8.1 c). The Nichols algebra B, is generated by
(x4)iec1, with defining relations

84) 2{®=0; a3=0; [v112,212]c=0; @111112=0; a1}y =0.
Here O = {1,122} and the degree of the integral is
g = 63aq + 23as.

8.1.8. The associated Lie algebra. This is of type A1 x Aj.

8.2. Type g(1,6). Here 6 = 3, ( € G, UG}. Let

2 -1 0 2 -1 0

A=|-2 2 -2, A=[-1 2 =2|eF¥>3
0 1 0 0 1 0

p=(1,-1,-1), p =(1,1,-1) € Gj.

Let g(1,6) = g(A,p) ~ g(A4’,p’), the contragredient Lie superalgebras corre-
sponding to (A, p), (A, p’). Then sdimg(1,6) = 21|14 [BGL]. We describe
now its root system g(1,6), see [AA2].
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8.2.1. Basic datum and root system. Below, C3 and C’él) are numbered as
in (4.15) and (3.5), respectively. The basic datum and the bundle of Cartan
matrices are described by the following diagram:
Cs 3 gV
o—— o
ail az

Using the notation (3.1), the bundle of root sets is the following:
AT ={1,12,17273,123,1223,1273%,12°3% 12233212233 2,273, 23, 3},
AP ={1,12,12% 17273,172°3,172%3,12%3, 123,12 2,223, 23, 3}.
8.2.2. Weyl groupoid. The isotropy group at a; € X is
Wia1) = (1", 63", 55" s263) ~ W(Cs).

8.2.3. Incarnation. We assign the following Dynkin diagrams to a;, ¢ € Iy:

¢ ¢ ¢ ¢ ¢ ¢ ¢ -
o o ag — © o o

(8.5) a6

8.2.4. PBW-basis and dimension. Notice that the roots in each A, i € Iy,
are ordered from left to right, justifying the notation f,..., 813.
The root vectors xg, are described as in Remark 2.14. Thus

{xg;gxgg R0 <y < Nﬁk}
is a PBW-basis of By. If N = 6, then dim B, = 243365 = 21939, If N = 3,
then dim By = 213%6% = 2739,
8.2.5. The Dynkin diagram (8.5 a), N = 6. The Nichols algebra B is gen-
erated by (z;);er, with defining relations
Too1 =0; x112=0; 28 =0, o€ {1,212, 12232 12332 12233%};
x13 = 0; w9293 = O; $§ =0; l'i =0,a¢€ {23, 123, 1223}.

Here O = {1,2,12,1223%,1233%,12233%,23,123, 1223} and the degree of the
integral is

(8.6)

g = 38aq + 66ae + 42ai3.
8.2.6. The Dynkin diagram (8.5 a), N = 3. The Nichols algebra B is gen-
erated by (z;);er, with defining relations
r13 =0;  [[z(13), T2]e, ¥2]c = 0; [T223, T23]c = 0;
(8.7) r112 =0; 22 =0; 28 =0, a € {23,123,12?3}
Too1 = 0; 3 =0, a € {1,2,12,1223% 12332 122332},
Here O = {1,2,12,12%32,1233% 122332, 23,123, 1223} and the degree of the

integral is
a = 26 + 48as + 33as.
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8.2.7. The Dynkin diagram (8.5 b), N = 6. The Nichols algebra B is gen-
erated by (z;);er, with defining relations
13 =0; z112=0; 25 =0, ae{1,23,123,12? 1233,1%233};
(8.8) 2 =0; [z923, 23]l = 0; 2 =0, a € {2,12,12%3};
(22, [T21, T23]c]c + q13G23G21 (7223, T21]c + g217217223 = 0.

Here O1 = {1,23,123,122,1233,12233,2,12,1223} and the degree of the
integral is
a = 38aq + 66as + 26as.

8.2.8. The Dynkin diagram (8.5 b), N = 3. The Nichols algebra B is gen-
erated by (z;);er, with defining relations

Tooo1 = 0; x110=0; 25 =0, a € {1,23,123,12%,1233,12233};
(89) o3 =0; x3=0; 22=0; 25=0, ac{2121223};
[71, ¥223]c + q23]T(13), T2]c + (¢* - Q)q12w27(13) = 0.

Here O1 = {1,23,123,122,1233,12233,2,12,1223} and the degree of the
integral is
g = 26a; + 48as + 17a3.

8.2.9. The associated Lie algebra. This is of type Cj.
8.3. Type g(2,3). Here 0 =3, ( € G}. Let

0 1 0
A=|-1 2 —2| eF>*3, p=(-1,1,-1) € G}.
0 1 0

Let g(2,3) = g(A, p), the contragredient Lie superalgebra corresponding to
(A,p). Then sdim g(2, 3) = 12|14 [BGL]. There are 4 other pairs of matrices
and parity vectors for which the associated contragredient Lie superalgebra
is isomorphic to g(2,3). We describe now its root system g(2, 3), see [AA2].

8.3.1. Basic datum and root system. Below, As, A;l), Cs and C’él) are num-
bered as in (4.2), (3.2), (4.15) and (3.5), respectively. The basic datum and
the bundle of Cartan matrices are described by the following diagram:

1

C3 1 Az 2 Ag )
° ° ®
ay az as
3 3
¥ TG

e ———— o

as as

Using the notation (3.1), the bundle of root sets is the following:
AY = {1,12,2,1223,123,1233% 27312232 23,3} = 7(AP),
AP = {1,12,2,122%3,1223,17233%123,12%3% 23, 3},
A% = {1,12,2,1%23,123,1%23% 13,1237, 23, 3},
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A% = {1,12,12%,2,1%233, 122231223, 123,23, 3}.
8.3.2. Weyl groupoid. The isotropy group at az € X is

Wias) = (s5°s16362636162, 61°%,65°) ~ Z/2 x W (A3).

8.3.3. Incarnation. To describe it, we need the matrices (q(i))ieh, from left
to right and from up to down:

-1 ¢ ¢ ¢ -1 -1 ¢ -1 ¢ -1
O [0} O O O [0}
(8.10) P L

Now, this is the incarnation:
a; — q(i), 1 € ly; as — T(q(l)).

8.3.4. PBW-basis and dimension. Notice that the roots in each AY, i € I,
are ordered from left to right, justifying the notation fy,..., S10.
The root vectors g, are described as in Remark 2.14. Thus

{a;gllg cxgragt [0 <ny < Nﬁk} .
is a PBW-basis of By. Hence dim B; = 26336 = 2734

8.3.5. The Dynkin diagram (8.10 a).
The Nichols algebra By is generated by (z;);er, with defining relations

[332237 -r23]c = O, T3 = 07 Togl = 07
(8.11) ([zas), z2les w2)e =0; 23 =0; 27=0; a3=0;
[x(ls),xz}g =0; 253 = 0; x?m) 0.

Here Oi = {123,1223,2,23} and the degree of the integral is
s = 8aq + 21las + 15a3.

8.3.6. The Dynkin diagram (8.10 b).
The Nichols algebra By is generated by (x;);er, with defining relations

[[‘77127‘T(13)]07w2]c =0; z13=0; 37?13) = 0;
(8.12) (w32, 7321)e, 72)e = 0; 21 =0;  235=0; a3=0;
[95(13)7932]? = 0; 1‘%2 =0; x§3 =0.

Here Oi = {12,1223,23,123} and the degree of the integral is
g = 15aq + 21ag + 15ag3.
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8.3.7. The Dynkin diagram (8.10 c).
The Nichols algebra By is generated by (2;);er, with defining relations
z13 = 0; o201 = 0; o903 =0; 27 =0; z5=0;
(8.13) 5=0; z3,=0; xgg =0; [x(lg),xg]i’ =0;
[71, T223]c + q23[T(13), 2] — (1 = ()q12727(13) = 0.
Here (’)q+ = {12,1223,23,2} and the degree of the integral is
g = 8aq + 21lao + 8ag.

8.3.8. The Dynkin diagram (8.10 d).
The Nichols algebra By is generated by (x;);er, with defining relations

z112 =0; 113 =0; 2331 =0; w332 =0;

(8.14) zi=0;  23=0; ai3=0; x?l?)) =0;

a3 = 0; z(13) — q23¢[T13, T2]e — q12(1 — (w2713 = 0.
Here O = {1,13, 3,123} and the degree of the integral is
g = 1501 + 11lag + 150&3.

8.3.9. The associated Lie algebra. This is of type As x Aj.

8.4. Type g(3,3). Here 0 =4, ¢ € Gj. Let

2 -1 0 0
|-t 2z -10 4x4 B 3
A= 0 —2 2 -1 el ’ b= (1a17_17_1) 6@2.

0O 0 1 0

Let g(3,3) = g(A, p), the contragredient Lie superalgebra corresponding to
(A,p). Then sdim g(1,6) = 23|16 [BGL]. There are 6 other pairs of matrices
and parity vectors for which the associated contragredient Lie superalgebra
is isomorphic to g(3,3). We describe now its root system g(3, 3), see [AA2].

8.4.1. Basic datum and root system. Below, Fy, A4, 1T, Dy and Ag) are
numbered as in (4.35), (4.2), (3.11), (4.23) and (3.6), respectively. The basic
datum and the bundle of Cartan matrices are described by the following
diagram:

RET R T 1

a‘Q a3 az‘l CL,‘5
4 4 4

ne)

T(f4) 513 (. 5) 1 124

al ag a‘7
2

s23(Fy) 1 s14(Ag) 3 $14(1T)
o  — ° —_— °

a1o0 ag as
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Using the notation (3.1), the bundle of root sets is the following:

A ={1,12,2,123,12°3%,123%,23,23%,3,123%4,1223%4, 123%4, 23%4, 1234, 234, 34, 4},

A2 ={1,12,2,123,23,3,12%3%4,123%4, 1234, 12°3%47, 23%4, 12347, 234, 123%4%, 23742, 34, 4},
A ={1,12,2,12°3,123,12°3%,23,3,1°2°3%4,12°3%4, 12734, 1234, 1234, 124, 234, 24, 4},

At ={1,12,2,123,23,3,12%3%4, 12734, 172°3%4%,1234,12°3%47,12°3%47, 234, 127347, 124,24, 4},
A ={1,12,12%,2,12°3,123,23,3,1°2°34,12°34, 1234, 1234, 124, 124, 234, 24, 4},

A5 ={1,12,2,123,23,3,12%3%4, 12734, 123%4, 23%4, 1234, 1223747 124, 234, 34, 24, 4},

AT =514 (A%, AT = 514(A%), A% = 514(A%2),  AYO = s, (AD).

8.4.2. Weyl groupoid. The isotropy group at as € X is

Wioas) = (61°,55°,¢5°) =~ W(B3).

8.4.3. Incarnation. To describe it, we need the matrices (q(i))i€]16, from left
to right and from up to down:

¢ ¢ ¢ ¢ ¢ ¢ -1 ¢ ¢ ¢ ¢ -1 ¢ -1
o (o) O o (o) ] (o) o
¢ -1
(o) (o)
_ I3 _
¢ ¢
-1 -1
o] (o)
¢ ¢
-1 ¢ ¢ ¢ ¢ -1 ¢ ¢ ¢ ¢
o ] O (o) O
Now, this is the incarnation:
a; — q(l), 1 € g; a; — 814(q(11_i)), 1€ H7710.

8.4.4. PBW-basis and dimension. Notice that the roots in each A%, 7 € Iy,
are ordered from left to right, justifying the notation (i, ..., Bi7.
The root vectors xg, are described as in Remark 2.14. Thus
{:cgllz aprgt |0 <y < Nﬁk} .
is a PBW-basis of B;. Hence dim By = 2839,

8.4.5. The Dynkin diagram (8.15 a).
The Nichols algebra By is generated by (x;)ie1, with defining relations
r13=0; 14=0; x4 =0; [23321,232]c =0;
(8.16) r112 =0; 221 = 0;  [[T(24),73]c, T3]c = 0;

) — 0 2 _ o 3 _
223 =0; w334 =0; x5 =0; z, =0, a €Ol
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Here O = {1,12,2,123,1223%,123%,23, 23%, 3} and the degree of the integral
is
g = 14aq + 24a2 + 30as + S8ay.

8.4.6. The Dynkin diagram (8.15 b).
The Nichols algebra By is generated by (x;);er, with defining relations

X923 = 0; w24 =0; [[@43,2432)c, T3]c = 0;
(8.17) 112 =0; @221 =0; 213=0; x14=0;
=0, 22=0; xi:O,ani.
Here O = {1,12,2,1234,1223%42,234,123%4% 23?4, 34} and the degree of

the integral is
g = 14aq + 24ao + 303 + 240u4.
8.4.7. The Dynkin diagram (8.15 c).
The Nichols algebra By is generated by (z;);er, with defining relations
714 =0; 2112 =0; [2(13),72]c = 0;
o1 Taaz = 0; Taa3 =0;  [T124,22)c = 0;
(8.18) 2=0; =0 z2 =0, a € 0%;

r13 = 0;  T(21) = (q34[T24, 73]c + q23(1 — () w3724

Here O = {1,4,1234% 23%4,1234,12%324? 123,234, 23} and the degree of
the integral is
a = 14aq + 249 + 20a3 + 24ay.
8.4.8. The Dynkin diagram (8.15 d).
The Nichols algebra By is generated by (z;);er, with defining relations

713 =0; z14=0; 234 =0; [T124,72]c = O0;

(8.19) T332 =0; 13=0; [T304,72]c = 0;
2=0; x3=0; :L‘i:O,aEOi.

Here OF = {3,123,12223,12,12233%4, 122334, 12%34,234,24} and the degree
of the integral is
g = 24aq + 36 + 203 + 14ay.

8.4.9. The Dynkin diagram (8.15 e).
The Nichols algebra By is generated by (z;);er, with defining relations
w221 =0; w13 =0; w332 =0;
(8.20) Too3 = 0; x14 = 0; JJ% =0; xZ =0;
Too4 = 0; x34 = 0; IE?X =0, a € Oi.
Here O = {3,23,2,12%34,12233%42 1234, 1223342, 1222342, 124} and the de-
gree of the integral is

a = 24aq 4+ 36as + 20a3 + 24ay.
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8.4.10. The Dynkin diagram (8.15 f).
The Nichols algebra By is generated by (2;);er, with defining relations
r13=0; 214=0; x30=0; [[2(13),72]c; T2]c = 0;
(8.21) To23 = 0; @224 =0; [[w324,22]c, T2)e = 0;
x332 =0 =0, x}=0; xizo,ae(’)i.
Here O = {1,12,122,2,122334,12334, 12234, 1234,234} and the degree of

the integral is
a = 14aq + 369 + 203 + 14ay.

8.4.11. The associated Lie algebra. This is of type Bs.
8.5. Type g(4,3). Here 0 =4, ¢ € Gj. Let

2 -1 0 0

-1 0 1 0 ixd B )

A=y 2 2 —of€F p=(1,-1,-1,-1) € Gs.
0 0 1 0

Let g(4,3) = g(A, p), the contragredient Lie superalgebra corresponding to
(A,p). Then sdim g(2,3) = 24|26 [BGL]. There are 9 other pairs of matrices
and parity vectors for which the associated contragredient Lie superalgebra
is isomorphic to g(4,3). We describe now its root system g(4, 3), see [AA2].

8.5.1. Basic datum and root system. Below, CS)A, Cy, Fy, Ay, 1T, Dy and

AP are numbered as in (3.15), (4.15), (4.35), (4.2), (3.11), (4.23) and (3.6),
respectively. The basic datum and the bundle of Cartan matrices are de-
scribed by the following diagram, called g(4, 3):

A
Cé) 4 6;4

4
al ag
2 ‘ 2 ‘
T(Fy) s13(A5))
4 4 Ay 3 1T 1345
[ ] [ ] [ ] [ ]
as aq ar aio
1 ‘ 1 ‘ 1 ‘ 4 ‘
T(Fy) 4 Ay 3 1T 2 Dy
[ ] [ ] [ ] [ ]
as ae ag ag

Using the notation (3.1), the bundle of root sets is the following:

A ={1,12,2,123,1223%,123%,23,23%,3,1223%4, 122324, 123%4, 23%4,
122324,123%4,1223%42 1234, 2324, 234,324, 34, 4},

A% ={1,12,2,123,23,3,12%3%4,123%4, 1234, 12%3%4% 1223%47 2324,
1223242 234, 1223443 123342123242 23342, 23242324, 34, 4},

A% ={1,12,2,123,1223% 1232, 23,23% 3,17233%4,12233%4, 1222334, 1223%4,
1222324,1223%4,12233%42 123%4,1234,23%4,234, 34, 4},

At ={1,12,2,123,23,3,172%3%4,1223%4,172°3%47,122%3%47 12324,
12223342 1234,12233%43,1223342 1223242123242 2324, 234, 23242 34,4},
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A ={1,12,2,123,12°37,123%,23,23%,3,1233%4,1233%4, 122324, 2%3%4,
122324,223%4,1233%42 12324,1234,23%4,234, 34, 4},

A5 ={1,12,2,123,23,3,12%3%4,123%4,1234,1233%4%,12%3%42,2%3%4,
1223342,2324, 1233443, 1223242 123242, 223342 234, 23242, 34,4},

AT ={1,12,2,123,23,3,1%2%34, 12734, 1°2°3%4% 1727347, 1234,1°2734,
124,12233243 1223242 122342, 12342,234, 34,2342 24, 4},

AL ={1,12,2,123,23,3,12%3%4,12%3%4, 12734, 2°3%4, 2734, 12347, 123%4,
2324,1233%42 1234, 1223242 124,234, 24, 34, 4},

A% ={1,12,2,123,23,3,1%2%3%4,172%3%4, 172734, 12°3%4,12°3%4,1°23%4,
22324,12234,2234,12233242 1233242 11234, 124, 234, 24, 4},

A0 ={1,12,2,123,23,3,17234,1%2234, 17224, 12%34, 12734, 1727342, 2234,
1234,1223342 234, 123342 1224, 124,224, 24, 4}.

8.5.2. Weyl groupoid. The isotropy group at ag € X is

Wias) = (s7°,65°,65°, 64 °626364515253%2516453%264) = W (C'3) X Z/2.

8.5.3. Incarnation. To describe it, we need the matrices (q(i))ieﬂlo, from left
to right and from up to down:

(@] (@] (@] (@] (@] (@] (@] (]
-1 ¢ ¢ ¢ ¢ ¢ -1 -1 ¢ ¢ ¢ -1 ¢ -1
(@] (] (@] (@] [e] (@] [e] (@]

I
—
o

(@]
(8.22) :
¢ ¢
¢ ¢ -1 ¢ ¢ -1 ¢ ¢ ¢ -1
O (@] (@] (] O (@]
-1 ¢
(@] (@]
_ ¢
¢ ¢
§ T 5 ¢ & d g g

Now, this is the incarnation: a; — q(i), 1 € Ihp.

8.5.4. PBW-basis and dimension. Notice that the roots in each A%, i € Iy,
are ordered from left to right, justifying the notation (5, ..., B22.
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The root vectors xg, are described as in Remark 2.14. Thus
{xgji caprgt |0 <y < Nﬁk}-
is a PBW-basis of B;. Hence dim B, = 2'23%6 = 213310,
8.5.5. The Dynkin diagram (8.22 a). The Nichols algebra By is generated
by (z;)ie1, with defining relations

14 =0; w24 =0; [z(13),72]c =0; z13=0;
023 z112 = 0; w3332 = 0; x3334 = 0;
(523 w3 =0;  ai=0; za* =0, a€Ol;
(w2, T334]c — q34[T (20, ¥3]e + (¢% — ()qaswaz 24y = 0.
Here O = {1,123,12%3%23, 3,1223%4,123%4, 122342 2324, 34} and the de-
gree of the integral is

a = 18aq 4+ 32a9 + 57as + 20ay.

8.5.6. The Dynkin diagram (8.22 b).
The Nichols algebra By is generated by (z;)ic1, with defining relations

113 =0; T14=0; w24 =0; [[z(20),73]¢c,T3]c =0;
(8.24) z112 =0; 2332 =0;  [r334,734]c = 0;

[96(13)7962]c = 0; iC% =0; x:ﬁ =0; :UaNa =0, a € (91.

Here O1 = {1,3,123%4,1234,1223%4%,1223342 2324,1223%4%,234, 34} and
the degree of the integral is

g = 181 + 32ai + 573 + 39ay4.

8.5.7. The Dynkin diagram (8.22 c).
The Nichols algebra By is generated by (z;);er, with defining relations

r13=0; 214=0; z24=0; [[T(24),23]c; T3]c = 0;
(8.25) (2332, T32)e = 0; w334 =0; a7 =0; [w3301,232]c = 0;

[z(13), T2]c = 0; 25 =0; z3j=0; ale =0, a €O,

Here O = {12,123,1232,23,3,122334, 122324, 1233142, 2324,234} and the
degree of the integral is

a = 18aq + 45a9 + 57ag + 20ay.
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8.5.8. The Dynkin diagram (8.22 d).
The Nichols algebra By is generated by (2;);er, with defining relations

213 =0; 214 =0; 224 =0; [[23,2020)]c, T3]lc = 0;
(8.26) 2t =0; 25=0; [[243,7432)c, z3)c = O;
[Tag),@2le =0; 23=0; ai=0; a}*=0, acOl.

Here O = {12,23,12%3%4,1234,1233%4% 1223342 2324,123%4% 234, 34} and
the degree of the integral is

g = 18 + 45ai5 + 573 + 390y4.

8.5.9. The Dynkin diagram (8.22 e).
The Nichols algebra By is generated by (2;);er, with defining relations

13 =0; 214=0; x20=0; [[T(24),73]c,T3]c = O;
(8.27) To21 =0; 923 =0; [w3321,%32]c = 0;
T334 = 0; m% = 0; :U?l = 0; a:fxv“ =0, a € Oi.

Here O = {2,123,23,23% 3,1223%4, 122324, 1223342 12324, 1234} and the
degree of the integral is

g = 291 + 45a + 573 + 2004.

8.5.10. The Dynkin diagram (8.22 f).
The Nichols algebra By is generated by (z;);er, with defining relations

w14 = 0; w94 = 0; [[243, T432])c, T3] = 0;
(8.28) Too1 =0; @3 =0; x7=0; x13=0;
JU%:O; xi:O; mﬁ“zO,aGOi.

Here OF = {2,123,1223%4,12233%4%,123%4, 1234, 1223342, 234, 23242, 34} and
the degree of the integral is

g = 291 + 45a9 + 573 + 390y4.
8.5.11. The Dynkin diagram (8.22 g).
The Nichols algebra By is generated by (z;);er, with defining relations
r13=0; 214 =0; w921 =0; 223 =0; wa=0;
(829) w3z =0; a334=0; 2f=0; 25=0; 2)°=0, a0l

T(24) — Cq34[T24, T3] — (1 — ()qa3w3w24 = 0.

Here O = {2,123,12234,1234, 123347, 122342 12342, 234, 24,4} and the de-
gree of the integral is

a = 18aq + 459 + 393 + 41ay.
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8.5.12. The Dynkin diagram (8.22 h).
The Nichols algebra By is generated by (2;);er, with defining relations

[z(13), T2]le = 0; @13 =0; w330 = 0; x% =0 x?; =0;

(8.30) [T124,T2]e = 0; 214 =10; 2334 =0; zi*=0, ae0l;

2t =0;  2(oa) — Cqsalras, w3)e — (1 — () qusasros = 0.

Here O = {12,123,3,1%233%4,12%3%4,12234, 23%4,1234, 234,24} and the
degree of the integral is

g = 29a1 + 45a9 + 39a3 + 2904.
8.5.13. The Dynkin diagram (8.22 i).
The Nichols algebra By is generated by (z;);er, with defining relations
r13=0; 214=0; 234=0; [z124,72]c = 0;
(8.31) r112 =05 2442 =05 [[z32,2324]c, T2]c = 0;
[2(13), T2]e = 0; 23=0; a3=0; al*=0, acOl.

Here O = {1,123,23,1%2%3%4,12%324,223%4,12%34,1234,234,4} and the
degree of the integral is

a = 29aq + bdas + 39as + 29ay.
8.5.14. The Dynkin diagram (8.22 j).
The Nichols algebra By is generated by (z;);er, with defining relations
r13=0; x14=0; x34=0; [[124,2)c,T2]c =0;
(8.32) z112 = 0; 221 = 0; [[w324,72]c, 2] = 0;
xi:(); To93 = 0; 440 = 0; :cﬁfa =0, oze(?i.

Here O = {1,12,2,1%2%4,12234,12%4, 124, 2?4, 24, 4}and the degree of the
integral is
a = 29aq + bdas + 17ag + 29ay.

8.5.15. The associated Lie algebra. This is of type C3 x Aj.

8.6. Type g(3,6). Here 6 =4, ¢ € Gf. Let
0O 1 0 O
_ [t 2 10 4x4 _ . 4
A=y 5 5 H|€F™  p=(-11-1-1€Gi
0O 0 1 O

Let g(3,6) = g(A, p), the contragredient Lie superalgebra corresponding to
(A,p). Then sdim g(3,6) = 36|40 [BGL]. There are 6 other pairs of matrices
and parity vectors for which the associated contragredient Lie superalgebra
is isomorphic to g(3,6). We describe now its root system g(3,6), see [AA2].
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8.6.1. Basic datum and root system. Below, C,SI)A, Cy, Fy, Ay and 1T are
numbered as in (3.15), (4.15), (4.35), (4.2) and (3.11), respectively. The
basic datum and the bundle of Cartan matrices are described by the following
diagram:

1 1
o Cé.)A 2 T(f4)

o
az a4 as
4] 4] 4
04 1 C4 2 A4 3 1T
[ ] [ ] [ ] [ ]
al as ae ar

Using the notation (3.1), the bundle of root sets is the following:

AG ={1,12,2,123,23,3,1%2%3%4,1223%4, 17233442, 172°3%4% 123%4,17223%4%, 1234, 1323047,
12233543 12233443 12223443 1223442, 1223342, 12233644 2324,123342, 324, 12233%4%,
1223443 1223242 12324223342 234,23242 34,4},

A9? ={1,12,2,123,12%3%,123%,23,23%,3,17233%4, 1723344, 17273%4,1223%4, 1723334, 1722374,
13243642 1222324, 122324,1223%4, 12233642 1223354212334, 2334, 12233442 12324,
1223442 1234,23%4,234, 324, 34, 4},

AG? ={1,12,2,123,23,3,12%3%4,123%4,1234,1233%4%,12°3%4%,2%3%4,1234%,12°3%4%,
1233543123342 2324, 324, 1243644 1233644 1233443 2233421223443, 23342 1233544,
1223242123242 223443 234,23242 34,4},

AGt ={1,12,2,123,12%3%,123%,23,23%,3,1233%4, 127344, 12%3%4, 2234, 12%3%4, 12%3%4,
1243642 122324, 22334, 22324, 1233%42 1233542 12334, 2334, 123344212324, 1223442,
1234, 2324, 234, 324, 34, 4},

AT ={1,12,2,123,12%3%,123%,23,23%,3,1723%4, 172434, 172%3%4,12%3%4,17233%4, 12%3%4,
13253642 1222334, 1222324, 12253642 122324, 12243542 22334,1223%4, 22324, 12233442,
123344212324, 1234, 2324, 234, 34, 4},

AYS ={1,12,2,123,23,3,1%2%3%4,1223%4, 17233442 172%3%42 123%4,17223%4%,1234,132°304%,
12243543 12243443 12233443 1233442 1233342 12253644 22324,1223342, 2324,
12243544 1233443 1223242123242 223342 234,23242 34, 4},

AYT ={1,12,2,123,23,3,12%3%4,17223%4, 172234, 12%3%4,1223%4, 172%3%4%, 2%3%4,123%4,
12233342 2324, 13253443 1233342 12253443 1221344312234, 12233242 2234, 1233242,
12243343 1234, 1223242 124,234, 24, 34, 4}.

8.6.2. Weyl groupoid. The isotropy group at ay € X is

Wiaz) = (517,557,647, 557 casszsasass) =~ W(Cy).



98 ANDRUSKIEWITSCH; ANGIONO

8.6.3. Incarnation. To describe it, we need the matrices (q¥);er,, from left
to right and from up to down:

|
—
Y
ey
e
ey
e
|
—
|
—
T
ey
e
|
Y
S
|
—

(8.33) o o o o o o o o
-1
o
- ¢
¢
¢ ¢ ¢ ¢ ¢
0o o 0

Now, this is the incarnation: a; — q(i), 1 € Iyp.

8.6.4. PBW-basis and dimension. Notice that the roots in each A%, i € Ir,
are ordered from left to right, justifying the notation £, ..., 832.
The root vectors xg, are described as in Remark 2.14. Thus

{xggg R0 <y < Nﬁk}.
is a PBW-basis of B;. Hence dim B; = 21631264 — 920316
8.6.5. The Dynkin diagram (8.33 a).
The Nichols algebra By is generated by (z;);er, with defining relations
r13=0; 214=0; x20=0; [[224),73]c; T3]c = O;
(8.34) To21 = 0; @23 =0;  [2334,234]c = 0;
330 = 0; x% = 0; xi = 0; xg“ =0, a € (91.
Here Here 0 ={2,23,3,1223%4,12324,1234, 1223342, 1233543, 2324, 1233443, 223342,
122344323342 234, 23242 34} and the degree of the integral is
a = 29aq + 84ao + 1353 + 91ay.

8.6.6. The Dynkin diagram (8.33 b).
The Nichols algebra By is generated by (x;);er, with defining relations
w14 =0; 91 =0; wazzp=0; 27 =0; xf=0;
(8.35) Toa =0; X203 =0; w3334 =0; a)*=0, acOl;
213 =0;  [2, 334]e + q3a[T(20), 73]e + (¢% — ()qasw3z(2a) = 0.

Here 01 = {2,123,23,232,3,1233%4,1223%4, 122334, 122324, 22334, 1233542, 2334, 12324, 2324,
234,34} and the degree of the integral is

g = 29aq + 84as + 135a3 + 46ay4.
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8.6.7. The Dynkin diagram (8.33 c).
The Nichols algebra By is generated by (2;);er, with defining relations

r13 =0; 214 = 0; Toa = 0;  [[z(24),23]c, 23]e = 0;
(8.36) T332 = 0; [2(13), T2le = 0;  [7334,234]c = 0;
2=0; 22=0; z3 = 0; mga:O,ani.

Here 0OF ={12,123,3,1223%4,123%4, 12223342 1234, 12233543, 12233443 1223342 2324,
1233421223443 123242 234,34} and the degree of the integral is

a=5Ta1 + 84 + 135a3 + 9lay.

8.6.8. The Dynkin diagram (8.33 d).
The Nichols algebra By is generated by (z;);er, with defining relations

213 =0; w3332 =0; a7 =0; [2(13),22]c=0; a7 =0;
(8.37) r14 = 0; w3334 = O; JZ% = 0; xg" =0, a € 01 ;
w21 = 0;  [w2, T334]e + g3a[r(20), w3]e + (€% — () a3 w320y = 0.

Here 01 ={12,123,123%,23,3,12233%4,1223%4, 1222334, 122334, 122324, 12233542, 12334,
12324,1234,2324,34} and the degree of the integral is

1= 5701 + 84as + 135ai3 + 4604.

8.6.9. The Dynkin diagram (8.33 e).
The Nichols algebra By is generated by (z;);er, with defining relations

r13 = 0; 214 =0; @21 =0; [[T(24),73]c, x3]c = 0;
(8.38) [2@a3),22le = 0; @112 =0; @334 = 0;  [23321,232]c = 0;
[2332,232)c = 0;  x3=0; 3 =0; 2N =0, a € o1.

Here 0% ={1,123,12232,23,3,12233%4,1233%4, 1223334, 123334, 122334, 12243542, 122324,
12324,1234,2324,234} and the degree of the integral is

1= 57aq + 110ce 4+ 135a3 + 4604.
8.6.10. The Dynkin diagram (8.33 f).
The Nichols algebra By is generated by (z;);er, with defining relations
z13 = 0; r14 = 0; w24 =0; [[v23,2(24)]e; T3]e = 0;
(8.39) T2 =0; 23 =0; [[z43,2432)c, T3]c = 0;
[wag)wale =0;  @3=0; 2i=0; z)°=0, acO}.

Here 01 ={1,123,23,1223%4, 12233342 12324, 1234, 12243543, 12233443 1233342,
1223342 2324, 1233443, 1223242 234,34} and the degree of the integral is

g =57aq + 110c + 135a3 + 91ay.

99
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8.6.11. The Dynkin diagram (8.33 g).
The Nichols algebra By is generated by (2;);er, with defining relations
To21 = 0; @oq =05 w332 =0; 213=0; z14=0;
(8.40) 9223 = 0; 112 = 0; 334 = 0; xaNo‘ = 0, o € Oq ;

23 =0; x4y = (qsalzas, w3]c + (1 — )q3w3was.

Here 0% ={1,12,2,123,23,3,1223%4,122%3342, 12233342, 1233342, 12234, 12233242, 1233242,
1234,1223242 234} and the degree of the integral is

g = 57aq + 110cs 4 68z + 91ay.
8.6.12. The associated Lie algebra. This is of type Cjy.

8.7. Type g(2,6). Here 0 =5, ( € Gf. Let

2 -1 0 0 0
-1 2 0 -1 0

A=]10 0 2 -1 0 |eF> p=(1,1,1,-1,-1)€G).
0 1 1 0 -1
0 0 0 1 0

Let g(2,6) = g(A,p), the contragredient Lie superalgebra corresponding
to (A,p). We know [BGL| that sdimg(2,6) = 36/20. There are 5 other
pairs of matrices and parity vectors for which the associated contragredient
Lie superalgebra is isomorphic to g(2,6). We describe now the root system
g(2,6) of g(2,6), see [AA2] for details.

8.7.1. Basic datum and root system. Below, As, 117 and Dy are numbered
as in (4.2), (3.11) and (4.23), respectively. The basic datum and the bundle
of Cartan matrices are described by the following diagram:

T(Ds) 1 7(1.75)

al as
2|
s35(A45) 5 1Ty 3 Ds 4 Ds
[ ] [ [ ] o .
as a4 as ag
Using the notation (3.1), the bundle of root sets is the following:
A% =r(A%), A% = 7(A%),

A ={1,12,2,123,23,3,12°3%4,123%4, 1234, 23%4, 234, 34,4, 12°3%4°5,
122324%5,123%4%5, 232425, 1223245, 123245, 23245, 12345, 2345, 345, 45,5},

A%t ={1,12,2,123,23,3,12°34,1234, 124, 234, 24, 34, 4,12°3%4°5, 1223475,
123475,23475, 122345, 12345, 2345, 345, 1245, 245, 45,5},

AP ={1,12,2,123,23,3,12°3%4,123%4, 1234, 23%4, 234, 34,4, 12°3%4°5,
1223345,1223%45,123%45, 23745, 12345, 2345, 345, 1235, 235, 35,5},

A% ={1,12,2,123,23,3,1234,234, 34, 4, 12%3%45, 123745, 12345, 1235,
122334252 12233452, 23245, 12232452, 2345, 235, 1232452, 232452, 345,35, 5}
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8.7.2. Weyl groupoid. The isotropy group at ag € X is
W(as) = (1%, <5%, 8% assc265, 552, 64°) ~ W (As5).

8.7.3. Incarnation. To describe it, we need the matrices (q());er,, from left
to right and from up to down:

O
¢ x
I3 ¢ -1 ¢ I ¢ -1 -1 <
LY S S S SNE SN SN SN U S S U S
(8.41)
¢ ¢
o O
~ S ~ ~ ‘E ~
¢ ¢ ¢ ¢ -1 ¢ -1 ¢ ¢ ¢ ¢ ¢ ¢ -1
(o) O o o] O (o) o] (o)
Now, this is the incarnation:
a; '—)T(q(5_i)), iE]IQ; ag +— 335(q(1)); a; +—r C|(i_2)7 1€ ]I4’6.

8.7.4. PBW-basis and dimension. Notice that the roots in each AY, i € I,
are ordered from left to right, justifying the notation (i, ..., 5.
The root vectors xg, are described as in Remark 2.14. Thus

{xgif cagrgt |0 <y, < Nﬁk}~

is a PBW-basis of B;. Hence dim B, = 210315,

8.7.5. The Dynkin diagram (8.41 a).
The Nichols algebra By is generated by (z;);er; with defining relations

r13=0; z14=0; x15=0; [[[r(14),23]c, T2]e, ¥3]c = 0;
o4 =0; @221 =0; x112=0; [[[ws432,23]c, Tale, 23]c = 0;

8.42
( ) To5 = 0; T223 =0; 443 = 0 Ty45 = 0;

. —N- 2 _ 0. 3 _
z35 =0; w554 = 0; x3 = 0; l’a—0,0éEOi.

Here OF ={1,12,2,122324,123%4,23%4,4,1223%425,123%425, 232425, 1223245, 123245,
23245,45,5} and the degree of the integral is

a = 207 + 36as + 48az + 36y + 20as.
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8.7.6. The Dynkin diagram (8.41 b).
The Nichols algebra By is generated by (z;);er; with defining relations
(2125, 22]c = 0; 713 =0; 2112 = 0; T4 =0; @45 = 0;
[T(24), T3]c = 0; 214 =0; 2443 = 0; r3=0; 23=0;
(8.43) [z13), T2]e = 0; 215 = 0;  [2435,73]c = 0; =0, ac0l;
w3 =0; a5 = q35C[25, T3] + qa3(1 — (w3225

Here O = {1,123,23,12234,124, 24, 34, 122324%5,123425, 23425, 122345, 345, 1245, 245, 5} and
the degree of the integral is

g = 20a + 36 + 36z + 2004 + 26as.
8.7.7. The Dynkin diagram (8.41 c).
The Nichols algebra By is generated by (z;);er, with defining relations
13 =0; @23 =0; T20=0; 295 =0; [2435,73]c = O;
(8.44) 14 =0; 2112 =0; 2221 =0; 245 =0; [2(24), T3]c = 0;
z15 = 0; 553 = 0; x?)):O; xZ:(); xizO,aGOi.
Here 09 = {1,12,2,122324,123%4,2324,4,12233425, 1223345, 12345, 2345, 345, 1235, 235, 35}
and the degree of the integral is
a = 207 4+ 36as + 48az + 20 + 26as.
8.7.8. The Dynkin diagram (8.41 d).
The Nichols algebra By is generated by (z;);er; with defining relations
z13=0; 2112=0; 224=0; 295=0; w45=0;
(8.45) w14 =0; w332 =0; w1 =0; w223 =0; w33 =0;
r15 =0; x335 =0; x553 = 0; :c?l =0; a:i =0, a € Oi.

Here 0% ={1,12,2,123,23,3,1234,234, 34,4, 122334252, 12233452, 12232452, 1232452, 232452}
and the degree of the integral is

g = 20a + 36 + 483 + 3004 + 26ar5.
8.7.9. The associated Lie algebra. This is of type As.

8.8. Type el(5;3). Here § =5, ( € G5. Let

0O 1 0 0 0
-1 2 -1 0 0
0 -1 2 -1 —1|eF>; p=(-1,1,1,1,-1)€cG3.
0 0 -1 2 0
0O 0 1 0 0

A=

Let ¢l(5;3) = g(A,p), the contragredient Lie superalgebra corresponding
to (A,p). We know [BGL] that sdimel(5;3) = 39|32. There are 14 other
pairs of matrices and parity vectors for which the associated contragredient
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Lie superalgebra is isomorphic to el(5;3). We describe now the root system
el(5;3) of el(5;3), see [AA2] for details.

8.8.1. Basic datum and root system. Below, D5, CEs5, As, F4(1), EéQ), 111
and o7 are numbered as in (4.23), (3.16), (4.2), (3.10), (3.9) and (3.11), re-
spectively. The basic datum and the bundle of Cartan matrices are described
by the following diagram:

Ds 1 Ds 2 Ds 3 2T
° _ ° D ° —= ‘e
a4 al2 a13 a7
5| 5| 5| 4|
Ds 1 Ds 2 CE5 As
° _ ° —_— ° °
ail aio ag as
3] 3] 5|
1
@3 (Ds) 2 s45(171) 1 sa5(1T1) FAE )
e — ° — ° ®
ais ag as a1
4] 1]
A A B
534(As5) 1 534(A5) 2 s34(Eg™")
[ ] _— ° - °
as as ay

Using the notation (3.1), the bundle of root sets is the following:

AP ={1,12,2,123,23,3,1234,12%3%4% 123%4% 12342, 234, 23747, 2347, 34,347 4,1223%4%5,
12233435,12232435,123%435, 232435, 12232425, 1232425, 232425, 122334452, 123425,
12345, 23425, 2345, 3425, 345,45, 5},

A2 ={1,12,2,123,23,3,1234,234, 34,4, 12232425, 1232425, 123475, 12345, 122334452
122334352 232425 122324352 23425, 122324252 2345, 122334453, 12324352 12324252,
1234252 2324352 2324252 2342523425, 345, 34252 45,5},

A =s34({1,12,2,123,23,3,17223%4,1223%4, 123%4, 1234, 23%4, 234, 34, 4, 17233435, 1%2%3%4%5,
122333425,122233425, 12233425, 122232425, 12232425, 1232425, 232425, 1223344352,
12223245,1223245, 123245, 12345, 23245, 2345, 345, 45,5}),

A% =s34({1,12,2,123,23,3,1223%4, 1234, 1234, 234, 234, 374, 34, 4, 1223435, 12%3%4%5,
12233425, 1233425, 233425, 12232425, 1232425, 232425, 32425, 122344352 1223245, 123245,
12345, 23245, 2345, 3245, 345, 45,5}),

AP =s34({1,12,2,123,23,3,1223%4,1234, 1234, 2%3%4,23%4,234, 34, 4, 1233435, 1233%4%5,
12333425,12233425,2233425, 12232425, 2232425, 1232425, 232425, 123344352 1223245,
123245, 12345, 223245, 23245, 2345, 345, 45, 5}),

AL =s45({1,12,2,123,23,3,12234, 1234, 124, 2734, 234,24, 34, 4, 12°3%4%5,12°3%4%5, 1223245,
2232425 1233425, 1223425, 223425, 123425, 23425, 123324352, 122345, 12345, 1245, 22345,
2345, 245, 345,45, 5}),

AL =s45({1,12,2,123,23,3,1234, 234, 34,4,1223%45,123%45, 12345, 1235, 12233452, 12233452,
23245,122324252 12232452, 2345, 235, 122324253, 12324252 1232452, 123452, 2324252,
23245223452, 345,45, 3452, 35,5}),

A% ={1,12,2,123,23,3,1%2%34, 12734, 1234, 124, 234, 24, 34,4, 1°2%3%4%5,12233%475,
122232425, 12232425, 12233425, 12223425, 1223425, 123425, 23425, 1223324352,
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1222345,122345, 12345, 1245, 2345, 245, 345, 45, 5},

A% ={1,12,2,123,23,3,12%3%4,123%4, 1234, 23%4, 234, 3°4, 34,4, 12°3%4°5,12°3%4°5,
1233425,2334%5, 1223345, 123345, 23345, 1223245, 123245, 122344252 12345, 1235,
23245, 2345, 235, 3245, 345, 35, 5},

AG10 ={1,12,2,123,23,3,17223%4,1223%4,123%4,1234, 23%4, 234, 34, 4,122%3%475,12233%4%5,
122233425,12233%425, 12233345, 12223345, 1223345, 12223245, 1223245, 1223344252,
123245,12345, 1235, 23245, 2345, 235, 345, 35, 5},

AP ={1,12,2,123,23,3,1223%4,123%4, 1234, 2%3%4, 2374, 234, 34, 4, 12°3"4%5, 12%3%4%5,
12233425, 2233425,1233%45, 1223345, 223345, 1223245, 223245, 123344252, 123245,
12345, 1235, 23245, 2345, 235, 345, 35, 5},

A2 ={1,12,2,123,23,3,1234,234,34,4,17223%45,123%45, 1223314752 1223334252,
122333452, 123245, 1222334252 122233452, 12345,122232452,1235,1223344253,
122334252 12233452 12232452 1232452, 23245, 2345, 345, 232452, 235, 35, 5},

A3 ={1,12,2,123,23,3,1234, 234, 34, 4,1223245, 12345, 12345, 1235, 122314252 122334252,
12233452, 23245,12232452 2345, 235,1223%4253 12334252, 1233452, 1232452, 2334252,
233452232452 3245, 345, 32452, 35, 5},

AP ={1,12,2,123,23,3,1234, 234, 34, 4,1223%45, 12345, 12345, 1235, 123314252 123334252,
12333452, 223245,122334252 12233452, 23245,1233%4253 12232452 1232452, 22334252,
2345,345,2233452 2232452 232452235, 35, 5},

AP =w3({1,12,2,123,23,3,1%2%34, 12234, 1234, 124, 2234, 234, 24, 4, 1°273%4%5, 172732475,
122332425,12332425, 12233425, 1233425, 12223425, 1223425, 223425, 1224324352
1222345,122345, 12345, 1245, 22345, 2345, 245,45, 5}).

8.8.2. Weyl groupoid. The isotropy group at ajs € X is
Wiaiz) = (672,651,651, 642, 652 6463626553545261$2645355525354S5 )
~ W(By) x Z,/2.

8.8.3. Incarnation. We set the matrices (q));cr,,, from left to right and
from up to down:

(8.46)
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ - ¢ ¢ ¢ ¢ ¢ ¢ -1 ¢ =1
O (@] O O O O O (@] O O
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¢ -1
O O
%c /c
¢ ¢ ¢ ¢ -17¢ -1 1 ¢ ¢/ ¢ -1 ¢ ¢
(@] (@] (@] (@] (o) o (@] (@]
—1 —1
O O
¢ ¢
RS L S S S [ L S L S
—1 —1
O O
¢ ¢
-1 ¢ ¢ ¢ -1 ¢ ¢ -1 ¢ -1 ¢ ¢ ¢ ¢
(] (@] (] (@] (@] (@] (] (@]
—1 —1
(@] (@]
¢ ¢
¢ ¢ -1 ¢ -1 ¢ ¢ -1 ¢ ¢ ¢ ¢ ¢ ¢
O O O O O (@] O (@]
¢
(@]
¢
¢ ¢ -1 ¢ ¢ ¢ ¢
O O O (@]

Now, this is the incarnation: a5 — ws(q1?),

105

a; — 534(q(5*i)), i€llzs; a;— 545(q(i)), 1=06,8;, a;+— q(i), otherwise.

8.8.4. PBW-basis and dimension. Notice that the roots in each AY, i € Ijs,
are ordered from left to right, justifying the notation Sy, ..., fs3.
The root vectors xg, are described as in Remark 2.14. Thus

{ahs a0 < m < Ny}

is a PBW-basis of By. Hence dim B; = 216317

8.8.5. The Dynkin diagram (8.46 a).
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The Nichols algebra By is generated by (z;);er; with defining relations

r13=0; x14=0; w15 =0; [[2(35),T4]c,Ta)c =0;
o4 =0; 25 =0; 35 =0; z112 = 0;
(8.47)
Too1 = 0; o3 =0; w332 =0; [ra432,743]c = 0;
2 3
T334 = 0; 2445 = 0; Ty = 0; Ty = 0, o€ Oj_
Here 0% ={1,12,2,123,23,3,1234, 1223242 12324212342, 234, 23242 2342, 34, 342, 4,
122334452} and the degree of the integral is

a = 24aq + 449 + 60as + 72a4 + 20as.
8.8.6. The Dynkin diagram (8.46 b).
The Nichols algebra By is generated by (z;);er, with defining relations
224 =0; x13=0; 212=0; x15=0; [[50,T5a3]c,T4]c =0;
(8.48) 25 =0; @112 =0; @221 =0; 923 =0; w332 =0;
r35 = 0; 334 = 0; xi:O; azgzo; xizO,aEOi.

Here 01 ={1,12,2,123,23,3,12345, 122334452, 122324252, 2345, 12324252, 1234252, 2324252,
234252,345, 34252, 45} and the degree of the integral is

a = 24a1 + 44ag + 60as + T2a4 + 58ass.

8.8.7. The Dynkin diagram (8.46 c).
The Nichols algebra By is generated by (z;)ic1, with defining relations

224 =0; 213=0; w214=0; x15=0; [[223,2(24))c,T3]c =0;
(8.49) w25 =0; 2443 =0; 445 =0; w551 = 0; [2(13), T2)e = 0;
x35 = 0; x%zO; xS:O; a?%:O; wizo,ae(’)i.
Here 0% = {12,23,12324,22324,234, 4, 12334435, 12334425, 12233425, 2232425,1232425,
123344352 123245, 223245, 2345, 45,5} and the degree of the integral is
g = 2407 + 662 4 84as + 60ay + 320s.

8.8.8. The Dynkin diagram (8.46 d).
The Nichols algebra By is generated by (z;);er, with defining relations

r13=0; 214=0; x15=0; [[x(24),23]c, 3]c = 0;
250 24 =0; w25 =0; 35 =0; [3345,234)c = O;
(8:50) z112 =0; 2332 =0; w443 =0; [z(13),72]c = 0;
Taas =0; T350=0; 25=0; =0, ac 0.
Here 0% ={1,3,122324,3%4,34,4,1223%435,1223%425, 12233425, 12232425, 32425, 122314352,
1223245,3245, 345, 45,5} and the degree of the integral is

a = 24aq + 44as + 84az + 60ay + 32as.
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8.8.9. The Dynkin diagram (8.46 e).
The Nichols algebra By is generated by (2;);er; with defining relations

r13=0; w14=0; x15=0; [[[T5432,23]c,%4]c,3]c = 0;

(8.51) 224 =0; w5 =0; 35 =0; z221 = 0;
' T923 = 0; a43 = 0; w445 =05 [[[z(14),73]c, T2]e, 23]c = 0;
Tsa =0; i =0; x5 =0; 7o =0, a € O%.

Here 0 ={2,123,1222324,1234,23%4, 4, 122334435,12233%425, 12233425, 122232425, 232425,
1223314352, 12223245, 12345, 23245, 45,5} and the degree of the integral is

a = 44aq + 669 + 84as + 60ay + 32as.

8.8.10. The Dynkin diagram (8.46 f).
The Nichols algebra By is generated by (z;);er; with defining relations

113 =0; 24 =0; [7125,72]c = 0; [2435, 73] = 0;
214 =0; 245 =0; [zq),23c=0; a3 =0; x3=0;
(8.52) a2 0 3 q.
15 =0; 27 =0; [r(3),22]c =0; 7, =0, a € OF;
23 =0; 22 =0; @235 = q35¢[wa5, B3]e + q23(1 — (w35 = 0.

Here OF ={12,23,122234,1234, 24, 34, 122332435, 1222324%5,12233425, 1223425, 23425,
1223324352 1222345, 12345, 245, 345,5} and the degree of the integral is

= 44y + 66as + 603 + 32a4 + 44as.

8.8.11. The Dynkin diagram (8.46 g).
The Nichols algebra By is generated by (z;);er, with defining relations

r13=0; z14=0; 215=0; [7(20),Z3]c =0; T24=0;
T201 = 0; @23 = 0; wag3 =0; [w235,73]c = 0; x5 = 0;
(8:53) Ty =0; 22=0; 2f=0; 3 =0, ae 0l
z112 =05 T(35) = qusCl235, Tale + q34(1 — )xg35.
Here OF ={1,12,2,1234,234, 34, 12345, 12233452, 122324252, 2345, 12324252, 123452, 2324252,
23452, 345,3452,5} and the degree of the integral is

= 24y + 44as + 603 + 58y + 44as.
8.8.12. The Dynkin diagram (8.46 h). The Nichols algebra By is generated
by (zi)ic1, with defining relations
r13=0; z14=0; x15=0; [7(20),Z3]c =0; T24=0;
T223 = 0; Ta2s5 = 0; w443 = 0; [7435,73]c = 0; 45 = 0;
(8:54) 2=0; 22=0, zi=0; 3 =0, ae 0

T201 = 0; 235 = q35C[w25, T3] + q23(1 — {)z3295.
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Here OF ={2,123,124,2234,234, 34, 12332435,2232425 1233425, 1223425, 123425, 123324352,
1245, 22345, 2345, 345,5} and the degree of the integral is

= 24y + 66as + 603 + 32a4 + 44as.

8.8.13. The Dynkin diagram (8.46 i).
The Nichols algebra By is generated by (z;);er, with defining relations

r13=0; w14=0; x15=0; [[®235,23]¢,23]c =0;

224 =0; 295 =0; x45=0; [2(13),22]c =0;

8.55
(8:55) 112 =0; 330 =0; w334 =0; [[2435,23]¢, x3]c = 0;
r553 =0; x3=0; a}=0; 3 =0, aec Ol

Here 0f = {1,3,1223%4,324,34,4,123%425, 233425, 123%45, 23345, 123245, 1223%4252, 12345,
1235, 23245, 2345, 235} and the degree of the integral is

g = 24aq + 44ao + 84ag + 3204 + 44as.

8.8.14. The Dynkin diagram (8.46 j).
The Nichols algebra By is generated by (z;);er; with defining relations

r13 = 0; 714 = 0; w15 = 0;  [[723,2235]c, T3] = 0;
256 T4 = 0; x5 = 0; za5 =05 [z(13),22]c = 0;
(8.56) w553 = 0 [T(oaywsle = 0; 27 =0; [2435,73]c = 0;
x%zO; :U%zO; xizO; xizo,ae(’)i.
Here 0% ={12,23,12324,22324,234, 4, 12333425, 2233425, 1233345, 223345, 1223245, 123314252,
12345, 1235, 23245, 345,35} and the degree of the integral is

a = 241 + 66as + 84ag + 32a + 44as.

8.8.15. The Dynkin diagram (8.46 k).
The Nichols algebra By is generated by (z;);er; with defining relations

z13=0; z14=0; x15=0; [[[T1235,23]c,T2])c, T3]c = O;

(8.57) x4 =0; x95=0; x45=0; [24),73]c = O;
' T921 = 0; w293 =0; x553 = 0; [T435,23]. = 0;
=0, 23=0; 2=0; z2 =0, a €Ol

Here 01 ={2,123,12223%4,1234,23%4,4,122333425,12223%425,12233345, 12223345, 1223245,
1223344252 123245, 2345, 235, 345,35} and the degree of the integral is

a = 44aq + 66as + 84as + 32a + 44as.
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8.8.16. The Dynkin diagram (8.46 1).
The Nichols algebra By is generated by (2;);er; with defining relations

24 =0; 213=0; x14=0; w15=0; [z013),72]c=0;
(8.58) w25 =0; 332 =0; w334 =0; 335 =0; 2553 = 0;
45 = 0; ZL’%ZO; x%:(]; xi:O; xz:(),ae(’)i.
Here 0 = {12,123,3,1234,34,4,1223%45,1233%4252, 123334252, 1233%452, 23245, 1232452,
22334252 2345, 2233452, 2232452 235} and the degree of the integral is
g = 24aq + 66as + 84ag + Hday + 44as.

8.8.17. The Dynkin diagram (8.46 m).
The Nichols algebra By is generated by (z;);er; with defining relations

r13 = 0; r14=0; 215 =0; [[743,7435)c, 23]c = 0;
(8.59) T4 = 0; w25 =0;  x45 = 0; [T(24),73]c = 0;
' [T(13),72]c = 0; @112 = 0; 2553 = 0;  [7235,73]c = 0;
2 _Q. 2 _ 0. 2 _ 0. 3 _ q
x5 = 0; z3=0; x5 =0; 1,=0, a€O].
Here 0% ={1,123,23,1234,234,4,123%45,122344252 23245, 12232452, 12334252, 1233452,
2334252 233452 345,32452,35} and the degree of the integral is
a = 24aq + 44ao + 84az + Hday + 44as.
8.8.18. The Dynkin diagram (8.46 n).
The Nichols algebra By is generated by (z;);er; with defining relations
224 =0; w13=0; z14=0; w15=0; T2 =0;
(8.60) w25 =0; @223 =0; 332 =0; w334 =0; w335 =0;
. 0N 2 __ 1. 2 _ . n. 3 q
245 =0; w553 =0; 27=0; 23=0; z,=0, acO].
Here 0OF ={2,23,3,234,34,4,1223245,1223344252 1223334252 122333452, 123245, 1222334252,
122233452 12345, 122232452, 1235, 232452} and the degree of the integral is
g = 48a + 66as + 84ag + Hday + 44ars.

8.8.19. The Dynkin diagram (8.46 n).
The Nichols algebra By is generated by (z;);er; with defining relations

z13=0; z14=0; x15=0; [[[ra32s,22]c,23]c,T2]c = 0;

(8 61) Tog =0; x35=0; 45 =0; [l‘(13),x2]c = 0;
' 112 =0; w332 =0; 334 =0;  [125,22]c = 0;
T3 =0; as52=0; a3 =0; z2 =0, a €Ol

Here 01 ={1,3,122234,12234,4,2234,122432435, 122432425, 12223475, 1223425, 223475,
1224324352,1222345, 122345, 45, 22345, 5} and the degree of the integral is

a = 44aq + 84an + 60as + 32a4 + 44as.
8.8.20. The associated Lie algebra. This is of type By x Aj.
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8.9. Type g(8,3). Here =5, ¢ € Gj. Let

0 1 0 0 0
-1 2 0 -1 0

A=10 0 2 -1 1|e€F*  p=(-1,1,1,1,1) € GS.
0 -1 -2 2 0
0 0 -1 0 2

Let g(8,3) = g(A,p), the contragredient Lie superalgebra corresponding
to (A,p). We know [BGL] that sdimg(8,3) = 55/50. There are 20 other
pairs of matrices and parity vectors for which the associated contragredient
Lie superalgebra is isomorphic to g(8,3). We describe now the root system
g(8,3) of g(8,3), see |[AA2| for details.

8.9.1. Basic datum and root system. Below, D5, CE5, As, Cs, Eéz), F4(1),
Cy™, 1Ty and 2T are numbered as in (4.23), (3.16), (4.2), (4.15), (3.9),
(3.10), (3.17) and (3.11), respectively. The basic datum and the bundle of
Cartan matrices are described by the following diagram:

834(Fi1)) 1 834(F4§1)) o s3a(As) 4 s3a(1Th)
° ° ° °

al ail a1o a14
3
Ds 5 Ds
e —— o
a7 a20
2 2
2
E((a ) 5 As 4 2T 3 Ds 5 CE5
° ° ° ° °
a2 aq a2 as1 a1
1 1 1 1 1
(2)
Eg 5 z‘zs 4 Q.T 3 D.s 5 CE5
as ae a3 ale alg
2 2 2
(2)
Eg 5 /:5 4 2.T
as ag ais
3 3
eyt 5 Cs
° °
ar as

Using the notation (3.1), the bundle of root sets is the following:
ALY =s34({1,12,2,123,23,3,1°2%3%4,12°3%4,123%4, 1234, 23%4, 234, 3°4, 34, 4,1%2%3%4%5,1%2%3%4%5,
122234435, 12234455, 122%3%4%5, 12223%4%5, 1223%42%5, 122333425, 12223425, 132436452,
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122232425, 12223245, 1223%4%5, 12232425, 1223245, 122%3%4%52, 1223354452, 12233%4°%52,
123%425,23%4%5, 1223344352, 1232425, 232425, 12223%4%52 1223%4°52, 123245, 12345,
23245, 2345, 3%4%5, 3245, 345, 45, 5}),

A%2 ={1,12,2,123,23,3,1234,1223%4% 12342 12347 234,23%4% 2347 34,347 4,12°3%4%5,
12%3%4%5,12%3%4%5, 1223%4%5, 2233445, 12333435, 12233435, 2233435, 12243%4552,
12354557 1223%4%5, 1223%4%5, 2232435, 223%4%5,1233%4%52 125344652, 1233%4°52
1232435, 232435, 123344757 1232475, 23%4%5,12%3%4%5% 12235452 12345, 12345,
22334452 23475, 2345, 34%5, 345,45, 5}

A% ={1,12,2,123,23,3,1234,12%3%4% 123242 12347 234,23%4% 2342 34,347 4,1%2%3%4°5,
12233%4%5,12233%4%5,12223%4%5, 1223%4%5,122%3%4%5, 122233435, 1223435, 1324354552,
122232435, 122232475, 1%2%3%4%52, 12232435, 12232425, 1%2%3%4%52 1223344552
12233%4552 1232455, 23%4%5,122%3%4%52 1232475, 23%4%5, 1223334452 1722354452,
1223%4%5% 123475, 12345, 23425, 2345, 3475, 345, 45, 5},

A% ={1,12,2,123,23, 3, 1234, 234, 34, 4, 12232475, 1237475, 123475, 12345, 12°3%4*52 12533452
125334352 2232425, 122354457, 1223%4%52, 232425, 12243%4%5* 123344553 12232452
12324352, 22334452 23425, 34%5,12%3%455%, 12334054 1233%4%5% 22334352 123344654,
12333%4%5% 22324352 1223%4%5% 2324552 12%3%4°5%  1223%4%52, 12324257, 1234752
22334453 2345, 23%4%5% 234757 345, 34?52 45,5},

A%5 ={1,12,2,123,23, 3,1234,1223%4% 123242 12347 234,23%4% 2347 34,347 4, 12%3%4%5,
1223%4%5,1223%4%5, 123%4%5, 23%4%5, 12232435, 123%4%5, 233435, 1225354552 1233%4%52
12232435, 1223%4%5, 1223%°4552 12324535, 1232475, 1223%4552 1223%4°52, 232435, 32435, 1223%4%52
232425, 3%4%5,12%3%4%5%,123%4%5%, 123475, 12345, 233452 23425, 2345, 34?5, 345, 45, 5},

A% ={1,12,2,123,23,3,1234,234, 34,4, 172232425, 12232475, 1%233%415% 1223334157 1223334552
1232425, 1%223%4%5% 12223%4%52 123425, 1222324552, 12345, 132%3°455% 1223344553,
12233%4%5% 122%3%4%53 12223%4%5% 12234452 1223%4%5% 122%3°455% 122%3°4554,
2324%5,1223%435%, 122334455 234%5,123%4%52, 3475, 122334455 122334453 122324252
12324252 1234752 23243522345, 2374752 234757 345, 34?52, 45, 5},

AT ={1,12,2,123, 23, 3,1234,1223%4% 12342 12347 234,23%4% 2342 34,347 4,12%3%4°5,12%3%4%5
1223%4%5, 123%4%5, 23%4%5, 1223%4%5, 12232435, 1223344552, 123324552, 12232425, 123%4°5,
122344552 1232425, 232435, 232425, 122334552, 1223%4°52 123435, 23435, 34%5
1223%4%5% 123425, 122324452 12324452 12345, 23425, 23%4%52 2345, 3425, 345,45, 45,5},

A% ={1,12,2,123,23,3,1234, 234, 34, 4, 1223%4%5, 1237475, 123475, 12345, 12733457 1223%4°%52
23%4%5,1223%4%52 122324352, 23425, 122324252, 2345, 122%3%4%5% 12334557 122334°53,
122334453 122324453, 123%4%52, 123%4%52, 123452, 1232452, 1234252, 122344554,
1223%455% 122334554 12324%53, 2324452 2324%52 3425, 2324252, 345, 2324%5%, 23435
23425234352 34?52 475,45, 5},

A% ={1,12,2,123,23,3,1234,234, 34,4, 1223%4%5,123%4%5, 123475, 12345, 12734457 1223%4*5>
122324352 232425, 122324352, 23425, 1223242522345, 12233°455% 123354654 122344553,
1223%4%53 122334453 123%4%52 12334352, 1232452, 1232452, 1234752, 1223°4%5%,
1223%455% 1223%4°5%,123%4%5%  23%4%5% 2334552 32475, 23%4%52, 3475, 23%455,

2324252 234%5%, 324552, 345, 34?57, 45,5},
A0 =s54({1,12,2,123,23,3,12%3%4,12%3%4,123%4, 1234, 2%3%4, 23%4, 234, 34,4,1°2"3°4%5,1°213"4%5,
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12233%4%5,1233%4%5, 122434475, 12233%4%5, 12334425, 122535425, 122233425, 132535452,
122232425, 12223245, 12333425, 122%3%4%52 1223425, 1224354452, 1224354352, 2233425,
12232425, 1%2%3%4%5% 2232475, 1223%45, 223%45, 1723344352, 12334552, 1232475, 123245,
12345, 23%4%5, 2345, 2345, 345, 45, 5}),
=s34({1, 12,2, 123,23, 3, 127374, 123%4, 1234, 22374, 2374, 234, 3%4, 34,4, 12°3%4%5, 125345, 1223%4°5,
2%23%435,12%3%4%5,1223%4%5, 223%4%5, 1233425, 12233425, 12%354%5% 12232425, 12%3%45,
2233475 223%4%5,223%45, 12335452 12°3%4%5% 12°3°4%52  123%4%5, 23%4%5, 123344552,
1232425, 23%4%5, 122344352 123245, 12345, 22344352 23245, 2345, 32475, 3245, 345, 45, 5}),
={1,12,2,123,23,3,1234, 234, 34, 4,1223%45, 12345, 12345, 1235, 12°3*4%5%  12%3%4%52 12%3%45°
2%23245,1223%4%52 12235452 23245, 1%22%3%4%5% 123344353 122324252 12324252, 125344253,
12232452, 123%45%,1243%4%5% 12335435 22354252 2233452, 123334753, 1223%4%5% 12334354,
12%3%4%5% 123452, 2345, 223452, 235, 223%4%5% 2324252 232452, 23452, 345, 45, 3452, 35, 5},
={1,12,2,123,23,3,1234, 234, 34, 4, 17223245, 1273%45, 17233%4%5% 1225354252 122%3%45
123245, 1222334252 122233452 12345, 122232452, 1235, 1%2%3%4%5% 1223344353 122334253,
1223334253 12223%4%5% 12234252 122324252, 12324252, 1%243%4%5%, 122%3%4%54,
1223%452, 23245, 1223344354 12232452, 2345, 122%3%4%5% 122334253 1232457123452,
2324252 345,45, 23%45%, 23452, 235, 3452, 35, 5},
=s34({1,12,2,123,23,3,122%34, 12734, 1234, 124, 2234, 234, 24, 34,4, 1°2*3%4%5, 122432435 122%3%4°5,
12232435, 122432425, 122332425, 12232425, 122232425, 12232425, 223%4%5, 132733452,
12253%4%52 1223%4%52 122334352 12233475, 12223475, 1222345, 1233425, 1223475, 12232452
223425, 127345, 22345, 1723324352 125324552 123475, 12345, 1245, 23475, 2345, 245, 345, 45, 5}),
={1,12,2,123,23,3,1234, 234, 34, 4, 1223245, 123245, 12345, 1235, 1223%4%5%  1223%4%5% 12233457,
23245,1223%4%5% 12232457 2345, 235, 122%3%435%  1233%4%5% 122344353 12234253 122334753,
123%4252, 12324252, 1233452, 1232452123452, 1223°435% 1223%4%5% 12234425, 12354253,
2334252 23%45% 3245, 2324752 232452 23%4%5% 23452 345, 45, 37452, 3452 35, 5}
={1,12,2,123,23,3,1234, 234, 34, 4, 12223245, 122345, 1723344757 1223334252 122333452
123245, 1222334252, 122233452 12345, 122232452, 1235, 1°243%4%5% 12233°4353 1223354253,
122%3%4%5% 12223%4%5% 1223%4%5% 1223%4%5%,123%4%5%,1%2%3%4%5% 122%3%4%5% 12233452
23245,123%45% 3245, 1223354354 12233%4%5% 1223%425% 12232452, 1232452, 23%4%52, 2345,
345,23%45%, 232452, 235, 32452, 35, 5},
={1,12,2,123,23,3,1234,234, 34, 4, 17223245, 1223245, 1%2%3%4%5% 1%2%3%4%52 1%2%3%45>
123245, 1222334252, 122233452 12345, 122232452, 1235, 1°2°3%4%5%, 122%3°4353 1224354253,
122%3%42%53 12233%4%53 123394252, 1223%4%5%, 12234252 122°3%435% 12333452 223245,
12243%4%5% 12235452 23245, 1%2%3%4%5% 122%3%4%5% 12334425 12232452, 1232452,
22334252 2345, 345, 2%3%45% 2232457, 23457 235, 35,5}
={1,12,2,123,23,3,1223%4,123%4, 1234, 2%3%4, 23%4, 234, 374, 34, 4, 12335435, 123354%5,
12%3%4%5,12%3%4%5, 2234425, 12%3%4%5, 1223%4%5, 223%4%5,123%4%5,23%4%5, 1724354552,
1243%4352 123354352 1233°4352, 1233345, 1223345, 1223245, 123345, 123245, 12345, 12°3°4252,
12%3%47%5% 1223%4%52 1235, 22345, 23545, 22345, 23245, 2345, 235, 3745, 345, 35, 5}
={1,12,2,123,23,3,1%2223%4,12%3%4,123%4, 1234, 23%4, 234, 3%4, 34,4, 172%3%4%5,1%233%4%5
122334425, 122234425, 1223%4%5, 12233425, 122233425, 12233425, 1233425, 233425, 12354352
122%3%4%52 122%3%4%52 122%3%4%52 1%2%3%45, 1%223%45, 1%223%45, 12%3%45, 122345, 172°3%4752
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123%45,23%45,122°3%4%52 123245, 1223%4%5% 12345, 1235, 23745, 2345, 235, 3745, 345, 35, 5},
A0 ={1,12,2,123,23,3,1°2°3%4,12°3%4,123%4,1234, 2734, 23°4, 234, 34, 4,1%2"3%4%5,1%2"3%4%5,
122%3%4%5,1%22%3%4%5,12%3%4%5, 122%3%4%5, 12°3%4%5, 122235425, 12235425, 223%4%5,1%2°354%52,
1225304352 1224364352 12243%4%52 12233345, 1%223%45, 12223245, 12°3%45, 1223%45, 1%243%4%52,
223%45,1273%45,223%45, 1223344752 12%3%4%5% 123245, 12345, 1235, 23245, 2345, 235, 345, 35, 5},
AT ={1,12,2,123,23,3,1234, 234, 34, 4,12°3%45,123°45,12345,1235,12°3%4°5%,12%3%4%5%  123%45°,
223245, 122344252 122334252 122%3%4%5% 12%3°4%5% 123%4252, 1223%452, 1233°4%5% 1233452,
23245, 3%45, 124354354 123364357 123344253 22334252 2233452 12234257 2334252 233452,
12%3%4%5% 1233%4%5% 12232452, 123452, 223%4%5°, 2345, 345, 2232457, 232457, 235, 37452, 35, 5}.

8.9.2. Weyl groupoid. The isotropy group at a; € X is
W(a1) = (§1" 6263642555453516254555355545261 $3545552546352615 S5 1 S5
St ey = Z)2 x W (Fy).

8.9.3. Incarnation. We set the matrices (q))er,,, from left to right and
from up to down:

(8.62) P S LU LTS
-1 ¢ ¢ ¢ ¢ ¢ ¢ ¢ -1 -1 ¢ -1 ¢ ¢ ¢ ¢ ¢ -1
(@] (@] (@] (e] (e] (@] (@] (@] (0]
-1 ¢ ¢ ¢ ¢ ¢ -1 ¢ -1 ¢ ¢ -1 ¢ -1 ¢ ¢ ¢ -1
O O O O O (@] (@] (@] O

¢ ¢ ¢ ¢ -1 ¢ ¢ ¢ -1 ¢ ¢ -1 ¢ -1 ¢ -1 ¢ -1
(@] (@] (@] (@] (e] (@] (e] (@] (@] (@]
¢ ¢ -1 ¢ -1 ¢ ¢ ¢ ¢ -1 ¢ -1 ¢ ¢ ¢ ¢ ¢ ¢
(@] (@] (@] (@] (@] (@] (@] (@] (e] [e]
¢ ¢
O O
¢
CC ¢
-1 ¢ ¢ ¢ -1 ¢ =1 -1 ¢ -1 ¢ -1 ¢ >=1
(@] (@] (@] (@] (o) O (] (@]
-1 C
(] (@]
CC CC
SR S AN S U S
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-1 —1
o o
< ¢
-1 ¢ ¢ ¢ -1 ¢ ¢ ¢ ¢ -1 ¢ ¢ ¢ ¢
O O O O o O
-1 -1
o o
¢ ¢
-1 ¢ -1 ¢ ¢ ¢ ¢ -1 ¢ ¢ ¢ ¢ ¢ ¢
o ] [e) O (@] o] o )
-1 -1
o O
¢ ¢
¢ ¢ -1 ¢ -1 ¢ ¢ -1 ¢ -1 ¢ -1 ¢ ¢
O o O (e} [¢] O ) (o)
Now, this is the incarnation:
a; — s34(q%), i € {1,10,11,14}; a; — q(i), otherwise.

8.9.4. PBW-basis and dimension. Notice that the roots in each A%, i € Ipy,
are ordered from left to right, justifying the notation (i, ..., 849.
The root vectors xg, are described as in Remark 2.14. Thus
{ahio a0 << Ny}
is a PBW-basis of B;. Hence dim B, = 2243246 = 225325,
8.9.5. The Dynkin diagram (8.62 a).
The Nichols algebra By is generated by (z;);er, with defining relations
(8.63)  wa21 = 0; 923 =0; x332=0; x;5=0, 1<, gy =1;
Ta3 =05 w45 =05 [[T(24), T3]e, 23] = O;
[43345,234]c = 05 @554 = 0; 22=0; 2Ne=0, ac o1.
Here 09 = {2,23,3,22324,23%4,234,3%4,34,4,2234435, 2234425, 1223%425, 2233425, 2232425,
223245, 233425, 232425, 22344352 23245, 2345, 32425, 3245, 345, 45,5} and the degree of the
integral is
g =291 + 102a0 + 1713 + 118ay + 61ass.
8.9.6. The Dynkin diagram (8.62 b).
The Nichols algebra By is generated by (x;);er; with defining relations
x221 = 05 w23 =0; w332 =0; x5 =0, i <j, gij = 1;
(8.64) x330 = 0; 445 =05 [[2(35), Tale, Talc = 0;

2 2 Na
[%4432,:1‘43]0 = 0; xr] = 0; Ty = 0; T, = 0, ae Oj_
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Here 01 ={2,23,3,1234,234,23247,2342, 34,342, 4,12233445,12233435,1224354652 12232435,
12232425,1223354652 1223344652 1223344552 1232435, 1223344452 1232425, 1223334452,
1222334452 123425,12345} and the degree of the integral is

a = 75aq + 1179 4+ 155a3 + 189y + 64ars.

8.9.7. The Dynkin diagram (8.62 c).
The Nichols algebra By is generated by (z;);er; with defining relations

[a3),T2]e = 0; 2332 =0; @334 =0; x5 =0, i <j, gj =1
(8.65) Tus =0;  ai=0; [ 35> T4les Tale = 0;

[€4432, T43]c = 0; IL‘% =0; mg =0; :Eév‘* =0, o€ Oi.
Here 0% ={12,123,3,1234,123%42,12342,234, 34, 342, 4, 12233415, 12233435, 122354652,

12232435, 12232425, 123354652 123344652 123344552 232435, 123344452, 232425, 123334452,
22334452 23425 2345} and the degree of the integral is

a=44aq + 1179 4+ 155a3 + 189ay + 64as.

8.9.8. The Dynkin diagram (8.62 d).
The Nichols algebra By is generated by (z;);er; with defining relations

w221 = 0; x223 =0; w332 =0; zi; =0, 1< j, ¢j = 1;
2
(8.66) w334 =0; 27 =0; [[¥54,7543)c, Ta]c = 0;
3=0; 22=0; a)*=0, ac0Ol.
Here OF ={2,23,3,1234,12232425, 1223314452, 1223334152, 1232425,1222334452, 123475,

12345,1223344553 122334352 1224354654 1223354654 122324352 1223344654 12324352,
122334453, 2345, 2324252, 234252, 345, 34252 45} and the degree of the integral is

a = Tbay + 117an + 155a3 4+ 189ay + 127as.

8.9.9. The Dynkin diagram (8.62 e).
The Nichols algebra By is generated by (z;);er, with defining relations

z112 = 0; [Zaa)male =0, 253=0; 25 =0, i<j, ¢ =1;
(8.67) w45 =0; (1), 23]le =0 25 =0; [[2(35), Tale, 24)c = O;
[2443,243)c = 0;  [Taa39,243)c = 0; 22 =0; 22> =0, ac ol.

Here OF ={1,123,23,1234,1223242 12342, 234, 234%, 34, 4,1223%445,12233435, 1223354652,
123354652 1232435,1232425, 122344652 122344552 232435, 122344452, 232425, 12334452,
2334152,3425,345} and the degree of the integral is

a =441 + 11709 + 1553 + 189ay + 64ars.
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8.9.10. The Dynkin diagram (8.62 f).
The Nichols algebra By is generated by (2;);er; with defining relations

w332 =05 2334 = 0; z3 =0; xi; =0, 1<7,q; =1,
(8.68) 96% =0; 5642; =0; [[s54,2543]c, 24]c = 0;
[93(13),I2]c = 0; x% =0; xfxv" =0, a € Oi.

Here 0% ={12,123,3,234,12232425,12345, 123344452, 123334152, 122334352, 232425,
1224354654 123344553 122324352 92334452 23425 123354654 123344654 122334453 2324352,
123242521234252, 2345, 345, 34252, 45} and the degree of the integral is

= 44aq + 1179 4+ 155a3 + 189ay + 127as.

8.9.11. The Dynkin diagram (8.62 g).
The Nichols algebra By is generated by (2;);er; with defining relations

z112 = 0; 24143 =0; [T(24),73]c =0; 255 =0, i < J, gij = 1;
. _ 0 —_0- No _ .
(869) Too1 = 0; 24445 = 0; Tooz = 0; 2, =0, a € o1 ;
3=0; 23 =0; =(¢
3 =0; x5=0; [23,2a5]c = ( — ()q34T4T(35) — qu5]7(35), Ta]e-
Here 0% ={1,12,2,1234,1223242,123242, 234, 23242, 34, 4,122334%5,12232435, 1223344652,
123344652 1232435, 122344652 232435,122334552 123425, 122324452 1232445223425, 2324452,
3425,45} and the degree of the integral is
g = 440 + 84as + 120as + 1894 + 64as.

8.9.12. The Dynkin diagram (8.62 h). The Nichols algebra By is generated
by (z;)ier, with defining relations

[T(24), T3] = 0; @112 =0; T221 =0; w5 =0, 1 <7, g =1

(8.70) T223 = 0; Ta45 = 05 [[T(35), Tdle, Ta]e = 0;
(2445, 245)c = 0;  22=0; 22=0; 2No=0, ac 01.

Here 01 ={1,12,2,4,1234%5,12345,1223%4%52, 122324352, 23425,122324252, 2345,12233%4654,
123344654 122334553 122334453 12324452, 12324352, 12324252, 122344654 2324452,
2324352, 3425,2324252 345,45} and the degree of the integral is

a = 44aq + 84as + 1203 + 1894 + 127ars.

8.9.13. The Dynkin diagram (8.62 i).
The Nichols algebra By is generated by (z;);er, with defining relations

z112 = 0; [z, T3]c = 0; a5 =0; x;=0,1<j, G;=1;
(8.71) [7(13), T2]e = 0; 23 =0; [[zs54, T543)c, Ta)e = O;
22 =0; [[w31,7(35)|e; e = 0; 25 =0; z)* =0, a € O%.

Here 09 = {1,123,23,34,123%425,12345, 122344452, 122334352, 232425, 122324252, 2345,
1223354654 123354654 122344553 122334453, 12334452 12324352, 1234252, 122344654 2334452,
2324352, 3425,234252, 345,45} and the degree of the integral is

a = 44aq + 84as + 1553 + 189y + 127ars.
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8.9.14. The Dynkin diagram (8.62 j).
The Nichols algebra By is generated by (2;);er; with defining relations

[a3), T2)e =0; 2112 =0; 2443 =0; w5=0, 1 <j, qj=1;
(8.72) Tag5 = 0; 550 = 05 [[223,2(24))cy T3]c = 0;
2 =0, 2i=0; mga:O,ani.
Here 0% ={1,123,23,12223%4,1223%4, 1234, 22324, 234, 4,12213%435, 122131425, 122333425,
122232425, 12223245, 12333425,12233425, 12232425, 1224344352 2232425 1223245,
223245, 12345,2345, 45,5} and the degree of the integral is

a = Thay + 146 4+ 171as + 118y + 61as.
8.9.15. The Dynkin diagram (8.62 k).
The Nichols algebra By is generated by (z;);er; with defining relations
[T13), T2le = 0; w332 =0; @443 =0; z551 =0, i <j, g5 = 1;
(8.73) Taa5 = 0; 550 = 05 [[(35), Tdle, Tale = 0;
(3345, T34]c = 0; 22 =0; z2=0; iL'aNa =0, a €Ol

Here 0% ={12,123,3,12223%4,123%4,1234,3%4, 34, 4, 122231435,12223%425, 122233425,
122232425,12223245, 12233425, 1233425, 1232425, 1222344352 123245, 12345, 32425, 3245,
345,45,5} and the degree of the integral is
g = Thay + 102a9 4+ 171z + 1184 + 61as.
8.9.16. The Dynkin diagram (8.62 1).
The Nichols algebra By is generated by (x;);er; with defining relations
T201 = 0; Ta43 =0; [T(21),23]c =0; 25 =0, i < j, g3 = 1;
. _0N- —_0N- No _ .
(8.74) 23 =0; zas5 =0; [wa35.23)c =0; z,°=0, a €Ol
2 2 0 2 () — -
] =0; 23 =0; 25 =0; 235 = qs([235, T4]c + 34(1 — () a235.
Here O ={2,123,234,34,1223245, 1223344252 122333452 123245,122233452, 12345, 1235,
1223344253 122334252 1224354354 1223354354 12232452, 2345, 1223344254 122334253,
1232452, 2324252 345, 23452, 3452, 5} and the degree of the integral is

g ="Thaq + 117a9 + 155a3 + 127a4 + 95ars.

8.9.17. The Dynkin diagram (8.62 m).
The Nichols algebra By is generated by (z;);er; with defining relations

zag3 =0 [zagpaole =0; 27 =0; x5 =0, i<j, g =1
(8.75) w445 = 0; [2(24),73]c = O; 22=0; 22=0; 2o =0, acO;

(w235, 23)c = 05 23 = 0; (35 = qusC[235, 2ale + qaa(1 — (435,
Here 01 ={12,23,1234, 34,1223245, 12345, 123344252, 12333452, 122334252, 23245,

1224354354 12324252 ,123344253 12232452 123354354, 2233452 122334253 123344254 123452,
2345, 235, 232452, 345,3452, 5} and the degree of the integral is

a =441 + 11709 + 155a3 + 12704 + 95as.
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8.9.18. The Dynkin diagram (8.62 n).
The Nichols algebra By is generated by (2;);er; with defining relations

(8.76)
[T(24), 73le = 0; 112 =0; @221 =0; z;5=0, i<y, q;=1;

2 Na _ .

(€435, 23]c = 0; @223 =0; @95 =0; 25=0; 2,°=0, a €O
) .

ra43 = 0; 23 =0; 235 = ¢35¢ (%25, 3)c + qo3(1 — {)w3225.

Here 0% ={1,12,2,1%2234, 12234, 1234, 2234, 234, 34, 12233435,122132425, 122332425,
12332425, 122232425, 12232425, 2232425, 1224334352 1222345, 1223425, 122345, 22345, 12345,
2345, 345,5} and the degree of the integral is

g = 7baq + 146 4+ 1183 4+ 61y + 9daus.

8.9.19. The Dynkin diagram (8.62 n).
The Nichols algebra By is generated by (x;);er; with defining relations
T2 =0; T332=0; 2a13=0; 25=0; x;;=0, i<, G =1
(8.77) w334 = 0; 335 =0; w445 = 0; x% = 0; Ig‘l =0, a € @) ;

[Z(13), T2)e = 05 @(35) = qusC[w35, Tae + q3a(1 — () zg35.

Here 01 = {1,3,1234,234,123245, 12345, 122344252, 1233452, 122334252, 23245, 1223354354,
122324252 122344253 1232452,12335435%, 233452, 122334253 122344254 123452, 345,
35,232452, 2345, 23452, 5} and the degree of the integral is

g = 44aq + 84ao + 155a3 + 127a4 + 95a5.

8.9.20. The Dynkin diagram (8.62 o).
The Nichols algebra By is generated by (z;);er, with defining relations

[2(24), T3]c = 0; @221 =0; w23 =0; x5 =0, 1 <, Gij = 1;
(8.78) w553 =0; 7 =0; [[x43,2435]c, ¥3)c = 0;
[x235, 23] = 0; x% =0; l’?l =0; mév‘* =0, o€ (91.

Here 0% ={2,123,1234,4,1223245, 123245, 123334252, 12333452, 122334252, 1224364354,
12334252,12233452 1233452, 23245, 123344253, 122344253, 123354354 1233542542345, 345,
2232452 232452, 235,32452,35} and the degree of the integral is

a=44aq + 1179 4+ 1863 + 1274 + 9dars.
8.9.21. The Dynkin diagram (8.62 p).
The Nichols algebra By is generated by (2;);er; with defining relations
r112 =0; w332 =0; 2334 = 0; rij =0, 1 <], g =1;
(8.79) x335 = 0; 553 = 0;  [2(13),22]c = 0;

r3=0; z2=0; xgazo,ae(?i.
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Here 0% ={1,3,34,4,1223245,123245,12223%4252, 122233452 12345, 122232452, 1235,
1223344253 122334252 1294364354 12233452, 23245, 1224354354 1224354254 123344253
12232452, 22334252 2345, 2233452, 2232452, 235} and the degree of the integral is

a = 7baq + 146 + 186 + 1274 + 9dars.

8.9.22. The Dynkin diagram (8.62 q).
The Nichols algebra By is generated by (z;);er; with defining relations

[2(13), 22]e = 0; 2330 =0; 25 =0; 2;;=0, <7, Gy=1
(8.80) w553 = 0; a5 =0; [[w35, B3e, 23)c = 0;

—n. N 2 _n. No q
[[x435, 23], 3] = 05 w334 = 0; 23 =0; 2,° =0, a € OF.

Here OF ={12,123,3,12223%4,123%4, 1234, 3%4, 34, 4, 122335435, 122335425, 122334425,
12234425, 122333425, 12233425,233425, 1224364352 12233345, 1223345, 1223245, 23345, 123245,
23245,2345,235} and the degree of the integral is

a=Thay + 117a9 + 186a3 + 61ay + 95as.

8.9.23. The Dynkin diagram (8.62 r).
The Nichols algebra By is generated by (z;);er; with defining relations

T921 = 0; X923 =0; 330 =0; x;5=0,1<j,qj=1
(8.81) T334 = 0; w553 = 0; [[z235, T3]c, 23]c = 0;
([wass,xsle, w3l =03 27 =0; 2f=0; a)*=0, a €Ol

Here 01 ={2,23,3,223%4,23%4,234,3%4, 34,4, 1233%435,12335425, 12334425, 12234425,
12333425,12233425, 1233425, 1224364352 1233345, 1223345, 1223245, 123345, 123245, 12345,
1235,23245} and the degree of the integral is

= 4407 + 117 4+ 1863 + 61y + 95ass.

8.9.24. The Dynkin diagram (8.62 s).
The Nichols algebra By is generated by (z;);er, with defining relations

r112 = 0; x% = 0; [$(13)7$2]c =0; xi;=0,1<7,q; =1,
(8.82) 55% =0; [56(24),903]@ =0; [[z23,7235]c, 3]c = 0;

z553 = 0; 23 =0; [va35,23]e =0; ahe=0, ac ol.
Here 09 = {1,123,23,1222324,1223%4,1234,22324, 234, 4,122%3%4%5,12243%425,122334425,

12334425,122233425,12233425,2233425, 1224364352 12923345, 1223345, 223345, 1223245,
123245, 23245, 345,35} and the degree of the integral is

g = 7baq + 146 + 1863 + 61y + 95au5.
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8.9.25. The Dynkin diagram (8.62 t).
The Nichols algebra By is generated by (2;);er; with defining relations

zaas =05 [z(s),2)e =0; 2t =0; i, =0, i<j,g;=1;

(8.83) (1), x3le = 0; @3 =0; [[243, Ta35]c, T3)c = 0;
22 =0; [zozs, 23] =0; x2=0; 2N =0, ac o1.

Here OF ={12,23,234,4,1223%45,1223334252 122333452, 123245, 12345, 122232452 1235,
1223344253 122334252 1224364354 12233452, 23245, 1223354354 1223354254 122344253
1232452, 2334252, 345, 233452, 32452 35} and the degree of the integral is

a = 75y + 1179 + 186 + 12704 + 95ars.
8.9.26. The associated Lie algebra. This is of type Fy x Aj.
8.10. Type g(4,6). Here § =6, ¢ € G5. Let
2 -1 0 0 0 O

1 0 -1 0 0 0

|0 -1 0 1 0 1 6x6. ]
0 0 0O -1 2 0
0O 0 -1 0 0 2

Let g(4,6) = g(A,p), the contragredient Lie superalgebra corresponding
to (A,p). We know [BGL| that sdimg(4,6) = 66|32. There are 6 other
pairs of matrices and parity vectors for which the associated contragredient
Lie superalgebra is isomorphic to g(4,6). We describe now the root system
g(4,6) of g(4,6), see [AA2] for details.

8.10.1. Basic datum and root system. Below, Ag, Dg, Eg and 9T are num-
bered as in (4.2), (4.23), (4.28) and (3.11), respectively. The basic datum
and the bundle of Cartan matrices are described by the following diagram:

Es 2 Es 1 Eg

e — 6 —M o

as as ag

3
sas6(A6) ¢ 271 4 Ds 5 Dg
[ ] [ ] [ [ ]

al ar as a4
Using the notation (3.1), the bundle of root sets is the following:

AL =s456({1,12,2,123,23,3,1234, 234, 34, 4,12°3°4%5,123%4°5,1234%5, 12345, 23°4%5, 2345, 2345,
3475, 345,45, 5,12%3%4%5%6, 1223%4%5%6, 1223%4%5%6, 122324526, 123%4°5%6, 2324°52%6,
1223%4%5%6, 123%4%5%6, 23742526, 12347576, 2342526, 3425%6, 1223%45%62, 122324756,
12324256, 1234756, 123456, 2324256, 234256, 23456, 34%56, 3456, 456, 56, 6}),

AS? ={1,12,2,123,23,3,1234, 234, 34, 4, 12345, 2345, 345, 45, 5, 12°3%4%56, 12%3%4%56, 12%3%4% 56,
1223%4%6, 12324%56, 12324256, 1232426, 2324°56, 2324256, 23%4%6, 1223%4%5%62, 1223%4%562,
1234256, 234256, 34256, 1223%4%562, 123456, 23456, 3456, 1223243562, 123243562, 1234%6,
12346, 23%4°562, 23476, 2346, 456, 3426, 346, 46, 6},

A3 ={1,12,2,123,23,3,1234, 234, 34, 4, 12345, 2345, 345, 45, 5, 12°3%4%56, 12°3%4%56, 12°3° 456,
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1223246, 1234256, 2324256, 12324256, 1232456, 123246, 1223%4%5%62, 1223%43562, 2324256,
324256, 123456, 12346, 122342562, 1223%4°562, 123%4%562, 1236, 232456, 32456, 23246, 3246,
23342562, 23456, 2346, 236, 3456, 346, 36, 6},

At ={1,12,2,123,23,3,1234, 234, 34, 4, 12345, 2345, 345, 45, 5, 12°3°4°5%6, 12°3%4°5%6, 12°3%4%57%6,
122324256, 123%4%5%6, 123242526, 12324256, 23%4%526, 23242526, 2324256, 1223%4%5%62,
12342526, 234256, 342526, 1223%45%62, 1223%4%5%62, 1234256, 234256, 34°56, 12°3%4°5%62,
1232435262, 123456, 12346, 2324°5262, 23456, 2346, 3456, 346, 456, 46, 6},

A% ={1,12,2,123,23,3,1234, 234, 34, 4, 12345, 2345, 345, 45, 5, 1°2°3°4%56, 1°2°3° 4?56, 1°2°3%456,
122232456, 12223246, 122334256, 122324256, 12232456, 1223246, 122°34455262, 12253443562,
12324256, 2324256, 122%3%4%562, 1232456, 232456, 122°3%42562, 123456, 23456, 12223%4%562,
1223%47%56%, 123246, 12346, 1236, 3456, 23246, 2346, 236, 346, 36, 6},

A6 ={1,12,2,123,23,3,1234, 234, 34, 4, 12345, 2345, 345, 45, 5, 12°3%4%56, 12%3%4%56, 12%3%4% 56,
12232456, 1223246, 22324256, 22324256, 2232456, 223246, 12°3%4°5%62, 12%3%4%562, 12324256,
2324256, 12°3%*4%567, 1232456, 232456, 12°3%4%562, 123456, 23456, 1223342562, 123246, 12346,
1236, 2%3%4%56%, 3456, 23246, 2346, 236, 346, 36, 6},

AS7 ={1,12,2,123,23,3,1234, 234, 34, 4, 12345, 2345, 345, 45, 5, 12°3°4%56, 12°3%4% 56, 12%3% 456,
1223246, 12324256, 1232456, 123246, 2324256, 232456, 23246, 1223435262, 12234562, 1234?56,
234256, 34256, 1223%4%562, 123456, 23456, 3456, 1223242562, 123242562, 12346, 1236,

23242567, 2346, 236, 456, 346, 36, 46, 6}.

8.10.2. Weyl groupoid. The isotropy group at az € X is

W(as) = (1°6263565456535251, S5 5 S5°, 642, 65, 56 4) =~ W (Dg).



122 ANDRUSKIEWITSCH; ANGIONO

8.10.3. Incarnation. We set the matrices (q(i))l‘e]17, from left to right and
from up to down:

(8.84)
¢ ¢ ¢ ¢ ¢ ¢ -1 ¢ ¢ ¢ ¢
(@] (@] (@] (] (@] (@]
¢ ¢
(@] (@]
¢ ¢
¢ ¢ ¢ ¢ ¢ ¢ -1 ¢ -1 ¢ ¢ -1 ¢ -1¢ ¢ ¢ ¢
(e] [e] (@] (e] o O (@]
¢ ¢
(o] (@]
¢ ¢
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ -1 -1 ¢ -1 ¢ ¢ ¢ ¢ ¢ ¢
(@] O O (@] O O O O O O
¢ -1
(@] [e]

Now, this is the incarnation:
ay — sase(a"); a;—q", i €lyy.
8.10.4. PBW-basis and dimension. Notice that the roots in each AY, i € Iy,

are ordered from left to right, justifying the notation (i, ..., 846-
The root vectors xg, are described as in Remark 2.14. Thus

{ahio a0 << Ny |
is a PBW-basis of B;. Hence dim By = 216330

8.10.5. The Dynkin diagram (8.84 a).
The Nichols algebra By is generated by (z;);er, with defining relations
2112 =0; w221 =0; x5 =0, ¢ < j, gij = 1;
(5.85) T3 = 0; 332 =05 [[[2(25), Tale, T3]e, Ta]e = 0;
w330 = 0; 550 =05 [[[6543, Tale, Tsle, Tale = 0;
z556 = 0; Tees =0; 23=0; a0 =0, a€ o1.

Here 09 = {1,12,2,123,23,3,12232425,1232425, 123425, 232425, 23425, 3425, 5, 1223%4*5°6,
1223344526, 1223242526, 123242526, 23242526, 12347526, 2342526, 342526, 12233445362,
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122324256, 12324256, 1234256, 2324256, 234256, 34256, 56, 6} and the degree of the integral
is

a = 36aq + 68as + 96a3 + 12004 + 845 + 44 .

8.10.6. The Dynkin diagram (8.84 b).
The Nichols algebra By is generated by (z;);er; with defining relations
(@546, Tale = 0; X221 =0; @903 =0; ;3 =0, i<j,qj=1;
(8.86) 332 =0; w334 = 0; xg6a = 05 [[[72346, Tdc, T3]e, Ta]e = 0;
[T(35), T4]le = 05 x112 = 0; w2=0; 22=0; 23=0,ac o1.
Here 09 = {1,12,2,123,23,3,12345,2345, 345, 45, 122334356, 122324356, 12232426, 12324356,

1232426, 2324356, 232426, 12234445262, 1223343562, 123456, 23456, 3456, 1223243562, 123243562,
123426,23243562, 23426, 456, 3426,6} and the degree of the integral is

g = 36 + 68as + 963 + 12004 + 445 + 620.

8.10.7. The Dynkin diagram (8.84 c).
The Nichols algebra By is generated by (z;);er; with defining relations

[Za3), T2le = 0; @443 =0; 2aa5=0; x5 =0, i <j,q;=1;
(8.87) [m236,73]c = 0; w550 = 0; w663 = 0;  [[[5436, T3], Ta]e, ¥3]c = 05
. —0- 2 _0 2_0. 3 _
[37(24)7373]0 =0; z112=0; z3=0; z3=0; =z, =0, a€ Oi
Here 0% ={1,123,23,1234,234,4,12345,2345,45, 5, 122324256, 12232456, 1223246, 12334256,

2334256,12234435262, 1223443562, 324256, 123456, 12346, 1223442562, 123342562, 1236, 32456,
3246,23342562, 23456, 2346, 236, 6} and the degree of the integral is

a = 36 + 68as + 1203 + 84y + 44ais + 62a.

8.10.8. The Dynkin diagram (8.84 d).
The Nichols algebra B, is generated by (z;);cr, with defining relations
g q158 y €ls g

r112 =0; @21 =0; o3 =0; w;;=0,i<j,q;=1;

(8.88) w332 =0; @334 =0; 2443 =0; Zaa5 = 0;
. —0- 2_ 3 _

Ta46 = 0; 2664 = O; Ty = 0; T, = 0, ae Oj_
Here 0% ={1,12,2,123,23,3,1234,234, 34,4, 1223343526, 1223243526, 1223242526, 123243526,
123242526, 23243526, 23242526, 12342526, 2342526, 342526, 12234445262, 12233435262,

12232435262, 1232435262, 12346, 232435262, 2346, 346, 46, 6} and the degree of the integral
is

g = 36 + 68as + 963 + 12004 + 785 + 620.
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8.10.9. The Dynkin diagram (8.84 e).
The Nichols algebra By is generated by (2;);er; with defining relations

w332 =0; w334 =0; 2336 =0; ;5 =0, ¢ <, gy = 1;
(8.89) Te63 = 0; 443 = 0; 2445 = 0; [2(13), T2]e = 0;

Ts54 = 0 x%zO; x%zO; xi:(),oze(’)i.
Here 01 ={12,123,3,1234, 34,4, 12345, 345,45, 5, 123334256, 22334256, 22324256, 2232456,
223246,1233%435262, 1233443562, 12324256, 1233442562, 1232456, 1233342562, 123456, 123246,
12346, 1236, 223342562, 3456, 346, 36, 6} and the degree of the integral is

a = 361 + 90aq + 1203 + 84y + 445 + 6206.
8.10.10. The Dynkin diagram (8.84 f).
The Nichols algebra By is generated by (x;);er; with defining relations
To21 = 0; o3 =0; w332 =0; 255 =0,i<j,q; =1
(8.90) w334 = 0; @443 =0; xa45 = 0; 2336 = 0;
Tee3=0; 27=0; a5540=0; 25 =0, a € Oi.

Here 09 = {2,23,3,234,34,4,2345, 345,45, 5,1223334256, 1222334256, 1222324256,
122232456, 12223246, 122334435262, 12233443562, 2324256, 12233442562, 232456, 12233342562,
23456, 12223342562, 3456, 23246, 2346, 236, 346, 36,6} and the degree of the integral is

a = 56aq + 90as + 1203 + 84ay + 44ai5 + 62a.

8.10.11. The Dynkin diagram (8.84 g).
The Nichols algebra By is generated by (x;);er; with defining relations

r112 = 05 [(24),73]e = 05 @550 = 0; 55 =0, 1 <, gij =15
(8.91) Too1 = 0; [36,23)c = 0; 23 =0; [v546, 24]c = 0;
. To3 =0; [r(35),a4le=0; x7=0; a0 =0, a€0Ol;
23 =0; 2316 = a6C[T36, Tale + g3a(1 — ()waw3e = 0.

Here 0% ={1,12,2,1234, 234,34, 12345, 2345, 345, 5, 122334256, 12232456, 1223246, 1232456,
123246, 232456, 23246, 12233435262, 1223343562, 1234256, 234256, 34256, 1223242562, 123242562,
1236, 23242562, 236, 456, 36,46} and the degree of the integral is

g = 36 + 68ao + 963 + 84y + 44ais + 620.
8.10.12. The associated Lie algebra. This is of type Ds.
8.11. Type g(6,6). Here § =6, ( € G5. Let

2 -1 0 0 0 0

-1 2 -1 0 0 0
1o -1 2 -1 0 O ox6. )
A=10o o0 21 2 o | €FT p=0LLLL-L1)EG,

0 0 0 0 0 1

0 0 0o -2 -1 2
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Let g(6,6) = g(A,p), the contragredient Lie superalgebra corresponding
to (A,p). We know [BGL] that sdim g(6,6) = 78|64. There are 20 other
pairs of matrices and parity vectors for which the associated contragredient
Lie superalgebra is isomorphic to g(6,6). We describe now the root system
g(6,6) of g(6,6), see [AA2] for details.

8.11.1. Basic datum and root system. Below, Ag, Dg, Eg, EéQ)/\, F4(1)/\, CEg
37" and 977 are numbered as in (4.2), (4.23), (4.28), (3.19), (3.18), (3.16) and
(3.11), respectively. The basic datum and the bundle of Cartan matrices are
described by the following diagram:

DA
sse(F\Y) 5 sse(As) 6 3T
° e ——— e
al a2 ar
4
Dg 1 D 2 D¢ 3 Dg
° ° ° °
aie aiq a2 ail
5 5 5 5
Eg Deg 1 D¢ 2 D¢ 3 CFEg
° ° ° ° °
a0 Nm air ais a3
1 3 4 4
4
Eg 3 2T 1 2T 2 2T
) ° ° °
az1 as ag aio
2 6 6 6
2)n
Es s456(Ae) 1 sas6(A6) 2 sa56(As) 3 sa56(Eg ")
° ° ° ° °
a1 as a4 as ae

Using the notation (3.1), the bundle of root sets is the following:

AP =s56({1,12,2,123,23,3,1234, 234, 34, 4,12345,1223%4%5%,123%4?57, 123457, 123457, 2345,
2324252234252, 23452, 345, 34252, 3452, 45, 452, 5, 1223344556, 1223344546, 1223343546
1223243546, 12324356, 23243546, 1223343536, 1223243536, 123243536, 23243536,
122334455562, 12334455562, 1223242536, 1223242526, 1223445562, 123242536,
123242526, 23242536, 23242526, 12233455562, 12233445662, 12233445562, 123425%6,
2342536, 342536, 12233445462, 12342526, 2342526, 342526, 12233435462, 12232435462
123243562, 1234526, 123456, 232435462, 234526, 23456, 34526, 3456, 4526, 456, 56, 6}),

A =s56({1,12,2,123,23,3,1234, 234, 34,4, 12345, 2345, 345, 45, 5, 12%3%4%5%6, 123%4%5%6
12342526, 1234526, 123456, 12233445462, 12233435462, 12233435362, 23242526
1223243562, 12232435%62, 2342526, 12232425362, 234526, 12232425262, 23456,
122334455664, 12334455564, 12233445%63, 12233445462, 12233435463, 12232435463,
1232435462, 1232435362, 1232425362, 123425362, 1232425262, 123425262,
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12345262, 12234455564, 12233455564, 12233445%6%, 12233445%6%, 123243563,
232435462, 232435362, 342526, 232425362, 34526, 232425262, 3456, 232435463,
23425362, 23425262, 2345262, 3425362, 3425262, 345262, 4526, 456, 45262, 56, 6}),

AP =s456({1,12,2,123,23,3,1234,234, 34,4, 12%3%4%5,123%4%5, 123475, 12345, 237475, 234%5
2345, 32425, 3425, 345,45, 5, 1223445536, 1223444536, 1223344536, 123344536, 23344536,
1223444526, 1223344526, 123344526, 23344526, 1223543526, 1223243526, 12233°4%5462
12335465462, 1223242526, 122324256, 123343526, 23343526, 12235455462, 123243526,
123242526, 12324256, 12234455462, 12234455462, 122344%5%62, 23243526, 3243526,
12234445362, 23242526, 3242526, 2324256, 324256, 12233445362, 1232445362, 12342526,
1234256, 123456, 233415362, 2342526, 234256, 23456, 342526, 34256, 3456, 456, 56, 6}),

At =s456({1,12,2,123,23,3,1234,234, 34,4, 172232425, 12232425, 123%4%5, 123475, 12345, 23%4%5,
23425,2345,3425, 345,45, 5, 12233445536, 12233444536, 12233344536, 12223344536,
122334%536,12233444526, 12233344526, 1222334526, 1223344526, 12233343526,
12223343526, 1223343526, 132435465462, 12223243526, 12223242526, 1222324256,
122435455462 1223243526, 1223242526, 122324256, 122335455462, 122334465462,
122334455462, 122334455362, 123243526, 23243526, 122334445362, 123242526, 23242526,
12324256, 2324256, 122333445362, 122233445362, 12233445362, 12342526, 1234256,

123456, 2342526, 234256, 23456, 342526, 34256, 3456, 456, 56, 6}),

A =s456({1,12,2,123,23,3,1234,234, 34, 4,12234%5,1234%5,1234%5, 12345, 232475, 23%4%5,
23425,2345, 3425, 345,45, 5, 1233445536, 1233444536, 1233344536, 1223344536, 223344536,
1233%4%526,123334%526, 1223344526, 223344526, 1233343526, 1223343526, 223343526
122435455462, 12435465462, 1223243526, 1223242526, 122324256, 223243526, 223242526,
22324256,1233%465%62, 12334455462, 123344°5%62, 12334455362, 123243526, 23243526
12334445362, 123242526, 23242526, 12324256, 2324256, 12333445362, 12233445362, 12342526,
1234256, 123456, 2233445362, 2342526, 234256, 23456, 342526, 34256, 3456, 456, 56, 6}),

AL =s456({1,12,2,123,23,3,1234,234, 34,4, 1223425, 1232425, 123425, 12345, 232425, 234%5, 2345
3425,345, 425,45, 5,1223345536, 1223344536, 1223244536, 12324536, 23244536, 1223344526
1223244526, 123244526, 23244526, 1223343526, 1223243526, 122334465462, 12334455462
1223242526, 122324256, 123243526, 12234455462, 123242526, 12324256, 23243526, 23242526,
2324256, 12233455462, 12233455462, 12233455362, 12343526, 2343526, 343526, 12233445362
12342526, 2342526, 342526, 12232445362, 1232445362, 1234256, 123456, 232445362, 234256,
23456, 34256, 3456, 42526, 4256, 456, 56, 6}),

AT ={1,12,2,123,23,3,1234,234, 34,4, 12345, 2345, 345,45, 5, 1223343576, 1223243576
1223242526, 122324256, 123243526, 123242526, 12324256, 23243526, 23242526, 2324256,
12233445462, 12233445362, 12342526, 2342526, 342526, 12233435362, 1234526, 234526, 34526
122334455463, 12334455463, 12234455463, 12233445262, 12233435262, 12232435362,
1232435362, 1234256, 123456, 12233455462, 12233445463, 232435362, 4526, 12232435262,
234256, 1232435262, 34256, 12233445363, 12232425262, 1232425262, 123425262, 12346,
232435262, 23456, 232425262, 23425262, 2346, 3456, 3425262, 346, 456, 46, 56, 6},
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AT ={1,12,2,123,23,3,1234,234, 34, 4,12345, 2345, 345, 45, 5, 12°3°4°56, 12°3°4°56, 12°3°4°56,
12232456, 1223246, 22334256, 22324256, 2232456, 223246, 12334445262, 12334435262,
1233443562, 12324256, 2324256, 12333435262, 1233343562, 1234256, 234256, 12243°4%5263,
1243%445263, 1233442562, 1233342562, 12233435262, 1232456, 123456, 1223343562, 123246,
12346, 12335445263, 12334445263, 2233435262, 223243562, 34256, 1223342562, 232456,
23246,1233%435263, 1233443562, 1223242562, 123242562, 1236, 223342562, 23456, 3456,
223242562, 23242562, 2346, 236, 456, 346, 36, 46, 6},

A% ={1,12,2,123,23,3,1234,234, 34,4, 12345, 2345, 345,45, 5, 1723334256, 1222334256,

1222324256, 122232456, 12223246, 122334256, 122324256, 12232456, 1223246, 122334445262
122334435262 12233443562, 12324256, 2324256, 122333435262, 12233343562, 1234256,

234256, 132435445263 122435445263, 12233442562, 12233342562, 122233435262,

12223343562, 12233435262, 1232456, 123456, 122335445263, 122334445262, 1223343562,

34256, 232456, 23456, 122334435263, 12223342562, 1223342562, 3456, 12223242562, 1223242562,
456,12233%43563, 123242562, 123246, 12346, 1236, 23242562, 23246, 2346, 236, 346, 36, 46, 6},

A0 ={1,12,2,123,23,3,1234, 234, 34, 4,12345, 2345, 345, 45, 5, 1223%4°56, 12232456, 12232456,
1223246, 12334256, 2334256, 12324256, 1232456, 123246, 12234445262 1234256, 12234435262,
1223443562, 2324256, 324256, 122335445263, 12233435262, 1233435262, 123456, 1223442562,
232456, 32456, 1233%445263 12235445263, 1223343562, 1223342562, 23246, 233435262, 234256
23456, 12234445263, 123343562, 23343562, 34256, 12234435263, 1223242562, 123342562, 23342562,
3456,1223%43563, 123242562, 12346, 1236, 3246, 23242562, 2346, 236, 3242562, 456, 346, 36, 46, 6},

AP ={1,12,2,123,23,3,1234, 234, 34, 4,12345, 2345, 345, 45, 5, 1223%4%5%6, 1223%4°5%6, 1223%4°576,
1223242%56,1232435%6, 123242526, 12324256, 23243526, 23242526, 2324256, 12233455462,
12233455362, 12343526, 2343526, 343526, 1223345362, 12342526, 2342526, 342526
122334465463 12234465463, 1223446563, 12233445262, 12233435262 12232445362, 1232445362,
1234256, 123456, 12233455463, 12233455463, 232445362, 42526, 12232445262, 1232445262,
12232435262, 234256, 12233455363, 1232435262, 123435262, 12346, 23456, 232445262, 232435262,
234352622346, 34256, 4256, 3435262, 3456, 346, 456, 46, 6},

AN ={1,12,2,123,23,3,1234, 234, 34, 4,12345, 2345, 345, 45, 5, 1223%4%5%6, 1223%4%5%6, 1223242576,
122324256, 123343526, 23343526, 123243526, 123242526, 12324256, 12234455462, 12234455362
23243526, 3243526, 12342526, 1234256, 12233%455463, 12234445362, 12233445362, 1233445362
123456, 12234445262, 12233445262, 1233445262, 12346, 12335465463, 1223%455463,
12233435262, 23242526, 2324256, 12234465463, 12232435262, 2342526, 234256, 12234455462,
12234455363, 1233435262, 1232435262, 2334%5362, 3242526, 342526, 23456, 233445262,
233435262, 232435262, 2346, 324256, 34256, 32435262, 3456, 346, 456, 46, 6},

AN ={1,12,2,123,23,3,1234, 234, 34, 4,12345, 2345, 345, 45, 5, 12237456, 12232456, 122324256,
12232426, 12324356, 12324256, 1232426, 2324356, 2324256, 232426, 12233455262, 1223%4%562
1234356, 234356, 34356, 12233445262, 1223344562, 122332465263, 12334455263, 12234465263
1223343562, 1234256, 12232445262, 1232445262, 123456, 123426, 122324%562, 123244562, 12346,
12233465263, 1223243562, 234256, 23426, 12233455262, 1223345562, 123243562, 12343562, 232445262
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23456, 23244562, 34256, 4256, 23243562, 2343562, 2346, 3426, 426, 343562, 3456, 346, 456, 46, 6},

AP ={1,12,2,123,23,3,1234, 234, 34, 4,12345, 2345, 345, 45, 5, 1°2°3%4°5%6, 1°223%4°576,
12223243526, 12223242526, 1222324256, 1223343526, 1223243526, 1223242526, 122324256,
122334455462, 122334455362, 123243526, 23243526, 122334445362, 123242526, 23242526,
122333445362, 12342526, 2342526, 13243%465463, 122435465463, 122334445262, 122333445262,
122333435262, 122233445362, 12233445362, 122335465463, 122334455463, 122334455463,
342526,12324256, 122233445262, 122233435262, 2324256, 12232445262, 12233435262,
122334455363 1234256, 234256, 34256, 122232435262, 12232435262, 1232435262, 123456,

12346, 232435262, 23456, 2346, 3456, 346, 456, 46, 6}

A5 ={1,12,2,123,23,3,1234, 234, 34, 4,12345, 2345, 345, 45, 5, 12°3%4°56, 12°3%4°56, 12°3°4°56,
12232426, 12324356, 2334356, 12324356, 12324256, 1232426, 12234455262, 1223445562, 2324356,
324356, 1234256, 123426, 122335455263, 12234445262, 12233445262, 1233445262, 123456,
1223%4%562, 1223344562, 123344562, 12346, 12335465263, 12235465263, 1223343562,

2324256, 232426, 12234455263, 1223243562, 234256, 23426, 12234455263, 1223445563,
123343562, 123243562, 233445262, 23456, 23344562, 324256, 34256, 23343562, 23243562,
2346, 32426, 3426, 3243562, 3456, 346, 456, 46, 6},

A6 ={1,12,2,123,23,3,1234, 234, 34, 4,12345, 2345, 345, 45, 5, 12°3%4°5%6, 12°3%4°5%6, 12°3%4°576,
1223242526, 122324256, 223343526, 223243526, 223242526, 22324256, 123344°5%62, 12334455362
123243526, 23243526, 12334445362, 123242526, 23242526, 12333445362, 12342526, 2342526,
122435465463 1243%465463, 12334445262, 12333445262, 12333435262, 12233445362, 12324256,
1234256, 123456, 1233%455%63 12234465463, 12334455463, 2233445362, 342526, 12233445262,
12233435262, 2324256, 12334455363, 12232435262, 1232435262, 12346, 2233445262, 2233435262,
234256, 34256, 2232435262, 232435262, 23456, 2346, 3456, 346, 456, 46, 6},

AT ={1,12,2,123,23,3,1234, 234, 34, 4,12345, 2345, 345, 45, 5, 1723334756, 172237456, 1722324756,
1222324256, 122232426,122334%56, 122324356, 122324256, 12232426, 122334455262, 12233445562,
12324356, 2324356, 122334445262, 122333445262, 12233444562, 12324256, 2324256, 13243%455263,
122435455263 12233344562, 12233343562, 1232426, 232426, 122335465263, 122233445262,
12223344562, 12223343562, 12232445262, 1223344562, 1223343562, 122334465263, 122334455263,
1234256, 234256, 34256, 12233445563, 123426, 23426, 3426, 12223243562, 1223243562, 123243562,
123456, 12346, 23243562, 23456, 2346, 3456, 346, 456, 46, 6},

AL ={1,12,2,123,23,3,1234, 234, 34, 4,12345, 2345, 345, 45, 5, 1723334256, 1722374256, 1722324256,
122232456, 12223246, 123334256, 122334256, 12243%4%5262, 12243%435262, 12243%43562,
1223242%56,12243%435262, 12243443562, 22324256, 12324256, 122334435262, 22334256,
12233443562, 2324256, 132535445263, 12334435262, 12232456, 1232456, 123456, 122536445263,
122435444263 122435445263, 1233443562, 12243442562, 2232456, 12233442562, 12233342562,
1223246, 122435434263, 1233442562, 232456, 12223342562, 123246, 12243543563, 1233342562,
1223342562, 12346, 1236, 223246, 23246, 223342562, 23456, 2346, 236, 3456, 346, 36,6},

A ={1,12,2,123,23,3,1234,234, 34, 4,12345, 2345, 345, 45, 5, 1233%4%56, 12237456, 122324756,
122324256, 12232426, 22324356, 22324356, 22324256, 2232426, 12334455262, 1233445562,
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12324356, 2324356, 12334445262, 12333445262, 1233444562, 12324256, 2324256,
122435465263, 12435465263 123334562, 1233343562, 1232426, 232426, 1233°4%5263,
12233445262, 1223344562, 1223343562, 2233445262, 223344562, 223343562, 12334455263,
12334455263, 1234256, 234256, 34256, 123344°56°, 123426, 23426, 3426, 1223243562, 12324356
123456, 12346, 223343562, 23243562, 23456, 2346, 3456, 346, 456, 46, 6},

={1,12,2,123, 23, 3,1234, 234, 34, 4, 12345, 2345, 345, 45, 5, 1223334256, 1222334256, 1222324256,
122232456,12223246, 122334256, 122324256, 12232456, 1223246, 122335445262, 122335435262,
12233543562, 12334256, 2334256, 122334435262, 12233443562, 12324256, 2324256, 132435445263,
122436444263 12233442562, 12233342562, 122234435262, 12223443562, 12234435262, 1232456,
123456, 122335445263, 122335445263, 1223443562, 324256, 232456, 23456, 12233%435263,
12223442562, 1223442562, 32456, 12223342562, 1223342562, 3456, 12233543563, 123342562,
123246, 12346, 1236, 23342562, 23246, 2346, 236, 3246, 346, 36, 6},

={1,12,2,123,23,3,1234,234, 34, 4, 12345, 2345, 345, 45, 5, 123334256, 122334256, 122324256,
12232456, 1223246, 22334256, 22324256, 2232456, 223246, 12335445262, 1233%435262,
1233543562, 12334256, 2334256, 12334435262, 1233443562, 12324256, 2324256, 122435444263,
12436445263, 1233442562, 1233342562, 12234435262, 1232456, 123456, 1223443562, 123246,
12346, 12335445263, 1233%445263, 2234435262, 223443562, 324256, 1223442562,
1223342562, 12335435263, 1233%43563, 123342562, 1236, 232456, 223442562, 32456, 23456,
223342562, 3456, 23342562, 23246, 2346, 236, 3246, 346, 36, 6}.

2. Weyl groupoid. The isotropy group at a; € X is

Wiar) = (51,657,650, 640, 66", Sp - S6545653525453555354526356545655) = W (Bs).

8.11.

3. Incarnation. We set the matrices (q¥);er,,, from left to right and

from up to down:

(8.92)
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ -1 ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ -1 ¢ —
(@] [e] (e] (@] (@] (e] (@] [e] (@] (] (@]
¢ ¢ -1 ¢ -1 ¢ -1 ¢ ¢ ¢ ¢ —-1¢ -1¢ ¢ ¢ ~-1¢ ¢ ¢ ¢
O—— O —— (@] oO——Oo0 O O —O0—— O —— O O
-1 ¢ ¢ ¢ ¢ ¢ -1¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ -1¢ ¢ C ¢ C ¢
(@] (@] (@] (@] (@] o oO—O0— OO0 ——m 0 —0 ——O0
—1 -1
O O
BN N
S ST S S S ST S S S S S S
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-1 ¢ -1 ¢ -1 ¢ =1 ¢ ¢ ¢ -1 ¢ ¢ ¢ -1 ¢ ¢
O O O @] (o] O O [e] o
¢ ¢
(] (@]
¢ ¢
¢ ¢ ¢ ¢ -1 ¢ -1 ¢ -1 ¢ ¢ -1 ¢ -1 ¢ ¢ ¢ -1
(@] (@] (@] (] (@] (@] (@] (@] (@] (@]
¢ ¢
(@] ]
¢ - - Z,
¢ ¢
(@] (@]
¢ ¢
¢ ¢ -1 ¢ -1 ¢ -1 ¢ -1 -1 ¢ ¢ ¢ ¢ ¢ ¢ ¢ -1
O O O O O (@] O (@] O O
¢ ¢
[e] [e]
¢ ¢

¢ ¢
(] (@]
- - 7? ¢

[ S S S S U S LS S S NS U |
¢
O
¢

-1 ¢ -1 ¢ -1 ¢ ¢ ¢ ¢

(] (@] (@] (@] (@]

Now, this is the incarnation:
a; > s56(q), i € Loy a; = sase(q'), i € Ise; ;> q7, i € Ir 1.

8.11.4. PBW-basis and dimension. Notice that the roots in each AY', i € Ipy,
are ordered from left to right, justifying the notation £, ..., f¢s.
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The root vectors xg, are described as in Remark 2.14. Thus
nes nz, .ni
{:vﬁ% cxprag [0 <ny < N/Bk}’
is a PBW-basis of By. Hence dim B; = 232336
8.11.5. The Dynkin diagram (8.92 a).
The Nichols algebra By is generated by (z;);er; with defining relations
(8.93)
z112 = 0; 2921 = 0; a3 =0; z45=0, i <j, qj=1;
(25543, T5a]e = 05 @332 = 0; @334 = 05 [[T(46), T5)e, T5]c = 0;
2 . 3 _
T443 = 0; T445 = O; 556 — 0; Tg = 07 T, = 0, [ RS Oj_
Here 0% ={1,12,2,123,23,3,1234,234, 34,4, 12345, 122324252, 12324252, 1234?52, 123452,
2345,2324252 234252 23452, 345, 34252 3452, 45,452, 5, 122334455662 122334455662,

12234455662, 12233455662, 12233445662, 12233445562, 12233445462, 12233435462, 12232435462,
1232435462, 232435462} and the degree of the integral is

g = 56ap + 108cg 4+ 156cvg + 200c4 + 2405 + T60.
8.11.6. The Dynkin diagram (8.92 b).
The Nichols algebra By is generated by (z;);er, with defining relations
r112 =0; wo21 =0; wy45=0; w5 =0, i <7, q; =1;
(8.94) X223 =0; w332 =0; a2 =0; [[ze5,T654]c; T5]c = O;
r334 = 0; xqa3 = 0; 33220; xizO, ae(’)i.

Here 0% ={1,12,2,123,23,3,1234,234, 34,4, 123456, 12233445462, 12233435162, 1223243562,
12232425262 23456, 122334455664 12334455664 12233445563 1232435462, 1232425262,
123425262, 12345262, 12234455664, 12233455664, 12233445664, 232435462, 232425262, 3456,
23425262, 2345262, 3425262, 345262, 456, 45262, 56} and the degree of the integral is

a1 = b6ag + 108ais 4+ 1563 + 200a4 + 240a5 + 1660.

8.11.7. The Dynkin diagram (8.92 c).
The Nichols algebra By is generated by (z;);er; with defining relations

. —_0- 2 _ (- _ . s~ .
z112 = 0; 550 =0; 25=0; x;;=0,1<7,qj=1;
. —0- 2 _ (- —0-
(8.95) [z(13),T2]le = 0; w556 = 0; 23 =0; [[T34, 7(35)]c, Ta]c = 0;
—_0N- —_N- 2 _ (. 3 _ q
[l’(24),x3]c =0; x5 =0; 2;=0; z, =0, a € OJr.
Here 0% ={1,123,23,34,12232425,1234?5, 23425, 32425, 345, 5, 1223144536, 123341536, 23341536,
1223444526, 123344526, 23344526, 1223343526, 122335465462, 12335465462, 1223242526,
122324256,123243526, 12234465462, 23243526, 12234445362, 3242526, 324256, 1233445362,
12342526, 1234256, 233445362, 2342526, 234256, 3456, 56,6} and the degree of the integral
is
a = 561 + 108z + 206a3 4 2520y + 172a5 + 88a.
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8.11.8. The Dynkin diagram (8.92 d).
The Nichols algebra By is generated by (2;);er; with defining relations

x332 = 0; 2331 =05 x5 =0, 1<7, 5 =1;

(5.96) rs556 = 0;  xee5 = 0 [[[z(25), T4les T3]y Ta]e = 05

: 2 . —_0N- —0N-

7y =0; [x(IS)a$2]c =0; [[[r6543, Tale, T5)e, Ta]e = 0;
T554 = 0; x%zO; :):izO; xzzo,ae(’)i.
Here 01 ={12,123,3,234,1232425,123425, 2232425, 2345, 3425, 5, 1233141536, 1233341536, 223344536,
1233444526, 1233344526, 223344526, 1223543526, 122435465462, 1223243526, 223242526, 22324256,
12335465462, 12334465462, 23243526, 12334445362, 123242526, 12324256, 12333445362,
12342526, 1234256, 2233445362, 23456, 342526, 34256, 56,6} and the degree of the integral
18

g = 56a; + 156ce + 2063 + 252a4 + 172a5 + 88a.

8.11.9. The Dynkin diagram (8.92 e).
The Nichols algebra By is generated by (z;);er; with defining relations
X923 =0; w330 =0; x45=0, 1<, qj=1
z334 = 0; w550 =05 [[[w(25), Talc, T3]e, Ta]e = 0;
(8.97) . . .
w556 = 03 wee5 = 05 [[[6543, Tale, T5]e, Ta]e = 0;
To91 = 0; x%:O; :BZ:O; xi:(),ae(’)i.
Here 01 ={2,23,3,1234,122232425, 12345, 23245, 23425, 3425, 5, 12233444536, 12233344536,
12223344536, 12233444526, 12233344526, 12223344526, 1223343526, 12223242526, 1222324256,
122435465462, 1223243526, 122335465462, 122334455462, 123243526, 122334445362, 23242526,
2324256, 122333445362, 122233445362, 123456, 2342526, 234256, 342526, 34256, 56, 6} and the de-
gree of the integral is

g = 102aq + 156 + 2063 + 252ay + 172a5 4+ 88ag.

8.11.10. The Dynkin diagram (8.92 f).
The Nichols algebra By is generated by (z;);er; with defining relations

112 = 05 T921 = 0; Tij = 0, 7 <y, aij =1;
soy | TP0 mw =0 =0
' x551 = 0; x556 = 0;  [Ta456, Tas]c = 0;

ZTegs = 0; [1‘(24),1‘3]0 = 0; J}g = 0; xi =0, a € Oi

Here 09 = {1,12,2,4,1223%425,1232425, 232425, 425,45, 5, 1223244536, 123241536, 23244576,
1223244526, 12324526, 23244526, 1223243526, 122334465462, 12334455462, 1223242526,
122324256, 123243526, 12234455462, 123242526, 12324256, 23243526, 23242526, 2324256,
12232445362, 1232415362, 232415362, 42526, 4256, 456, 56,6} and the degree of the integral
1S

g = 56a + 108ce 4+ 156cg 4+ 252a4 + 172a5 + 88a.
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8.11.11. The Dynkin diagram (8.92 g).
The Nichols algebra By is generated by (2;);er; with defining relations

112 =0; @221 =0; @23 =0; x5 =0, i <j, q; =1;
(5.99) w554 = 0; @332 = 0; w334 = 0;  [T346, T4)c = 0;
8.99

_ . 2 _ . 2 _ 0. 3 _ q.

x556 = 0;  x3=0; 25=0; z, =0, a€O;
[2(35), Tale = 0; 6y = q56C[Ta6, T5]e + qas(1 — () 5246
Here 01 ={1,12,2,123,23,3,5,12233435%6, 1223243526, 123243526, 23243526, 12233445462,
12233445362, 1234526, 234526, 34526, 122334455463, 12334455463, 12234455463, 12234445262,
123456, 12233455463, 4526, 12232425262, 1232425262, 123425262, 12346, 23456, 232425262,
23425262, 2346, 3456, 3425262, 346, 456,46} and the degree of the integral is

g = Hb6ap + 108 4 1563 4+ 20004 + 1665 + 128a.

8.11.12. The Dynkin diagram (8.92 h). The Nichols algebra B is generated
by (z;)ie1, with defining relations
xo21 =05 223 =0;  [s46,74]lc =0; x5 =0, i <, ;=15
. 2 _ 0. —0- —0-

(8.100) T554 = 0; 27 =0; [T24),73]c = 05 [w236, T3] = 0;

’ 2 _n. 2 _ 0. —_0N- 3 _ q.

r3=0; 73=0; [v35),74]c=0; z,=0, a € O;

2 . _ T
x5 =0; 2346 = qa6C[T36, Ta)e + q34(1 — () T436.
Here 09 = {2,123,234, 34,2345, 345, 5,1223334256, 1222334256, 122232456, 12223246, 122324256,
122334445262 ,12324256, 122333435262, 12233343562, 234256, 122435445263, 12233442562,
122233435262, 12223343562, 123456, 122335445263, 34256, 232456, 122334435263, 1223342562,
12223242562, 456, 12233143563, 12346, 23242562, 23246, 236, 36,46} and the degree of the in-
tegral is

g = 102aq + 156 + 2063 + 172a4 + 88as + 128a.

8.11.13. The Dynkin diagram (8.92 i).
The Nichols algebra By is generated by (x;);er; with defining relations

Tssa =0; 2t =0; [vag)a2]le =0; i =0, i <j, Gij = 1;
23 =0; 23=0; [2@a)a3]e=0; [236,23]c = 0;

8.101
( ) 33‘421 = 0; l’gj =0 [x(35)a$4]c =0 :Ez =0, a€ O] ;

(2546, Ta)e = 0; 346 = qu6C[T36, Tale + q34(1 — () Ta236.

Here 01 ={12,23,1234, 34,12345,345, 5, 123334256, 122324256, 22334256, 2232456, 223246,
12334445262, 2324256, 12333435262, 1233343562, 1234256, 12243%445263 1233442562, 1232456,
123246, 12335445263, 2233435262, 223343562, 34256, 1223342562, 12334435263 1233443563,
123242562, 1236, 23456, 223242562, 2346, 456, 36,46} and the degree of the integral is

a = 56a + 156ce + 206 + 17204 + 88as + 128a.
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8.11.14. The Dynkin diagram (8.92 j).
The Nichols algebra By is generated by (2;);er; with defining relations

z112 =0; w332 =0; @334 = 0; zi; =0, 1 < j, ¢ij = 1;
(8.102) w336 = 0; 23 =0; [z(3)22)e =0y [25), 2a]e = 0;
. T55a=0; w3 =0; [zsagwale=0; z) =0, a € O%;

23 =0; 2316 = a6C[T36, Tale + g3a(1 — () w436

Here 0% = {1,3,1234,234,12345,2345, 5, 12232456, 1223246, 123%4256, 23%4256, 12324256,
12234445262, 1234256, 2324256, 122335445262, 1233435262, 1223442562, 32456, 12335445263,
1223342562, 233435262, 234256, 123343562, 23343562, 12234435263, 1223242562, 3456,

1223443563, 1236, 3246, 236, 3242562, 456, 346,46} and the degree of the integral is

a1 = 56y + 108 4 2063 + 17204 + 885 + 128
8.11.15. The Dynkin diagram (8.92 k).
The Nichols algebra By is generated by (z;);er; with defining relations

r112 =0; 221 =0;  [x346,24]lc =0; x5 =0, i <, ¢ij =15
(8.103) w223 =0; xe6a = 0; [T(24),23]c = 05 [[54, T546]c, Ta]c = 0;
2 _ Q. 2 __n. —_0N- 2 _ 0. 3 _ q
r3=0; 25=0; [v35,74)c=0; 25=0; x,=0, a€O.
Here OF ={1,12,2,1234,234, 34, 45,1223343526, 1223242526, 12324%526, 23242526, 122334°562,
12343526, 2343526, 343526, 12233445362, 122334465463, 12334465463, 12234465463, 12233435262,

1234256, 12233455463, 42526, 12232445262, 1232445262, 234256, 123435262, 12346, 232445262,
23435262, 2346, 34256, 3435262, 346, 456,6} and the degree of the integral is

a4 = 56aq + 108as + 1563 + 25204 + 1665 + 128a.

8.11.16. The Dynkin diagram (8.92 1).
The Nichols algebra By is generated by (z;);er; with defining relations

z112 =0; 2443 =0; [2(13),22]c = 0; x5 =0, i <j, ¢;j = 1;

(8.104)  7a45 =0; w416 =0; w664 = 0; (224, 3]c = 0;
x%:(); a:?),:O; $g:0; aczzo,ae(’)i.

Here 01 = {1,123,23,1234, 234, 4, 345, 1223243526, 1223242526, 123343526, 23343526, 12324256,
12234455462, 3243526, 12342526, 122335465463 12233445362, 12234445262, 1233445262, 12346,
12335465463 2324256, 12234465463, 12232435262, 2342526, 12234455463, 1233435262, 3242526,
233445262, 233435262, 2346, 34256, 32435262, 3456,46,6} and the degree of the integral is

1 = 56a 4+ 108ais 4+ 2063 4+ 25204 + 1665 + 128as.
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8.11.17. The Dynkin diagram (8.92 m).
The Nichols algebra By is generated by (2;);er; with defining relations
[T(24), T3]e = 0; @a21 = 0; @223 =0; w55 =0, i <j, gij = 1;
za43 = 0; w112 = 0;  [[2346, Tae, T4]e = 0;
za45 = 0; we6a = 0;  [[w546, Tae, T4]e = 0;

a:%zO; x%z(); xizo,ae(’)i.

(8.105)

Here 0% ={1,12,2,4,12345,2345, 345, 122334356, 12232426, 1232426, 232426, 1223345562, 1234356,
234356, 34356, 1223344562, 122334465263, 12334465263, 12234465263, 1223343562, 1234256,
12232445262, 1232445262, 123456, 234256, 1223345563, 12343562, 232445262, 23456, 34256,
2343562, 426, 343562, 3456, 46,6} and the degree of the integral is

a = 56ag + 108ag 4 1563 + 252a4 4 88as + 12806.

8.11.18. The Dynkin diagram (8.92 n).
The Nichols algebra By is generated by (z;);er; with defining relations
. —_0- 2 _ 0. _ : s .
w332 =0; w334 =0; 27=0; x;5=0, 1 <7, qij =1
2
(8.106) T443 = 0; T445 = 0; Ty = 0; [x(lg), :ZZQ]C = 0;
. —_0- 2 _ 0. 3 _
37446:07 ~T664—0, 1’5—0, :::a—O, 04601.
Here 0% ={12,123,3,1234,34,4,2345, 1233343526, 122324256, 223343526, 223243526, 223242526,
12334455462, 123243526, 123242526, 12342526, 122435465463, 12334445262, 12333445262,
12333435262, 12233445362, 12335465463, 12334465463, 12334455463, 342526, 2324256,
1232435262, 12346, 2233445262, 2233435262, 234256, 2232435262, 23456, 346, 46,6} and the de-
gree of the integral is

a = 56a1 + 156 4 2063 + 2520 + 16605 + 128a.

8.11.19. The Dynkin diagram (8.92 n).
The Nichols algebra By is generated by (x;);er; with defining relations

(8.107)
r112 = 0; [zag)@ale =0; 25 =10; z;;=0, i <j, G;j = L;
zee4 = 0; [£(20),3]e = 0; 23 =0; [[w34, T346]c, Tale = 0;

[T546,74)c = 05 [2(35),4]c = 0; 3=0; 22=0; 22 =0,a ¢ 0.

Here 07 = {1,123,23,34,12345,2345, 45, 12334356, 12324256, 2334356, 32456, 32426, 1223445562,
122324356, 12234445262, 1234445262, 2324256, 122335465263, 123343562, 12232426,

12335465263, 1223344562, 233445262, 23343562, 12234465263, 34256, 1223445563, 123426,

23426, 1223243562, 123456, 3243562, 346, 23456, 456, 6} and the degree of the integral is

g = 56aq + 108as + 206ai3 + 25204 + 88ais + 128a.
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8.11.20. The Dynkin diagram (8.92 o).
The Nichols algebra By is generated by (2;);er; with defining relations

w921 = 0; w3 =0; w332 =0; x5 =0, i <j, g = 1;
(8.108) w334 = 0; 2443 = 0; 2445 = 0; 2446 = 0;

Teea = 0; ar%:(); :c%zO; xizO, ae(’)i.
Here 07 = {2,23,3,234,34,4,12345,12233343526, 12223343526, 12223243526, 12223242526, 122324256,
122334455462, 23243526, 23242526, 2342526, 122435465463, 122334445262, 122333445262,
122333435262, 12233445362, 122335465462, 122334465462, 122334455463, 342526, 12324256,
122233445262, 122233435262, 1234256, 122232435262, 123456, 232435262, 2346, 346, 46,6} and the
degree of the integral is

g = 102a1 + 156ag + 2063 + 2524 + 16605 + 128a.

8.11.21. The Dynkin diagram (8.92 p).
The Nichols algebra By is generated by (z;);er, with defining relations

. —_0N- 2 _ 0. _ ; s~ .
w332 = 0;  [w(13),m2]c = 0; 27 =0; 255 =0, i <j, gij = 1;
. _0N- 2 _ - _0N-
(8.109) w64 = 05 [T(35),74]c = 0; x5 =0; [w564, T4]c = 0;
. 2 _ 0. 2 _ (. 3 _
T334 = 0; $4—0, 335—0, CEa—O,aGOi.
Here 01 ={12,123,3,234, 12345, 345, 45,123334356, 122324256, 22334356, 22324356, 2232426,
1233445562, 12324356, 12334445262, 12333445262, 2324256, 122435465263, 1233343562, 1232426,
12335465263 1223344562, 2233445262, 223343562, 12334465263, 234256, 1233445563, 123426,
3426, 123243562, 123456, 223243562, 2346, 3456, 456, 6} and the degree of the integral is
g = 56a + 156 + 2063 + 25204 + 88ais + 128a.
8.11.22. The Dynkin diagram (8.92 q).
The Nichols algebra By is generated by (z;);er; with defining relations
2112 =0; w332 =0; w334 =0; z55=0, i <j, g = 1;
(8.110) T336 = 0; a3 =0; 445 = 0; [2(13), ¥2]c = 0;
. —0 2 _n .3 _
T4 = 05 xg63 = 0 x5 = 0; Ty = 0, € Oi
Here 0% ={1,3,34,4,345,45,5,1222334256, 1222324256, 122232456, 12223246, 122334256,
122435445262 122435435262, 12243543562, 22334256, 122324256, 122434435262, 12243443562,
22324256, 12232456, 122436445263, 122435445263 12243442562, 2232456, 1223246,
122435435263, 12223342562, 12243543563, 1223342562, 223246, 223342562, 3456, 346, 36,6} and the
degree of the integral is

st = 102a1 + 280 + 252ai3 + 17204 + 885 + 128a.

8.11.23. The Dynkin diagram (8.92 r).
The Nichols algebra By is generated by (z;);er; with defining relations

xo01 = 0;  x334 = 0; w332 = 0; w5 =0, 1 <J, ¢ = 1
(8.111) w223 = 0; [7(35),74]c = 0; 23 =0; [[[z2346, Tale, 23, Tale = 0;

. —0N- 2 _n. 2 _n. 3 _
Tega = 03 [J}546,$4]c = 0; Ty = 0; Ty = 0; Ty = 0, ae Oi
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Here 07 = {2,23,3,1234,2345, 345,45, 1223334356, 1222334356, 122232456, 122232426, 122324256,
12233445562, 2324356, 122334445262, 122333445262, 12324256, 122435465263, 12233343562,
232426,1223354565263, 122233445262, 12223343562, 1223344562, 122334465263, 1234256,

12233145563, 23426, 3426, 12223243562, 12346, 23243562, 23456, 3456, 456, 6} and the degree of
the integral is

= 1027 + 1569 4 2063 + 25204 + 885 + 128a.

8.11.24. The Dynkin diagram (8.92 s).
The Nichols algebra By is generated by (z;);er; with defining relations

To21 = 0; 223 =0 [z(24),23]c =05 55 =0, i < j, gij = 1;

(8.112) 443 =0; 445 =0; [z236,73]c = 05 [[[T5436, T3]e, Ta]e, 23]c = 0;
2 2 3

Ts54 = 0; 2663 = 0; xr] = 0; Xy = 0; Ty = 0, o€ Oj_
Here 07 = {2,123,1234,4,12345,45, 5, 123334256, 122334256, 22324256, 2232456, 223246, 12%3°445262,
12335435262, 1233543562, 12334256, 2324256, 122436445263, 1233342562, 123456, 12346,
12335445263, 2234435262, 223443562, 324256, 1223342562, 12335435263, 1233543563,
123342562, 1236, 232456, 223442562, 32456, 23246, 3246,6} and the degree of the integral
18

a = 56a + 156 + 252a3 + 17204 + 88as + 128ag.

8.11.25. The Dynkin diagram (8.92 t).
The Nichols algebra By is generated by (z;);er; with defining relations
Ta43 = 0; 2445 = 05 [r(13),22]c = 0; x5 =0, i < j, g3 = 1;
(8.113) @554 = 0; w63 = 0; [w(24),3]c = 05 [[[T5436, T3]c, Ta]e, 23]c = 0;
23 =0; 23=0; [vs623c=0; 25=0; a3 =0, acOl.

Here 0% ={12,23,234,4,2345,45,5,1223334256, 1222324256, 122232456, 12223246, 122334256,
122335445262 1292335435262, 12233543562, 2334256, 12324256, 122436445263 12233342562,
122234435262 129223443562, 1232456, 122335445263, 324256, 23456, 122335435263,

12223442562 32456, 1223342562, 12233543563, 123246, 23342562, 2346, 236, 3246, 6} and the de-
gree of the integral is

st = 102a + 156 + 252ai3 + 17204 + 88as + 128a.
8.11.26. The associated Lie algebra. This is of type Bg.

8.12. Type g(8,6). Here § =7, ( € G5. Let

2 1.0 0 0 0 0
-1 2 1.0 0 0 0
01 0 -1 0 0 0

A=]0 0 -1 0 1 0 1|eF™*" p=(1,1,-1,-1,1,1,1) € GI.
00 0 -1 2 10
00 0 0 -1 2 0
00 0 -1 0 0 2
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Let g(8,6) = g(A,p), the contragredient Lie superalgebra corresponding
to (A,p). We know |[BGL] that sdimg(8,6) = 133|56. There are 7 other
pairs of matrices and parity vectors for which the associated contragredient
Lie superalgebra is isomorphic to g(8,6). We describe now the root system
g(8,6) of g(8,6), see [AA2] for details.

8.12.1. Basic datum and root system. Below, A7, D7, E7 and 3T are num-

bered as in (4.2), (4.23), (4.28) and (3.11), respectively. The basic datum

and the bundle of Cartan matrices are described by the following diagram:
E;7 3 E’.7 2 1%7 1 E.7

al a as a4
4]
sse7(A7) 7 sThn 5 Dy ¢ Dy
° ° ° °

as ae ar as

Using the notation (3.1), the bundle of root sets is the following:

A = {1,12,2,123,23,3,1234, 234, 34, 4,12345, 2345, 345, 45, 5, 12°3°4°56, 123°4°56,
1234256, 123456, 12346, 2324256, 234256, 23456, 2346, 34256, 3456, 346, 4256, 456, 46, 6,
122334%53637,122334%52637, 122334452637, 122324452637, 12324452637, 2324452637
122334%52627,122324%52627, 12324452627, 2324452627, 122334352627, 122324352627
12324352627, 2324352627, 1234352627, 234352627, 34352627, 12233445536472 1233446536472,
1223448536472 1223345536472, 1223345536472, 1223345536372, 12233435627
12232435627, 12232425627, 1223242567, 1232435627, 1232425627, 123242567, 123435627
123425627, 12342567, 1234567, 122334°526472, 1223345526372, 1223344526372, 1223244526372,
123244526372, 123467, 232435627, 23435627, 3435627, 232425627, 23425627, 3425627, 425627,
23244526372, 23242567, 2342567, 234567, 23467, 342567, 34567, 3467, 42567, 4567, 467, 67,7},

A ={1,12,2,123,23,3,1234,234, 34, 4,12345, 2345, 345, 45, 5, 122324256, 123°456,
1234256, 123456, 12346, 2324256, 234256, 23456, 2346, 324256, 34256, 3456, 346, 456, 46, 6,
122344553637, 1223%4°52637, 122344452637, 122334452637, 12324452637, 2334452637
122344452627, 122334452627, 12334452627, 2334452627, 122334352627, 12334352627
2334352627, 122324352627, 12324352627, 2324352627, 324352627, 1223354536472,
1233546536472, 1223546536472, 1223445536472, 1223445536472, 1223%4°536372,
12233435627, 12232435627, 12232425627, 1223242567, 1232435627, 1232435627, 1232425627
123242567, 123425627, 12342567, 1234567, 1223445526472, 122344°526372, 1223444526372,
1223344526372, 123344526372, 123467, 233435627, 232435627, 32435627, 232425627,
32425627,234%5627, 3425627, 23344526372, 23242567, 2342567, 234567, 23467, 3242567
342567, 34567, 3467, 4567, 467,67, T},

A ={1,12,2,123,23,3,1234,234, 34, 4,12345, 2345, 345, 45, 5, 122324256, 123%456,
1234256, 123456, 12346, 22324256, 2324256, 234256, 23456, 2346, 34256, 3456, 346, 456,
46,6,1233%4%53637, 123344552637, 123344452637, 123334452637, 122334452637
22334452637,1233%4%52627, 123334452627, 12232452627, 22334452627, 123334352627
122334352627, 22334352627, 122324352627, 22324352627, 12324352627, 2324352627,
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12243546536472 1243545536472, 1233545536472, 1233445536472, 1233445536472,
1233445536372, 12333435627, 12233435627, 12232435627, 12232425627, 1223242567,
1232435627, 1232425627, 123242567, 123425627, 12342567, 1234567, 1233445526472,
1233445526372 1233444526372, 1233344526372, 1223344526372, 123467, 2233435627
2232435627, 232435627, 2232425627, 232425627, 23425627, 3425627, 223341526372,
223242567, 23242567, 2342567, 234567, 23467, 342567, 34567, 3467, 4567, 467,67, 7},

ALY ={1,12,2,123,23,3,1234, 234, 34, 4,12345, 2345, 345, 45, 5, 1°2°3%4%56, 12°3%456,
12324256, 1234256, 123456, 12346, 2324256, 234256, 23456, 2346, 34256, 3456, 346, 456,
46,6,12233%4553637, 1223344552637, 1223344452637, 1223334452637, 1222334452637,
122334452637, 1223344452627, 1223334452627, 1222334452627, 122334452627
1223334352627, 1222334352627, 122334352627, 1222324352627, 122324352627
12324352627, 2324352627, 13243546536472,12243%46536472 1223354536472,
12233446536472 12233445536472,12233445536372, 122333435627, 122233435627,
122232435627,122232425627, 12223242567, 12233435627, 12232435627, 12232425627,
1223242567,12233445526%72,12233445526372, 1232435627, 232435627
1223344526372 1232425627, 232425627, 123242567, 23242567, 1223334456372,
12223344526372 1223344526372, 123425627, 12342567, 1234567, 123467, 23425627
2342567, 234567, 23467, 3425627, 342567, 34567, 3467, 4567, 467, 67,7},

A = s567({1,12,2,123,23,3,1234,234, 34, 4,12345, 2345, 345, 45, 5, 12°3°4°5%6, 123°4°576,
12342526, 1234526, 123456, 23242526, 2342526, 234526, 23456, 342526, 34526, 3456, 4526
456,56, 6,12233445%637, 122334454637, 122334354637, 122324354637, 12324354637
2324354637, 122334454627, 122334354627, 122324354627, 12324354627, 2324354627,
122334353627, 122324353627, 12324353627, 2324353627, 1223345556472, 1233445556472,
122324253627, 122324252627, 12232425267, 1223445556472, 12324253627, 12324252627
1232425267, 2324253627, 2324252627, 232425267, 1223345566472, 1223344556472,
1223344556472, 12233445%6372, 1234253627, 234253627, 34253627, 1223344546372,
1234252627, 234252627, 34252627, 123425267, 23425267, 3425267, 1223343546372,
1223243546372, 123243546372, 123452627, 12345267, 1234567, 23243546372,
23452627,2345267, 234567, 3452627, 345267, 34567, 452627, 45267, 4567, 567,67, T}),

A = {1,12,2,123,23,3,1234,234, 34, 4,12345, 2345, 345, 45, 5, 12237456, 123°4?56, 1234?56,
123456, 12346, 2324256, 234256, 23456, 2346, 34256, 3456, 346, 456, 46, 56, 6, 122334453637
122334452637, 122334352637, 122324352637, 12324352637, 2324352637, 122334452627
122334352627, 122324352627, 12324352627, 2324352627, 122324252627, 12324252627
2324252627, 1234252627, 234252627, 34252627, 12233%45536472, 1233445536472,
1223445536472, 1223345536472, 1223344536472, 1223344536372, 12233435627, 12232435627
12232425627, 1223242567, 1232435627, 1232425627, 123242567, 123425627, 12342567,
12345627, 1234567, 1223344526472, 1223344526372, 1223243526372, 1223243526372,
123243526372, 123467, 232435627, 232425627, 23425627, 3425627, 2345627, 345627, 45627
23243526372, 23242567, 2342567, 234567, 23467, 342567, 34567, 3467, 4567, 467, 567, 67, 7},
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AT ={1,12,2,123,23,3,1234, 234, 34, 4,12345, 2345, 345, 45, 5, 12°3°4°5%6, 123°4°576,
12342526, 1234526, 123456, 23242526, 2342526, 234526, 23456, 342526, 34526, 3456, 4526, 456,
56,6, 122334455637, 122334455627, 122334454627, 122334354627, 122324354627, 1232435627
232435%627,122334353627, 12232435362 7,123%435%627, 2324353627, 122324253627,
12324253627, 2324253627, 1234253627, 234253627, 34253627, 1223344°5%6372, 123344°5%6372,
1223445556372, 1223345566372, 1223344566372, 1223344556372, 12233435367, 12232435367
12232425367, 12232425267, 1232435267, 1232425267, 1232425267, 123425367, 123425267
12345267, 1234567, 1223344556272, 1223344546272, 1223343546272, 1223243546272,
123243546272 123457, 232435367, 232425367, 23425267, 3425367, 232425267, 23425267
3425267, 23243546272, 2345267, 234567, 23457, 345267, 34567, 3457, 45267, 4567, 457, 567, 57,7},

AYS = {1,12,2,123,23,3,1234,234, 34,4, 12345, 2345, 345, 45, 5, 123456, 23456, 3456, 456, 56, 6,
12232425267,1232425267, 123425267, 12345267, 1234567, 123457, 1223244546272,
1223343546272, 1223343536272, 122334353672, 232425267, 1223243546272, 1223243536272,
122324353672, 23425267, 1223242536272, 122324253672, 2345267, 122324252672, 234567
23457,12233%45566374, 1233445556374 1223344556373, 1223344556273
1223344546273, 1223343546273, 1223243546273, 123243546272, 123243536272, 123242536272,
12342536272, 12324353672, 12324253672, 1234253672, 12324252672, 1234252672, 123452672,
1223445566374, 1223345566374 1223344556374 1223344556374, 1223344556274,
123243546273, 23243546272, 23243536272, 2324353672, 3425267, 23242536272, 2324253672,
345267, 2324252672, 34567, 3457, 23243546273, 2342536272, 234253672, 234252672, 23452672
342536272, 34253672, 34252672, 3452672, 45267, 4567, 567, 452672, 457, 57,7}

8.12.2. Weyl groupoid. The isotropy group at a4 € X is

W(as) = ($1*62636457565556575453%251, 55 537, 5445 54, 664y o7 t) = W (Er).
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8.12.3. Incarnation. We set the matrices (q(i))l‘eﬂg, from left to right and
from up to down:

¢
(@]
¢
¢ ¢ ¢ ¢ -1 ¢ -1 ¢ ¢ ¢ ¢
(@] (o] (@] (@] (] (o]
¢
O
¢
¢ ¢ -1 ¢ -1 ¢ ¢ ¢ ¢ ¢ ¢
(@] (e] (] (@] (@] (e]
(8.114)
¢
(@]
¢
-1 ¢ -1 ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
O O (@] O O (@]
¢
(e]
¢
-1 ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
(@] (@] (@] (@] (@] (@]

¢
(]
¢
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ -1 ¢ -1
(@] ] (o] O (] (@]
¢
O
¢
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Now, this is the incarnation:
as — 5567(q5); a; — q(z)’ 7 75 5.

8.12.4. PBW-basis and dimension. Notice that the roots in each AY', i € Ig,
are ordered from left to right, justifying the notation (5, ..., B91.
The root vectors xg, are described as in Remark 2.14. Thus

{xggi caprgt |0 <y, < Nﬁk}-
is a PBW-basis of By. Hence dim B; = 228363

8.12.5. The Dynkin diagram (8.114 a).
The Nichols algebra By is generated by (z;);er, with defining relations

r112 =0; @21 =0; w223 =0; ;5 =0, 1 <j, gi = 1;

w332 = 0; w334 = 0;  [[[2(36), T5]cs Tae, 5] = 0

(8.115)

443 = 0; 2445 = 0; 2776 = 0;  [[[27654, T5]c, T6]c, T5)c = 05
Tees = 0; xg67 = 0; xgzo; xi:O, aEOi.
Here 0% ={1,12,2,1234, 234,34, 12345,2345, 345, 5, 122324256, 12324256, 123456, 12346, 2324256,
23456, 2346, 3456, 346, 4256, 6, 122334553637, 122334552637, 122324452637, 12324452637,
2324452637,122324452627, 12324452627, 2324452627, 122334352627, 1234352627, 234352627,
34352627,12233446536472 1233446536472, 1223446536472, 1223345536472, 1223345536372,
12233435627,12232425627, 1223242567, 1232425627, 123242567, 123435627, 1234567,
1223345526472 1223345526372, 1223244526372, 123244526372, 123467, 23435627,
3435627,232425627, 425627, 23244526372, 23242567, 234567, 23467, 34567, 3467, 42567, 67,7} and
the degree of the integral is

a = 80y + 1569 + 228as + 3600y + 2445 + 12406 + 182a7.

8.12.6. The Dynkin diagram (8.114 b).
The Nichols algebra By is generated by (2;);er, with defining relations

r112 = 0; 221 = 05 [(35),24)c = 0; 235 =0, i < j, ¢35 = 1;

(5.116) T3 = 0; w332 =0; [T347,24]c = 0; [T(46), T5]c = 0;
: . _0N- _0N- 2 _ 0. 3 _ .
z334 = 0; wge5 = 0; [wes7,25)c =0; 27 =0; =0, a€Ol;

2 . 2 _ . — el
x5 =0; 27 =0; w457 = ¢57C[2a7, T5]c + qas(1 — Q)x5247.
Here O ={1,123,23,1234,234,4, 12345, 2345, 45, 5, 122324256, 1234?56, 123456, 12346, 234256, 23456,
2346, 324256, 456, 46, 6, 122344553637, 122344552637, 122344452637, 12334452637, 2334452637,
122344452627, 12334452627, 2334452627, 12334352627, 2334352627, 122324352627, 324352627,
12233546536472 1233546536472, 1223446536472, 1223445536472 1223445536372, 12232435627,
12232425627,1223242567, 1233435627, 123425627, 12342567, 1234567, 1223445526472,
1223445526372, 1223444526372, 123344526372, 123467, 233435627, 32435627, 32425627,
23425627, 23341526372, 2342567, 234567, 23467, 3242567, 4567, 467,67, 7} and the degree of
the integral is

a = 80a; + 156 + 290ai3 + 360y + 2445 + 12406 + 182ar7.
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8.12.7. The Dynkin diagram (8.114 c).
The Nichols algebra By is generated by (2;);er, with defining relations

112 = 0; w221 =0; @923 = 0; 1y =0, 1<j,q; =1
w332 = 0;  [¥35),%a]e = 0;  [[T65, Te57]es T5)e = 0;
z330 = 0; 2776 = 0;  [T(46),25)c = 05 [T457, ¥5]c = 0;

xizO; x%zO; x%zO; xizO,aEOi.

(8.117)

Here OF ={12,123,3,1234, 34,4, 12345, 345, 45, 5, 12324256, 1234256, 123456, 12346, 22324256,
34256, 3456, 346, 456, 46, 6, 123344553637, 123344552637, 123344452637, 123334452637,

22334452637, 123344452627, 123334452627, 22334452627, 123334352627, 22334352627,
22324352627,12324352627,12243546536472 1233546536472, 1233446536472, 1233445536472,
1233445536372, 12333435627, 1232435627, 1232425627, 123242567, 123425627, 12342567,
1234567,1233%45526472 1233445526372, 1233444526372, 1233344526372, 123467, 2233435627,
2232435627, 2232425627, 3425627, 223344526372 223242567, 342567, 34567, 3467, 4567, 467,67, 7} and
the degree of the integral is

g = 80y + 216a9 4 2903 + 36004 + 2445 + 12406 + 182a7.

8.12.8. The Dynkin diagram (8.114 d).
The Nichols algebra By is generated by (x;);er, with defining relations

112 =0; 221 =0; x223=0; x;5=0, i<j, q;=1

(8.118) w332 =10; 2334 =0; w443 =0; 2aa5 =0; 554 = 0;
. —_0N- —0N- 2 _ 0. 3 _

Tr56 = 0, Ts57 = 0, Ty = 07 Tg = 0, Ty = O, S Oi
Here 01 ={2,23,3,234,34,4,2345,345, 45, 5, 1222324256, 2324256, 234256, 23456, 2346, 34256, 3456,
346,456, 46, 6, 1223344553637, 1223344552637, 1223344452637, 1223334452637, 1222334452637,
1223344452627, 1223334452627, 1222334452627, 1223334352627, 1222334352627, 1222324352627,
2324352627,12243546536472,12233546536472,12233446536472,12233445536472, 122334455363 72,
122333435627, 122233435627, 122232435627, 122232425627, 12223242567, 122334455264 72,
12233445526372 232435627, 12233444526372, 232425627, 23242567, 122333445263 72,
12223344526372, 23425627, 2342567, 234567, 23467, 3425627, 342567, 34567, 3467, 4567, 467, 67, 7} and
the degree of the integral is

1= 138a; + 216 + 2903 + 360y + 244 + 12406 + 182ar7.
8.12.9. The Dynkin diagram (8.114 e).
The Nichols algebra By is generated by (z;);er, with defining relations
2112 =05 w201 =0; 223 = 0; zij =0, i <], ;=1
(8.119) w554 = 0;  [T(24),%3]e = 05 [[[6547, Tale, T5]c, T4l = 0;
z556 = 05 wees = 07 [z(35),24]c = 0 [z347, 24]c = 0;
X774 = 05 33;%,:0; wizO; :Ui:O, ani.

Here 07 = {1,12,2,123,23,3,1234,234, 34,4,1223242526, 123242526, 12342526, 1234526, 23242526,
2342526, 234526, 342526, 34526, 4526, 6, 122334454637, 122334354637, 122324354627,
12324354637, 2324354637, 122334454627, 122334354627, 122324354627, 12324354627, 2324354627,
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12233445566472 1233445566472, 122324252627, 12232425267, 1223445566472 12324252627,
1232425267, 2324252627, 232425267, 1223345556472, 1223344566472, 1223344546372, 1234252627,
234252627, 34252627, 123425267, 23425267, 3425267, 1223343546372, 1223243546372, 123243546372,
123452627, 12345267, 23243546372, 23452627, 2345267, 3452627, 345267, 452627, 45267, 67, 7} and
the degree of the integral is

a = 80aq + 156 + 228as3 + 2964 + 360as + 244a¢ + 124ar.

8.12.10. The Dynkin diagram (8.114 f).
The Nichols algebra By is generated by (z;);er, with defining relations

z112 = 0; Taa3 = 0; 445 =0; w5 =0, @<y, gy =1
(8.120) 554 = 0; Tyar =0; w774 =0; 3 =0; [(13), T2]e = O;

2 3
[2(24),3]c = 0; @556 = 0; @ee5 = 0; 23 =0; x5, =0, a €Ol

Here 0 = {1,12,2,123,23,3,12345, 2345, 345, 45, 122324256, 12324256, 1234256, 12346, 2324256,
234256, 2346, 34256, 346, 46, 56, 122334453637, 122334352637, 122324352637, 12324352637,
2324352637,122334452627, 122324252627, 12324252627, 2324252627, 1234252627, 234252627,
34252627,12233445536472, 1233445536472, 1223445536472, 1223345536472 1223344536372,
12233435627, 12232435627, 1223242567, 1232435627, 123242567, 12342567, 12345627,
1223344526472, 1223343526372, 1223243526372, 123243526372, 123467, 232435627, 2345627,
345627, 45627, 23243526372, 23242567, 2342567, 23467, 342567, 3467, 467,567, 7} and the degree
of the integral is

a = 80ay + 156 + 2283 + 2964 + 24405 + 1240 + 182a7.

8.12.11. The Dynkin diagram (8.114 g).
The Nichols algebra By is generated by (z;);er, with defining relations

w332 =0; 2334 =0; 2443 =0; z55=0, i<j, qj =1
(8.121)  wass =0; @s5a=0; waar =0; af =0; [r(13), T2)e = 0;

. —0N- —0N- 2 _ (. 3 _
$774=0, 33556—0, 55665—0, :UQ—O, l‘a—o, OéGOi.

Here 0% ={1,12,2,123,23,3,1234, 234, 34,4, 1223242526, 123242526, 12342526, 1234526, 23242526,
2342526, 234526, 342526, 34526, 4526, 6, 122334455637, 122334455627, 122334353627,

122324353627, 12324353627, 2324353627, 122324253627, 12324253627, 2324253627, 1234253627,
234253627, 34253627, 12233445566372, 1233445566372 1223445566372, 1223345566372,
1223344566372 12233435367, 12232435367, 12232425367, 1232435367, 1232425367, 123425367,
1234567, 1223344546272, 1223343546272, 1223243546272, 123243546272, 123457, 232435367,
232425367, 23425367, 3425367, 23243546272, 234567, 23457, 34567, 3457, 4567, 457, 567, 57} and the
degree of the integral is

a = 80aq + 156cs + 228a3 + 2964 + 360as + 12404 + 182a7.
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8.12.12. The Dynkin diagram (8.114 h).
The Nichols algebra By is generated by (2;);er, with defining relations

wo21 = 0; w3 =0; w332 =0; 25=0, 1<, ¢q;=1;

(8.122) 334 =05 Zaa3 =0; w45 =0; 2aa7 =0; x774 = 0;
. —_0- _0N- 2 _ 0. 3 _

Tr54 = 0, Ts56 = 0, Te65 = 07 xr] = O, x, = 0, [ AS Oj_
Here 07 = {1,12,2,123,23,3,1234,234, 34,4,12345, 2345, 345, 45, 5, 123456, 23456, 3456, 456, 56, 6,
1223344546272, 1223343546272, 1223343536272, 122334353672, 1223243546272, 1223243536272,
122324353672,1223242536272, 122324253672, 122324252672, 122334455%6374, 1233445566374,
123243546272, 123243536272, 123242536272, 12342536272, 12324353672, 12324253672, 1234253672,
12324252672, 1234252672, 123452672, 1223445556374 1223345566374 1223344566374,
1223344556374, 1223344556274, 23243546272, 23243536272, 2324353672, 23242536272,
2324253672, 2324252672, 2342536272, 234253672, 234252672, 23452672,
342536272, 34253672, 34252672, 3452672, 452672} and the degree of the integral is

g = 80a1 + 156as + 228ai3 + 2964 + 3605 + 238ag + 182ar7.

8.12.13. The associated Lie algebra. This is of type FEx.

9. SUPER MODULAR TYPE, CHARACTERISTIC 5
In this Section F is a field of characteristic 5.

9.1. Type brj(2;5). Here § =2, ( € G}. Let
A= <_21 _03> A= (_21 _04> eF¥% p=(-11),p' =(-1,-1) € G}.

Let btj(2;5) = g(A,p) ~ g(A’,p’), the contragredient Lie superalgebras
corresponding to (A,p), g(A’,p’). We know [BGL] that sdim btj(2;5) =
10]12. We describe the root system brj(2;5) of brj(2;5), see [AA2] for details.

9.1.1. Basic datum and root system. Below, G2 and Ag) are numbered as

in (4.43) and (3.7), respectively. The basic datum and the bundle of Cartan

matrices are described by the following diagram:
o e

2 1 2
oe——— o |

al as

Using the notation (3.1), the bundle of root sets is the following:
AT ={1,1%2,172,1°23,132% 1%2% 12,2},
AP ={1,1%2,1%2,15221%2,1%2% 12, 2}.
9.1.2. Weyl groupoid. The isotropy group at a; € X is
Wi(ar) = (51", 5" s152) =~ Dy.
9.1.3. Incarnation. We assign the following Dynkin diagrams to a;, ¢ € Iy:

2 _3 3
(9.1) a1»—>g ¢ ol, a2|—><§ S
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9.1.4. PBW-basis and dimension. Notice that the roots in each A%, i € I,
are ordered from left to right, justifying the notation 5y, ..., Bs.
The root vectors xg, are described as in Remark 2.14. Thus

{wgs xﬁbxnl [0 < < N/Bk}
is a PBW-basis of B;. Hence dim B, = 25210? = 40000.

9.1.5. The Dynkin diagram (9.1 a).
The Nichols algebra By is generated by (2;);er, with defining relations

9.2) x? = 0; x%?g = 0; [90112,3612] =0; [[[r112, 212]es Z12]es T12]e = 05
x% = 0; xu = 0; 11112 = 0; [z1112, Z112)c = 0.

Here Oi = {1,122,1322,12} and the degree of the integral is
1 = 5y + 34as.

9.1.6. The Dynkin diagram (9.1 b).
The Nichols algebra By is generated by (x;);er, with defining relations

(9.3) 33?1;2 = 0; 33112 =0; 331 =0; 95% = 0;
r7y = 0; w1112 = 05 [71,[T112, T12)c)e + Q12$%12 = 0.
Here O1 = {1, 132,122,12} and the degree of the integral is

g = 5baq + 23as.
9.1.7. The associated Lie algebra. This is of type Ba.
9.2. Type el(5;5). Here =5, ¢ € Gf. Let

0 1 0 0 0
-1 0 1 0 1

A=]10 -1 2 -1 0| eF p
0 0 -1 2 0
0 -1 0 0 2

(-1,-1,1,1,1) € G3.

Let ¢l(5;5) = g(A, p), the contragredient Lie superalgebra corresponding to
(A,p). We know [BGL| that sdim el(5;5) = 55|32. There are 6 other pairs
of matrices and parity vectors for which the associated contragredient Lie
superalgebra is isomorphic to el(5;5). We describe the root system el(5;5)
of el(5;5), see [AA2] for details.

9.2.1. Basic datum and root system. Below, A(ll), Cy and AgQ) are numbered
as in (3.2), (4.15) and (3.7), respectively. The basic datum and the bundle
of Cartan matrices are described by the following diagram:

ws(Ds) 2 1Ty 3 T
e —— o °
a4 ag ar
1] 5 | 4]
1
ws(Ds) w@4(C5) As 5 Fi )
° ° ° °

as al az as
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Using the notation (3.1), the bundle of root sets is the following:

A =wy({1,12,2,123,23,3,12%3%4,123%4,1234, 23%4, 234, 34,4, 12°3%4%5, 12°3%475,12°3%4°5,
1232435, 232435,1223242%5, 1223344452 123344452 1223245, 1232425, 123425, 122344452
123245,122334%52 232425, 122334352, 23425, 3425, 122324352, 1232435212345, 425
2324352 23245,2345,345,45,5}),

A% ={1,12,2,123,23,3,1234,234, 34,4, 12%3%4%5,1223%4%5,1223%4%5,123%4%5,123%45,
232435, 232425,122334%52 123425, 23425, 3425, 1223344553 123344553 122344553,
122334352 122334553 122324352 12324352 2324352, 122334453 12345, 122324252,
12324252, 1234252, 2345, 2324252 234252345, 3425245, 5}

AY ={1,12,2,123,23,3,1234,12%3%4% 123%4% 12347, 234, 232422347 34,34 4,1223%4%5,
12233435,12232435, 1232435, 232435, 1223344552 123344552 12232425, 122344552,
1232425,122334%52 123425, 122334452, 232425, 23425, 3425, 122334352, 122324352,
1232435212345, 2324352, 2345, 345,45, 5}

AYY =ws({1,12,2,123,23,3,1234, 234, 34, 4,1%2°3%45,17233%45, 1125314252, 112533425,
142533452 12223245, 1424334252 142433452, 1222345, 142432452, 122235, 1°263%4253
1324334252 132433452 132432452 132332452 1426344253 1425344253 1223245,
1425334253 122345, 142°3%453, 12235, 122332452, 12345, 1235, 125, 2345, 235, 25, 5}),

A% =w5({1,12,2,123,23,3,1234, 234, 34, 4,1233245, 1223245, 122345, 12235, 125344252
125334252 12533452, 233245, 1226344253 124334252, 12345, 12433452, 1235, 12432452,
125, 126344253 12332452 125344253 125334253, 12533453, 223245, 24334252, 2433452,
22345, 2432452 2235,2332452, 2345, 235,25, 5}),

A5 ={1,12,2,123,23,3,1234,234, 34,4,122345, 127345, 1235, 123°45, 123" 4?57
23245,1223%4252 12233452 3245,12233%4253 12334252, 12345, 123344253, 2334252
2345,1223%4253 1233452, 233452 12232452, 122334253 345, 1232452, 232452,
12233453, 1235, 125, 32452, 235, 25,35, 5}

AYT ={1,12,2,123,23,3,1234,234, 34,4,1223%45,12%3%45,12%3%5, 12345, 123%5, 2345,
2325,1223%4252 12233452, 1223344253 123344253 122344253 12345, 122324252,
12324252, 2345, 2324252, 345, 122334253, 12232452 1232452, 232452, 45, 12233453,
123452, 1235, 23452, 235, 3452, 35, 5}.

9.2.2. Weyl groupoid. The isotropy group at ag € X is
Wiaz) = (s1%,55%,65%, 64, 65 caszsasssasasass) = W(Cs).

9.2.3. Incarnation. We set the matrices (q(?);er,, from left to right and from
up to down:

(9.4)
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42 <2
O (o)
¢’ ¢
N N R -1 ¢ e e
(@] (@] ] (@] (@] o (o] (@]
o (e}
¢ _ ¢
o \ . \
S I R e S S S B
(o) o o] (o) (@] (@] o o]
Now, this is the incarnation:
a1 »—>W4(q1); a; — q(i), i €l 7.

9.2.4. PBW-basis and dimension. Notice that the roots in each AY, i € Iy,
are ordered from left to right, justifying the notation (5, ..., B41.
The root vectors xg, are described as in Remark 2.14. Thus
{xgzll caprg |0 <y < Nﬁk} :
is a PBW-basis of B. Hence dim B; = 216525

9.2.5. The Dynkin diagram (9.4 a).
The Nichols algebra By is generated by (x;);er; with defining relations
z112 =05 @921 =05 @203 =05 [[[T(14), T3]c, ¥2]e, ¥3]c = 05
(95) @554 =0; Taaz3=0; Taaas=0; 253=0; 255 =0, i <j, Gj = 1;
z2 =0, a € O (w5432, ale, 23]e = qu3(¢% — O)[[w5432, T3]e, Tale-
Here 01 ={1,12,2,122324,12324,23%4,4, 12232435, 1232435, 232435, 12232425, 1223344452,
123344452 1223245, 1232425, 122344452 123245, 232425, 122324352, 12324352,
425,2324352 23245, 45,5} and the degree of the integral is
1= T72aq + 136 + 192a3 4+ 2084 + 108as.
9.2.6. The Dynkin diagram (9.4 b).
The Nichols algebra By is generated by (z;)ic1, with defining relations
112 = 0; w21 =0; w23 =0; z55=0, i<, g =1;
(9.6) x332 = 0; @330 = 05 [[w54, T5a3]e, T4]c = 0;
xizo; x%zO; xizO,aEOi.
Here 0% ={1,12,2,123,23,3,12233435,12232435,123%435, 232435, 122334452, 1223344553, 123344553,
122344553 122334553 12345, 122324252 12324252 1234252, 2345, 2324252, 234252 345, 34252, 45} and
the degree of the integral is

= T72aq + 136 + 192a3 4+ 24004 + 154 5.
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9.2.7. The Dynkin diagram (9.4 c).
The Nichols algebra By is generated by (2;);er; with defining relations

r112 =0; @221 = 0; 2223 =0; 2330 =0; x5 =0, @<j,q;; =1;
-0 —0N- —0- 2 _ - 5 _ q

T334 = 0; Taaa3 =0; zaa5=0; 25=0; =z, =0, a€0].

Here 0% ={1,12,2,123,23,3,1234, 1223242123242, 12342, 234, 23242, 2342, 34, 342, 4,1223344°52,

123344552 122344552 122334552, 122334452, 122334352 122324352 12324352 2324352} and the

degree of the integral is

9= T2a1 + 136as 4+ 192a3 + 24004 + 88ars.
9.2.8. The Dynkin diagram (9.4 d).
The Nichols algebra By is generated by (z;);er, with defining relations
(9.8)
. -0 -0 2 _0- — ; A N
w332 =0; 2334 =0; [z(13),22)c =0; 27 =0; 7;=0,1<j,q;=1
. -0 -0 2 _ - 5 _
243 = 0; @552 =0; [z125,02)c =0; x53=0; 22, =0, a €Ol
Here 07 = {12,123,3,1234,34,4,1233%45,125344252, 125334252, 12533452, 1226344257, 12345, 1235, 125,
12332452,1253%4253, 125334253, 12533453, 223245, 24334252, 2133452, 22345, 2132452, 2235, 5} and
the degree of the integral is

1= T2a1 + 3002 4 2083 + 1084 + 154as.

9.2.9. The Dynkin diagram (9.4 e).

The Nichols algebra By is generated by (z;);er, with defining relations
9.9) 201 = 0; w223 =0; X332 =0; @225 =0; x;5=0, i <j, ¢ =1;

: . —0N- —_0N- 2 _ 0. 5 _
Trs2 = O, T334 = 07 T443 = 0, xr] = 07 Ty = O, (A Oi
Here 0% ={2,23,3,234,34,4,12233245, 1125314252, 1125334252 112533452, 12223245, 1121334252,
142433452 1222345, 142432452, 122235, 1426344253 1425344253 1425334253 142533453,
122332452 2345,235,25,5} and the degree of the integral is

g = 23001 4 300a2 + 208a3 + 108ay + 154as.

9.2.10. The Dynkin diagram (9.4 f).
The Nichols algebra By is generated by (x;);er; with defining relations

. — 0 2 _ - _ ; s~ .
w112 = 05 [w(13),02]c = 0; 25 =0; 255 =0, i <j, g5 = 1;
. 0N 2 _ 0. — 0
Ta43 = 05 [w(20),73]c = 0; x5 =0;  [[w53, T534]c, T3]c = 0;
9.10 2 5
(9.10) [#125.02)e = 0; a3 =0; 2 =0, a €O
q35
T235 = 5|25, T3l + q23(1 — ()z3225.
¢ +¢
Here 0% ={1,123,23,1234,234,4,122345,12235,123%45,122394252, 23245, 1223314253, 12334252,
123344253 2334252 1233452, 233452, 12232452, 122334253 345, 12233453, 125, 32452, 25,35} and
the degree of the integral is

= 727 + 136 4+ 2083 + 108y + 154 5.
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9.2.11. The Dynkin diagram (9.4 g).
The Nichols algebra By is generated by (2;);er; with defining relations
zr2 =0;  x221 =0; 25 =0, 1<7, qj =1;
0.11) x§ =0; 223 =0; @553 =0; ({21235, 23)e, T2e, 23]e = 0;
zy =0; w550 =0; [z(24),73]c = 0; 5 =0, a € 0%

T(35) = q45C[T35, Tale + q34(1 — () T435.
Here 0% ={1,12,2,1234,234,34,1223%45,1223%5,123%5, 2325, 12233452, 122334253, 123344253,
122344253 12345, 122324252, 12324252, 2345, 2324252, 345, 12233453, 123452, 23452, 3452, 5} and
the degree of the integral is

1= T72aq 4+ 136 + 192a3 + 108y + 154 as.
9.2.12. The associated Lie algebra. This is of type Cs.

10. UNIDENTIFIED

The root systems in this Section are denoted by ufo(h), 8 # h € Ij; the
corresponding Nichols algebras are called collectively ufo(h). However ufo(7)
has two different incarnations, that are called ufo(7) and ufo(8) respectively.

10.1. Type ufo(1). Here ¢ € G). We describe first the root system ufo(1).

10.1.1. Basic datum and root system. Below, As, Ds, oT and 1T7 are num-
bered as in (4.2), (4.23) and (3.11), respectively. The basic datum and the
bundle of Cartan matrices are described by the following diagram:

w1(Ds) As 4 oT 5 545(As)
° ° e ° — e
al a as a4
1] 3| 3
w1(Ds) 2 wa(17T1) s45(1T1) 2 w3(Ds)
o  — ° ° —=— e
as ae ar as
1] 1] 1]
w2(As) 5 534 (2T) 3 s34(As) w3(Ds)
e — ° _— ° °
ag a1o a11 a2

Using the notation (3.1), we set:

Aﬁj’ ={1,12,2,123,23,3,1223%4,123%4, 1234, 2324, 234, 34, 4,12233435, 12233425,
12232425,123%425, 232425, 123425, 23425, 3425, 122334352, 1223245, 123245,
12345, 23245, 2345, 345, 45, 5},

Aﬁ? ={1,12,2,123,23,3,1234, 234, 34,4, 12233435, 12232435 12232425, 1232435,
1232425,232435, 232425, 122334452, 123425, 23425, 3425, 122334352, 122324352,
1232435212345, 23243522345, 345,45, 5},

Af> ={1,12,2,123,23,3,1234,234, 34, 4,1223%45,122345, 12235, 123245, 23245,
122334252 12233452, 3245, 12345, 2345, 12232452 345, 1232452, 1235, 125,
232452, 235,25,35,5},

A(f> ={1,12,2,123,23, 3, 1234, 234, 34, 4, 1223345, 1223245, 122325, 123245, 12325,
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23245,2325,122334%52, 1223345212345, 2345, 345, 12232452, 1232452, 1235,
232452, 235,45, 35,5},

Af> ={1,12,2,123,23,3,1234,234, 34, 4, 13233245, 12233245, 12223245, 1222345,
122235,1324334252 132433452 1223245, 132432452, 122345, 132332452, 12345,
122332452 12235, 1235, 125, 2345, 235, 25, 5},

Af’ ={1,12,2,123,23,3,1234,234, 34, 4,1233%45,1223245, 122345, 12235, 233245,
124334252 12433452 223245,12432452, 22345,12345, 12332452, 1235, 125, 2345,
2332452 2235, 235, 25, 5}.

Now the bundle of sets of (positive) roots is described as follows:

al le(Af)), GQHAS}), CL3'—>A$), a4'—>345(A )),

as +— W1<Af)), ag — WQ(AEE)), a7 +—r S45(A$’)),
(

ag — w2(A(+2)), ayp — 834(A+)), ajy — 834(A+1))>

—
W~

(2
+
5
ag — W3<AS_)),
a2 — ?D3(A(+6))-
10.1.2. Weyl groupoid. The isotropy group at a; € X is

W(ar) = (61" 626364555463261, S5 1, 555 4t 65 1) =~ W (As).

10.1.3. Incarnation. We set the matrices (q"))scq,, from left to right and
from up to down:

CCgC—1—1—1CC ¢ ¢ ¢ ¢ ¢ ¢ =1 ¢ ¢

e}
e}
e}
e}
e}
e}
e}
e}

—1 -1
[e] (@]
¢ \_1 -1 x
(10.1) 6o < QLA S - S
¢ ¢
(@] O
¢ ¢
-1 ¢ -1 ¢ ¢ ¢ ¢ -1 ¢ ¢ ¢ ¢ ¢ ¢
(@] (e] (@] (e] (e] (@] (] (@]

Now this is the incarnation:

ar — w1(q®),
as — w1 (q®),

ag — w2(q?),

as — q(l)a
ag — w2(q?),

ap 834(Cl(4))7

ag — q(4)7
ar > s45(q),

arn > s34(q),

ag — s45(q?),
ag — w3(q®),

aig +— W3(q(6)).
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10.1.4. PBW-basis and dimension. Notice that the roots in each AY i € Iy,
are ordered from left to right, justifying the notation S, ..., 830.

The root vectors xg, are described as in Remark 2.14. Thus

{a;ggg a0 <my < Nﬁk} .

is a PBW-basis of B;. Hence dim B, = 219415 = 245,
10.1.5. The Dynkin diagram (10.1 a).

The Nichols algebra By is generated by (x;);er; with defining relations

w112 = 0; @201 =0; @203 =0; [[[w(14), T3]e, T2]e, T3] = 0;
(10.2) @550 =0; 3,=0; 23=0; 25=0; 2;5=0,i <7, Gij = 1;
zh =0, a € 0L [[m125), 23l Tale = q3aC[[T(25), Tale, T3]c-

Here 09 = {1,12,2,122324,123%4, 2324, 1223%435, 123425, 23425, 3425, 122334352, 1223245,
123245, 23245, 5}, and the degree of the integral is

a = 33aq + 60as + 8lag + 70ay + 38as.
10.1.6. The Dynkin diagram (10.1 b).
The Nichols algebra By is generated by (z;);er; with defining relations
103) r112 = 0; w21 =0; w3 =0; x55=0, ©<j, q;=1;
x330 = 0; 334 =0; x554 = O0; :c?l = 0; a:i =0, a € (’)i.
Here 01 ={1,12,2,123,23,3,12233435, 12232435, 1232435, 232435, 122334352, 122324352,
12324352 2324352 5}, and the degree of the integral is
a = 33aq + 60as + 8lag + 96ay + Hlas.
10.1.7. The Dynkin diagram (10.1 c).
The Nichols algebra By is generated by (z;)ic1, with defining relations
[2as), 22]le = 0; 112 =0; 2aa3 =0; 23 =0, i<y, qGj=1
(104) [zoa),23c=0; a5=0; a33=0; a3=0; 25 =0, a€O};
[T125, 2]e = 0; a3 = 0; o35 = 2q23w3T5 — qa5(1 + ()[was, w3e.

Here 01 ={1,123,23,1234,234,4,122345,12235,1223%4252, 12233452, 3245, 1232452, 125, 232452, 25},
and the degree of the integral is

a = 33a1 + 60ag + 8lag + 38a4 + Slas.

10.1.8. The Dynkin diagram (10.1 d).
The Nichols algebra By is generated by (z;);er, with defining relations

z112 = 0; @21 = 05 @a23 = 0; rij =0, 1 <7, q; =1
23=0; 25=0; [[[x1235,23]c, T2]c, T3] = 0;
(10.5) [:p(24),:£3]c =0; x% =0; :c§5 =0; xi =0, a€ Oi;
1+
Z(35) + M[l’%, T4le — q3a(1 — Q)agwzs = 0.

2
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Here 01 ={1,12,2,1234,234, 34,1223%45,122325,123%5, 2325, 122334252 12232452,
1232452232452 45}, and the degree of the integral is
g = 33aq + 60as + 8lag + 384 + 5las.

10.1.9. The Dynkin diagram (10.1 e).
The Nichols algebra By is generated by (z;);er, with defining relations

(10.6) 23y, @2)e = 0; @332 =0; 334 =0; a7 =0; 25=0, g =1
(2125, 2)e = 0; 2443 =0; x50 =0; 25=0; 2, =0, a € OY.

Here 0% ={12,123,3,1234,34,4,233%45,1213%4252, 1233452, 1213245212345, 1235, 125, 2332452, 5},
and the degree of the integral is

a = 33a1 + 96as + 70cg + 384 + Hlas.
10.1.10. The Dynkin diagram (10.1 f).
The Nichols algebra By is generated by (z;);er; with defining relations
(107 w21 = 0; w23 =0; w225 =0; x5520=0; 255 =0, 1 <jqj=1;
0 w3 =0; w3 =0; zuz=0; a7=0; 2,=0, a €Ol

Here 01 ={2,23,3,234,34,4,13233245, 1324334252 132433452, 132432452, 132332452, 2345, 235, 25, 5},
and the degree of the integral is

g = 65aq + 96 + 703 + 384 + Slas.
10.1.11. The associated Lie algebra. This is of type As.
10.2. Type ufo(2). Here ¢ € G;. We describe first the root system ufo(2).
10.2.1. Basic datum and root system. Below, Ag, Eg, 3T and 577 are num-

bered as in (4.2), (4.28) and (3.11), respectively. The basic datum and the
bundle of Cartan matrices are described by the following diagram:

s465(Es)
°
|
1
5465.(E6) fis 5 3.T 6 556(.A6)
as as a4 as
2| 4] 4|
s465(Fs) 3 s465(271) s56(271) 3 s56(Fe)
° 'y ° °
ag ar as a9
5 | 5 | 2|
s465(As6) 6 s45(3T) 4 s45(As) s56(Fs)
° ° ° °
aio ail a12 al‘s
1
s56(F6)
°
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Using the notation (3.1), we set:

‘AS})::{1,12,2,123,23,3,1234,234,34,4,12232425,1232425,123425,12345,232425,23425
2345, 3425, 345, 45, 5, 1223244536, 1223343536, 1223243536, 123243536, 23243536,
1223344526, 1223343526, 1223243526, 123243526, 23243526, 1223344%5%62, 12334455462
1223242526, 122324256, 1223%4°5%62, 123242526, 12324256, 23242526, 2324256
12233455462, 12233445462, 12233445362, 12342526, 2342526, 342526, 1234256,
234256, 34256, 12233435362, 12232435362, 1232435362, 1234526, 123456, 232435362
234526, 23456, 34526, 3456, 4526, 456, 56, 6},
zsg?)::{1,12,2,123,23,3,1234,234,34,4,12345,2345,345,45,5,1223343536,1223243536
1223242536, 1223242526, 123243536, 12324256, 123242526, 23243536, 23242536,
23242526,122334%5562, 12342536, 2342536, 342536, 12233445462 12233435462,
122334455663 12334455563, 12234455%63, 12233435362, 12342526, 1234526, 12232435462,
1232435462, 123456, 12233455563, 12232435362, 2342526, 12233445563, 12232425362,
234526,12233445563, 1232435362, 1232425362, 123425362, 232435462, 23456, 232435362,
232425362, 23425362, 342526, 34526, 4526, 3425362, 3456, 456, 56, 6},
zxg?)::{1,12,2,123,23,3,1234,234,34,4,1223245,123245,12345,1235,23245,2345,235,3245,
345,35, 5, 1223543536, 1223%42536, 1223%42536, 12342536, 23442536, 1223442526
123442526, 23442526, 1223342526, 123342526, 23342526, 3342526, 122336435462,
12330435462, 12236435462, 1223%435%62, 1223°435%62, 122334526, 122324526,
12232456, 12334526, 12324526, 1232456, 123456, 12235425462, 12235425362
12234425362, 1234425362, 12356, 2334526, 334526, 2324526, 324526, 2342562, 232456,
23456, 2356, 32456, 3456, 356, 56, 6},
Lﬁg?)::{1,1272,123723,3,1234,234734,4,12223245,1223245,123245,12345,1235723245,2345
235, 345,35, 5,13243%43536, 13243542536, 13243442536, 13233442536, 12233442536,
13243442526, 13233442526, 12233442526, 13233342526, 12233342526, 12223342526
12233425%6,142%36435%62, 1323334526, 132536435462, 132436435462, 132435435462,
132435435362, 1223334526, 1222334526, 1222324526, 122232456, 132435425462,
132435425362, 122334526, 132434425362, 122324526, 12232456, 132334425362, 122334425362,
12324526, 1232456, 123456, 12356, 2324526, 232456, 23456, 2356, 3456, 356, 56, 6},
zsg?)::{1,12,2,123,23,3,1234,234,34,4,12232425,1232425,123425,12345,232425,23425,2345,
3425, 345,45, 5,122334%536, 1223344526, 1223343526, 1223243526, 123243526, 23243526
1223242526, 123242526, 23242526, 12342526, 2342526, 342526, 122334455362, 12334455362,
12234455362,12233455%62, 12233445362, 122334356, 122324356, 122324256, 12324356,
12324256, 1234256, 123456, 12233445262, 2324356, 12233435262, 12232435262, 1232435262,
12346, 2324256, 234256, 34256, 232435262, 23456, 2346, 3456, 346, 456, 56, 46, 6},
AAS?)::{1,12,2,123,23,3,1234,234,34,4,1223245,123245,12345,1235,223245,23245,2345,23a
345,35, 5,1243%43536, 1243%42536, 1243442536, 1233442536, 233442536, 1243442526,
1233442526, 233442526, 1233342526, 233342526, 1223342526, 223342526, 122530435462,
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12935435462, 12435435462, 1243%435%62, 12*3°435362, 12334526, 122334526, 122324526,
12232456, 12324526, 1232456, 123456, 123°425162 12435425362, 12134425362, 12331425362,
12356, 23334526, 22334526, 22324526, 2324526, 2234425362, 2232456, 232456, 23456, 2356
3456, 356, 56, 6},
‘AST)::{1,12,2,123,23,3,1234,234,34,4,1223245,123245,12345,1235,23245,2345,235,345,35
45,5,1223%43536, 1223342536, 1223242536, 123242536, 232425%6, 1223342526, 1223242526
123242526, 23242526, 12342526, 2342526, 342526, 122334435462, 12334435462
1223443562, 12233435462, 12233435362, 122334526, 122324526, 12232456, 12324526,
1232456, 1234526, 123456, 12233425462, 12233425362, 12232425362, 1232425362, 12356,
2324526, 234526, 34526, 4526, 232425362, 232456, 23456, 2356, 3456, 356, 456, 56, 6}.

Now the bundle of sets of (positive) roots is described as follows:

aj — 3465(AEE))7 as — 8465(A$L)), as — Ag_l), a4 — AEE),
as — 556(A(+2))7 ag 3465(Af))7 ar 3465(Agr7))7 ag +— 556(A(+7))7
ag — 556(Af)), ai — 3465(Af)), ay — 845(Af)), ai — 845(A$)),

a3 +— 856(A$)), al4 856(AE§ )

=

10.2.2. Weyl groupoid. The isotropy group at a; € X is

W(a1) = (¢ 26364555655545352615 S5 1 51, 54t Sa s 56 1)~ W (E).

10.2.3. Incarnation. We set the matrices (q"))scr,, from left to right and
from up to down:

(@] (@] (] ] (] ]
(10.8) B B B B B
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ -1 ¢ ¢
(@] (@] (] (@] (@] (@]
¢ ¢
(@] (@]
¢ ¢
¢ ¢ -1 ¢ -1 ¢ ¢ ¢ ¢ -1 ¢ -1 ¢ ¢ ¢ ¢ ¢ ¢
(@] (@] (@] (@] (@] (@] (@] (@] (e] (@]
-1 ¢
(@] (e]
N z
¢ ¢ ¢ ¢ ¢ ¢ -1 ¢ -1 -1 ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
(@] (@] (@] (@] [e) O (@] (@] (@] (e)



156 ANDRUSKIEWITSCH; ANGIONO

"N
N
o
Yl
|
—
N
|
-
N
"N

Now this is the incarnation:
ar — s165(9),  az = sug5(@Y),  az— g, as — g%,
as +— 856(q(2)), ag — 8465(Cl ) ar 8465(Cl(7)), ag +— 856(61(7))7
ag 856(q(3)), aip — 5465(Cl ) ail — 845(51(5)), a2 — 545(q(1)),
a1z — s56(qY),  ais — s56(q'?).
10.2.4. PBW-basis and dimension. Notice that the roots in each AY i € I14,

are ordered from left to right, justifying the notation (i, ..., Be3-
The root vectors xg, are described as in Remark 2.14. Thus

{ahes . a2at [0 < mic < Ny,
is a PBW-basis of B;. Hence dim B, = 227436 = 299,
10.2.5. The Dynkin diagram (10.8 a).

The Nichols algebra By is generated by (z;);er; with defining relations
z112 = 0; @921 = 0; w223 = 0; 1y =0, 1<j,q; =1
w332 = 0; @330 =0; wee5 = 0; [[[w(25),%4]c; T3]e, Ta]c = 0;

xi:O; a:?):(); xi5:0; xi:O,ae(’)q;

[z (36), Tales T5]e = qusCl[2(36), T5le, Tale-

Here 0 = {1,12,2,123,23,3,12232425,1232425, 123425, 232425, 23425, 3425, 1223343536,
1223243536, 123243536, 23243536, 1223344526, 122334455462, 12334455462, 122324256,
12234455462, 12324256, 2324256, 12233455462, 1234256, 234256, 34256, 12233435362,

12232435362, 1232435362, 1234526, 232435362, 234526, 34526, 4526, 6}, and the degree of the
integral is

(10.9)

s = 78a; + 150y + 2163 + 2760y + 22605 + 1160.
10.2.6. The Dynkin diagram (10.8 b).
The Nichols algebra By is generated by (z;);er; with defining relations
112 = 0; w21 =0; w23 =0; w55=0, 1<, qj=1;
(10.10) w332 =0; w334 =0; 2443 =0;
Ta45 = 0; xggs = 0; mg = 0; mi =0, a € Oi.
Here 0 = {1,12,2,123,23,3,1234,234, 34,4,12233435%6, 1223243536, 1223242536, 123243576,

123242536, 23243536, 23242556, 12342536, 2342536, 342536, 122334455663 12334455663
12234455663, 12233435362, 12233455563, 12232435362, 12233445663, 12232425362, 1232435362,
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1232425362, 123425362, 232435362, 232425362, 23425362, 3425362, 6}, and the degree of the
integral is

s = 78y + 1509 + 2163 + 2764 + 3305 + 168ag.
10.2.7. The Dynkin diagram (10.8 c).
The Nichols algebra By is generated by (z;);er; with defining relations
[za3),T2le = 0; 2112 =0; 2443 =0; 245=0, i <j, gij = 1;
(10.11)  [z236,73]c = 0; @445 = 0; w554 = 0; w663 = 0;
[oa,w3le =0; w3 =0; 23=0; 23,=0, a€O].

Here OF ={1,123,23,1234,234,4,1223%45,12345, 1235, 2345, 235, 5, 1223543536, 1223°42536,
123442536, 23442536, 123442526, 23442526, 3342526, 122336435462, 12336435462, 12235435462,
12235435362, 122324526, 12232456, 123456, 12235425462, 12235425362, 1234425362, 12356,
334526, 134425362, 23456, 2356, 56, 6}, and the degree of the integral is

s = 78y + 1509 4 330ai3 + 2264 + 1165 + 168ag.
10.2.8. The Dynkin diagram (10.8 d).
The Nichols algebra By is generated by (z;);er; with defining relations
w3320 = 0; w334 =0; w336 =0; x5 =0, i <j, g = 1;
(10.12) w63 = 0; Taaz = 0; Taa5 = 0; [2(13), T2]e = 0;
T554 = 0; x%:O; x%:(); xi:O, ae(’)i.

Here 01 ={12,123,3,1234, 34,4, 123245,12345, 1235, 345, 24, 5, 1243543536, 1213542536, 1243142536,
233442536, 1243442526, 233442526, 233342526, 122536435462, 12436435462, 12435435462,

12435435362, 12324526, 1232456, 123456, 12435425462, 12435425362, 12434425362, 12356,

23334526, 2334425362, 3456, 245, 56,6}, and the degree of the integral is

a1 = 781 + 260as 4+ 3303 + 2264 + 116a5 + 1680.

10.2.9. The Dynkin diagram (10.8 e).
The Nichols algebra By is generated by (x;);er; with defining relations
112 = 0; @a21 = 0; 2203 =0; x5 =0, i <j, gij = 1;

236 =0; T332 =0; w330 =0; [[72346,Tale, T3]e, T4]e = O;

(10.13) =0 a3=0; a=0 a4=0, acOL
1+
[2(35), Tale = 05 (46) = qus(1 — () 5746 — q56(20[x46, T5]c.

Here 0% ={1,12,2,123,23,3,12232425, 1232425, 123425, 232425, 234?5, 3425, 1223341536,
1223242526, 123242526, 23242526, 12342526, 2342526, 342526, 122334455362 12334455362,
12234455362, 12233455362, 122334356, 122324356, 12324356, 2324356, 12233435262,
12232435262, 1232435262, 12346, 232435262, 2346, 346, 56,46}, and the degree of the inte-
gral is

1= 78aq + 150as + 216a3 + 2764 + 1165 + 168a.
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10.2.10. The Dynkin diagram (10.8 f).
The Nichols algebra By is generated by (2;);er; with defining relations

2921 = 0; w23 =0; x332=0; x45=0,4i<j,q;=1
(10.14) w334 =0; w336 =0; X443 =0; Zaa5 = 0;
—_0N- —_0- 2 _n. 4 _ q
Ts54 = 0; xg63 = 0; z] = 0; ZL‘Q—O, OéEO+.
Here 01 ={2,23,3,234,34,4,23%45,2345, 235, 345, 24, 5, 13243543536, 13243542536, 1321342536,
13233442536, 13243442526, 13233442526, 13233342526, 1323334526, 132536435462,
132436435462 132435435462, 132435435362, 132435425462, 132435425362, 132434425362,
132334425362, 2324526, 232456, 23456, 2356, 3456, 245, 56,6}, and the degree of the inte-
gral is
g = 184a1 4+ 260as + 3303 + 2264 + 1165 + 168a.
10.2.11. The Dynkin diagram (10.8 g).
The Nichols algebra By is generated by (x;)ic1, with defining relations
[T(24), 73]l = 0; 112 =0; w221 =0; 255 =0, i<y, q;=1;
. —_0N- —_0N- 2 _ 0. 2 _ 0.
(10.15) (2236, 23] = 0; X923 =0; @554 =0; x5=0; xj5=0;
’ _0N- 2 _ 0. 2 _n- 4 _ q.
[T35), T4l =0;  23=0; 2;=0; z,=0, acO;
7346 + qa6(1 + () [236, Ta]e — 2q3474736 = 0.

Here 0OF ={1,12,2,1234, 234, 34,1223%45,123%45, 1235, 23345, 235, 24, 1223343536, 1223242536,
123242536,23242536, 12342526, 2342526, 342526, 122334435462 12334435462, 12234435462,
12233435362, 122334526, 12232456, 1232456, 12233425462, 12232425362, 1232425362,

12356, 4526, 232425362, 232456, 2356, 245, 6}, and the degree of the integral is

st = T8a1 + 150 + 216 + 22604 + 1165 4 1680xg.
10.2.12. The associated Lie algebra. This is of type FEg.
10.3. Type ufo(3). Here ¢ € G5. We describe first the root system ufo(3).

10.3.1. Basic datum and root system. Below, Az, Bs, C3 and T®@ are num-
bered as in (4.2), (4.7), (4.15) and (3.12), respectively. The basic datum and
the bundle of Cartan matrices are described by the following diagram:

s13(B3) 2 72) 3 s23(A3)
o — ° _— ®
al a2 as
1] 1] 1]
s13(Bs) 5123(C3) 523(C3) Bs
° ° ® .
a4 as ae ar
3 3| 3
5123(A3) 1 s13(T) 2 B3
° _ ° —= e
ag ag aio

Using the notation (3.1), we set:
A ={1,12,2,122%3,1%223,1223,1%2%32, 123, 23, 3},

AP ={1,12,2,12%3,1223,223,12%32, 123,23, 3},
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AP ={1,1%2,12,2,1%223,1%223,123, 123,23, 3},
A(f) ={1,122,12,2,12223,1223,1223,123, 23, 3},
AP ={1,1%2,12,2,1%223,1%23,1%23,123, 23, 3}.

Now the bundle of sets of (positive) roots is described as follows:

al — Slg(Af)), ag — Af), as —r Sgg(Af)), aq — Slg(Af)),
as 8123(A$)), ag > SQg(AS_l)), a7 ASf), ag +—» 8123(Af)),
ag — 813(Af)), aig — AES)

10.3.2. Weyl groupoid. The isotropy group at a; € X is
W(as) = (53", 55") = W(Ag).

10.3.3. Incarnation. We set the matrices (q(i))iek, from left to right and
from up to down:

-1 ¢ ¢ ¢C=¢ -1 ¢ -1 -C= ¢ -1 -1 ¢ <
(¢] (¢} o) (¢]

(10.16) g —¢ —¢ —¢ —OC ) —Ol
C/ w
¢ -1 -1
O————F——— O

Now this is the incarnation:

aj — Af), as — AEE), as +— 823(A

f))a a4 — A$)7
as 8123(A$)), ag 823(A(+1)), ay +— 813(A$)), ag +—» 8123(Af)),
ag — Slg(Af)), alg — Slg(Af)).

10.3.4. PBW-basis and dimension. Notice that the roots in each AY, i € I,
are ordered from left to right, justifying the notation Sy, ..., S10-
The root vectors xg, are described as in Remark 2.14. Thus

{:vgig xprgt |0 <y < Nﬁk} .
is a PBW-basis of B;. Hence dim B, = 243363 = 2736,

10.3.5. The Dynkin diagram (10.16 a).
The Nichols algebra By is generated by (z;);er, with defining relations

(10.17) zo =0; 113 =0; 27 =0; [v(13),2223]0 = 0;
. T332 =0; x5=0; 25=0; [[r(13),T2]es z9]% = 0.
Here, O1 = {a3, a1 + 3a + a3} and the degree of the integral is

g = 15aq + 4209 + 26a3.
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10.3.6. The Dynkin diagram (10.16 b).
The Nichols algebra By is generated by (2;);er, with defining relations

w332 =0; 213 =0; x% =0; [95127[33(13)7332]c]g =0;

2

(10.18)
21 =0; 2§5=0; [ras)[zas), 22l = 0.

Here, (’)q+ = {2a1 +3a2 + as,2a1 + 3a2 +2a3} and the degree of the integral
is

g = 29aq + 4200 + 26a3.

10.3.7. The Dynkin diagram (10.16 c).
The Nichols algebra By is generated by (z;)ic1, with defining relations

(10.19) x332 = 0; [[$12,9€(13)]c,902}c = 0; m?m = 0; [xng,gcm]c =0;
z13=0; @} =0; aj=0; 2§ =0;  [z1,003)]0 =0.

Here, Ol = {201 + ag,2a;1 + ag + a3} and the degree of the integral is
g = 29aq + 20a + 15a3.

10.3.8. The Dynkin diagram (10.16 d). The Nichols algebra By is generated
by (zi)ic1, with defining relations

Too1 =0; x13=0; 2} =0; 23320 =0;
(10.20) 6 6 6
T223=0; x9=0; 23=0; x33=0.

Here, O1 = {2 + a3, a3} and the degree of the integral is

g = 15aq 4+ 200 + 15a3.

10.3.9. The Dynkin diagram (10.16 e).
The Nichols algebra By is generated by (z;)ic1, with defining relations

30 6 0
r113=0; x7=0; x93 =0; [z112,%12]c = O;
0;

(10.21) w% = 0; x% =0; 1’?12 =0; [9312735(13)]2s =
L(13) = fz_:si[wm, T2]e — Q1223729613-

Here, (’)i = {a2 + a3,2a1 + 202 + a3} and the degree of the integral is
g = 29aq + 26as + 15a3.

10.3.10. The associated Lie algebra. This is of type As.

10.4. Type ufo(4). Here ¢ € G. We describe first the root system ufo(4).
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10.4.1. Basic datum and root system. Below, As, Cs, Cél) and T are num-
bered as in (4.2), (4.15), (3.5) and (3.12), respectively. The basic datum and
the bundle of Cartan matrices are described by the following diagram:

523(C3)
[ ]
a
3
ot 3 Cs 9 s(T®) s12(A3)
[ ] [ ] [ ] —— [ ]
as as aq as
1 1] 2|
7(C3) 3 Az 2 s23(T2)) 1 5123(C3)
[ ] [ ] [ ] — [ ]
ae a7 asg ag

Using the notation (3.1), the bundle of root sets is the following:
AYY =sp3({1,12,123,1223,123%,12%3%,1273°,2,23,23% 3}),
A2 ={1,12,123,12°,12%3,12%3,12%37, 2,273, 23,3},
A ={1,12,123,12°3,12%3,12°3%,12°37, 2,273, 23,3},
AGt ={1,12,13,123,12%3,12°3%,12%37, 2,273, 23,3},
A =s19({1,12,172%3,123,12%3,172%3,1%2°3°,1%2"32, 2,23, 3}),
A5 ={1,12,12%,17273,123,12°3,1%2°3°,1%2%3, 2, 23, 3},
AT ={1,12,1%2%3,123,1%2%3,12°3,12%3%,1°2%3%, 2, 23, 3},
A ={1,12,12%,172%3,13,1%23,123,12%3,2, 23,3},
AY =s193({1,12,123,12%3,12°3,12%3%, 1237, 2,273, 23, 3}).

10.4.2. Weyl groupoid. The isotropy group at ag € &X' is
Wiaz) = (52, 61%6261) = Z/2 x Z/2.

10.4.3. Incarnation. We set the matrices (q*));er,, from left to right and
from up to down:

-1 -1 -1 —C ¢ -1 ¢ ¢ —C -1 -1 ¢ ¢ —¢ -1
O — O [e) o ] (e) o —
-1 -1 ¢ -1 -1 -1 -1 ¢ —¢ —¢ -1
o _ — 0 —— o o
N
(1022) 7 ¢ N\¢
O o
-1 ¢ -1 —¢ -1 ¢ -1 ¢ ¢ -1 -1
O o — O O _ o oO—— O
PN
=< —C -1
o
Now, this is the incarnation:
al — Sgg(ql); a; — Slg(qi), 7= 4,8;

ai — s12(q%), i =5,9; a; = qW, i =23,6,T.
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10.4.4. PBW-basis and dimension. Notice that the roots in each A%, i € Iy,
are ordered from left to right, justifying the notation S, ..., 511.
The root vectors xg, are described as in Remark 2.14. Thus

{xglli ) xgjxgll |0 <ng < Nﬁk}.
is a PBW-basis of B;. Hence dim B, = 273%6 = 283%.

10.4.5. The Dynkin diagram (10.22 a). The Nichols algebra By is generated
by (z;)iec1, with defining relations

22 = 0; 3 =0; [x332, T32]c = 0;
(10.23) x5 = 0; HCL‘(lg),iL‘g]c,xQ]g = 0; (23321, 321]c = 0;
13 = 05 ‘T%2 =0; Hx323x321]0a $2]c =0.

Here, O = {a1 + 202 + 203} and the degree of the integral is
a=12aq + 22a9 + 24as3.

10.4.6. The Dynkin diagram (10.22 b). The Nichols algebra By is generated
by (2i)ic1, with defining relations
(10.24) x% = 0; :c% = 0; m?Q = 0; x% =0; x13=0;
. (2223, Tasle = 05 [21, X223]c = Q12727123 — G23[T123, T2
Here, O1 = {a1 + a2} and the degree of the integral is
a= 12071 + 2409 + 10043.
10.4.7. The Dynkin diagram (10.22 c). The Nichols algebra By is generated
by (z;)ie1, with defining relations
2 3 2 6
] =0; 5 =0; z5=0; T = 0;
(10.25) 1 2 3 (13)
Too1 = 0; @13 =0; [2223, w23]c = 0.
Here, O1 = {a1 + a2 + az} and the degree of the integral is
a=120q + 2409 + 160&3.

10.4.8. The Dynkin diagram (10.22 d). The Nichols algebra By is generated
by (z;)ic1, with defining relations

:c% = 0; x% =0; [7201,721]c = 0;
(10.26) w3 =0; 23 =0; [rag), w2l =0
-1 _
T3 = 0; (13 = @3((2)[%137@]6 + qi2(1 — ()zaz13.

Here, O1 = {aq + 2a2 + a3} and the degree of the integral is
g = 16aq + 2409 + 12a3.
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10.4.9. The Dynkin diagram (10.22 e). The Nichols algebra By is generated
by (zi)ie1, with defining relations

(10.27) 23=0; 23=0; 23=0; [212, 7123 123]c]c = 0;
| Ty =05 a3y =0 713 =0; (212, 2(13))¢ = 0.

Here, O1 = {2a1 + 22 + a3} and the degree of the integral is
1= 241 + 30as + 16as3.

10.4.10. The Dynkin diagram (10.22 f). The Nichols algebra B, is generated
by (2i)ic1, with defining relations

(10.28) IE% =0; xg =0; w9991 = 0; :1:% =0; z13=0; x93 =0.
Here, O = {ao} and the degree of the integral is
a = 140q + 2409 + 100&3.

10.4.11. The Dynkin diagram (10.22 g). The Nichols algebra By is generated
by (z;)iec1, with defining relations

23 =0; 23=0; [[x32,2321]c, Ta)e = 0;
(10.29) , 6

Here, O = {a2 + a3} and the degree of the integral is
g = 1404 + 2409 + 16@3.

10.4.12. The Dynkin diagram (10.22 h). The Nichols algebra By is generated
by (z;)ie1, with defining relations
6 2 3
r7=0; 253=0; 23=0; z112=0; 2113 =0; z332 =0;
(10.30) ' 2 ’ i
z(13) = q23(¢ — D[713, 22]e + q12(1 — ()z2213.
Here, O1 = {1} and the degree of the integral is

g = 161 + 8as + 14as.

10.4.13. The Dynkin diagram (10.221). The Nichols algebra By is generated
by (z;)ie1, with defining relations

(10.31) a3 =0, a3=0; a3=0; [v203,223]c=0;
zoo = 0; w13 =0; 2593 =0; [2(13), T3] = 0.
Here, O1 = {2a3 + a3} and the degree of the integral is

g = 8ay + 30a + 16a3.
10.4.14. The associated Lie algebra. This is of type Aj.

10.5. Type ufo(5). Here ¢ € G. We describe first the root system ufo(5).
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10.5.1. Basic datum and root system. Below, Ay, By, C4, T1 and T are
numbered as in (4.2), (4.7), (4.15), (3.11) and (3.14), respectively. The basic
datum and the bundle of Cartan matrices are described by the following
diagram:

By 534(Ca) 2 s24(T1) 1 r3(Aa)
[ ] [ ] _— [ ] _— [ ]
al a as aq
1] 1] 1]
By 3 1T® s240T®) 3 s24(Ba)
[ ) — [ ] [ ] — [ ]
as ag ar as
2| 2| 2|
K1 (.A4) 1 7;1 4 K2 (.04) 824(.34)
ag aio all a1z

Using the notation (3.1), we set:

A(j) ={1,12,2,123,23,3,1234, 1223242 123242 1234212233145 1223343 1223243 123243,
1223344 1233445 122345 1223345 234, 23242 2342 23243 34,342 4},

AP ={1,12,2,123,23,3,1223%4, 122324, 123%4, 2374, 1223%42, 12273443, 1273443, 1223%43,
1234,1223242 1232421223343, 12342, 234,23%42, 34, 2342342 4},

A(j) ={1,12,122,2,12233,1233,1223,123, 23, 3, 1221334, 122324, 1223324, 123324, 122324,
12324,2324,12243342 122334, 12334, 12234, 1234, 234, 34,4},

Al ={1,12,2,123,23,3,1223%4, 12213542, 12233542 1233542, 122324, 12233142, 123342,
12243543 12324,1223%42,2324,12243543 12233%43 1233543 12233421234, 234, 34, 4},

A(f) ={1,12,2,1223,123,23, 3, 122324, 122324, 12324, 2324, 324, 12233342 1233342 1223342
12234,1234, 1223242 234,123%42 124, 23242 34,24, 4},

ALY ={1,12,2,1223,122%32,12%32,123,12232, 23, 3,1%2%3%4, 12213%4,12233%4, 123334,
1223324,123324,122324, 1224334212234, 1234, 124, 234, 34, 24, 4}.

Now the bundle of sets of (positive) roots is described as follows:

ar > A, ay = 7(AY),  az e we(AY),  as e ra(A),
as +—r A(Q), ag 834(A$))), a7 +— RQ(AEE)), ag +—» 824(Af)),
ag —r 813(A$)), ailp — /€7(AEE)), ail — /€7(Af)), a1 — 824(AS_1)).

10.5.2. Weyl groupoid. The isotropy group at a; € X is

Wi(ar) = (51", 657,65, 641 6352646164526364) =~ W (Ay).
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10.5.3. Incarnation. We set the matrices (q(i))ieﬂ6, from left to right and
from up to down:

¢ ¢ ¢ ¢ ¢ ¢ ¢ -C—¢-C-1-1¢
o o o o) o o o )

¢ ¢ ¢ ¢ -1 ¢ —=¢ ¢ ~-C—=¢~-C-1 ¢ ¢
o ) o o o o o o .

(10.32)
1 —1
(@] (@]
¢ . ¢ \_C
¢ ¢ -1 ¢ N¢ -¢ —¢ -1 ¢ >-1
[e] (@] (e] O —— O —— O
Now this is the incarnation:
ar — q, as — 7(q¥), az — k6(q'®),  as— ra(q),
as - q%, as — s31a®), a7 k2(q?),  as > s24(q?),
ag — 513(9D), a1~ k@), a1 = kr(@®),  ara > s2a(qW).

10.5.4. PBW-basis and dimension. Notice that the roots in each A%, i € Iy,
are ordered from left to right, justifying the notation (i, ..., Bos.
The root vectors xg, are described as in Remark 2.14. Thus

{xggj cagrgt |0 <my, < Nﬁk}~
is a PBW-basis of B;. Hence dim B, = 2103°610 = 220315,
10.5.5. The Dynkin diagram (10.32 a).

The Nichols algebra By is generated by (x;);er, with defining relations
(10.33) 112 = 0; @201 = 0; 56222 =0; !Eig =0, 1<j,qj=1;
T332 =0; w334 =0; 23=0; 20=0, a€Ol.

Here 0% = {1,12,2,123,23,3,12233%45, 1233445 12234%,1223345} and the degree of the
integral is
s = 50a; + 909 + 1203 + 14004.

10.5.6. The Dynkin diagram (10.32 b).
The Nichols algebra By is generated by (z;);er, with defining relations

112 =0; X921 = 0; xi; =0, 1 <j, qij = 1;
(10.34) 2923 = 0;  [T443,743]c = 0;  [[743,7432]c, T3] = 0;
x%zO; xizO; xﬁzO,aEOi.

Here 07 = {1,12,2,1223%4,12233%43 1233443, 122344312342 2342 34?2} and the degree
of the integral is

g = 50aq + 90as + 1203 + 104ay4.
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10.5.7. The Dynkin diagram (10.32 ¢).
The Nichols algebra By is generated by (2;);er, with defining relations
112 =0; 2443 =0; z55=0, i <, g = 1;
(10.35) 3_ 0. 2 _ (. .6 _ q
=0, 23=0; 2,=0, a€O].

Here 07 = {1,12233,1233,12243%4,12324,23%4,12243342,122334,12%34,4} and the degree
of the integral is

= 76 + 142a9 4+ 903 + 50a4.
10.5.8. The Dynkin diagram (10.32 d).
The Nichols algebra By is generated by (z;);er, with defining relations
r112=0; 221 =0; 2;5=0, i<j q;=1;
(10.36) o P S g
Tooz = 0; :L‘443—07 :L‘3—0, l’a—O,OZEOJr.

Here 07 = {1,12,2,12243%42,12233542, 1233542, 1224354%,12233%4%,1233%43 4} and the
degree of the integral is

a = 76a; + 142a9 4 1983 + 10404.

10.5.9. The Dynkin diagram (10.32 e).
The Nichols algebra By is generated by (x;);er, with defining relations

mr12 =0y [12a,02]e = 05 23 =0y 245 =0, i <j, @i =1;
(10.37) w330 = 0; [w334,34]c = 0; 2 =0; 2l =0, a €Ol;
23 =05 z(24) = 2q34C[w24, T3] + 223737 24.

Here 0% = {1,1223,1223%4,324,12233342,1233%42 123242 124, 23242, 24} and the degree
of the integral is

a1 = 501 + 90as + 104a3 + T60r4.

10.5.10. The Dynkin diagram (10.32 f).
The Nichols algebra By is generated by (2;);er, with defining relations

T112 = 0; x% =0; 2;=0, i1<j,q;=1
(10.38) (€124, 2] = 0; acg =0; xi =0; xg =0, o€ Oi;
T(24) = —Q34Z[w247 T3]e — @323339624-

Here 07 = {1,122332,12332,1224324,12233%4,123334,122%3%42,124, 34, 24} and the degree
of the integral is

g1 = 76aq + 142a9 4+ 1043 + 50ay4.
10.5.11. The associated Lie algebra. This is of type Ay.

10.6. Type ufo(6). Here ¢ € G). We describe first the root system ufo(6).
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10.6.1. Basic datum and root system. Below, A4, Fjy, Df)/\, T and ;T®
are numbered as in (4.2), (4.35), (3.20), (3.11) and (3.13), respectively. The
basic datum and the bundle of Cartan matrices are described by the following
diagram:

3
DNy Ay 3 saaT®) Fy
e — o —— ° —_— °
al a2 as a4
1 1| 1|
A4 3 1T 4 A4
o — ° —_— °
as ag ar
2| 2
T s24(T1)
° ®
as ag
4| 4]
k2(Ayg) 2 524(1T) 3 k2(Ag)
° — ® — e
aio aii a12
1] L] 1]
(2) DA
w2(Fa) o s24(1TP)) 3 w2(A1) 4 w2(Dg7)
° —_ ° — e  — °
a3 ai4 als ale

Using the notation (3.1), we set:

‘AS})::{1,12,2,123,23,3,122334,122324,12334,2334,1223542,334,12324,
12233643 1223442 1233643 2324, 1223643 1223342 123442 23442,
1223543 324,123%4%, 1234, 23347, 234, 3347 34,4},

zsg?)::{1,12,2,123,23,3,1323334,1223334,1222334,1222324,13243542,
122334, 13243442 13233342 14253543 13233342 122324,132°3643 12233442,
13243643 12324, 13243543, 2324, 17233342, 12223342 1223342 1234, 234, 34, 4},

zxﬁ” ={1,12,2,123,23, 3,132334,1%2334, 172234, 17224, 13213242 132342,
12234, 13233242 14253243 1323342 12233242 13253243 1224, 1223342,
13243243 1321343 1234, 234, 1222342, 122342124, 24, 34,4},

zs§9 ={1,12,2,1%223,12?3,123,23, 3,132%3%4, 1329324, 13233%4, 1223334,
1323324,1223324, 14253442 1222324, 122234, 13253442, 13243442 13243342,
122324,12234,13233%4%,12233%42 12324, 1234, 23%4, 234, 34, 4},

zxg?)::{1,12,2,123,23,3,123334,122334,122324,23334,1243542,22334,1243442,
12253643 12324,1233%42,1234, 1253543 1243643 1233342 22324, 124354
1223342 233142 2324, 233342 223342 234,34, 4},

zxﬁ” ={1,12,2,123,23, 3,12%34,12734, 1224, 2334,12%3247, 124347, 2234,
12253243 1233242 1234,1253243 123342 224, 233242 1243243 23342,
234,12%34%,12%34%,124, 22347 24, 34,4},

zxi@ ={1,12,2,12%3,123,2%3, 23, 3,12%3%4,12%324, 123334, 23334, 123324,
12253442 23324 1253442 122324,12234,12%3%42 1243342 22324, 9234,
1233342 12324,1234, 233342, 2324, 234, 34,4},
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Af) ={1,12,2,123,23,3,1223%4,1223%4, 1234, 2374,172%3%42 12233342,
1233342 12234,12243%43 12233242 1233242 1223342 12243343 1234,
12233343 1223242 1233%43,234,12%4, 127342124, 24, 34,4}

Now the bundle of sets of (positive) roots is described as follows:
ag — r7(A®); a; > AD i =1,2,5; a; > s3a(A), i =3,4,6,7;

ag — /~$6(A(+8)); aj — mg(ASrN_i)), i=11,14; a; — mg(ASrl?_i)), otherwise.

10.6.2. Weyl groupoid. The isotropy group at a; € X is

Wi(ar) = (s, 551 636462646362, 551, 641 ) = W (G2) x W (Ga).

10.6.3. Incarnation. We set the matrices (q("))scr,, from left to right and
from up to down:

¢ ¢ -1 ¢ ¢ ¢ ¢ -1 ¢ -1 ¢ -1 ¢ ¢
O (@] O (@] O (@] O O
—1 -1 ¢ ¢ -1 -1 ¢ ¢
O O
N
S
-1 ¢ ¢ -1 -1
O O (@]
(10.39) P L S S !
X
¢
-1 ¢ -1 -1 -1
(@] (] (@]
-1 ¢ -1 -1 -1 ¢ ¢ ¢
O O

Now this is the incarnation:
ag — ’@'7(‘1(8))3 a; q(i)a 1= 1>275; a; — 334(q(i))> 1= 374767 77

ag — re(q®); a; = ks(qUTY), i =11,14;  a; — ko (qU7Y), otherwise.

10.6.4. PBW-basis and dimension. Notice that the roots in each AY i € I,
are ordered from left to right, justifying the notation Sy, ..., 830.
The root vectors xg, are described as in Remark 2.14. Thus

{ngg caprgt |0 <y < Nﬁk}-

is a PBW-basis of B;. Hence dim B, = 2!841% = 242,
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10.6.5. The Dynkin diagram (10.39 a).
The Nichols algebra By is generated by (2;);er, with defining relations

r112 =0; 332 = 0; z; =0, i <3, Gij = 1;
(10.40) [z(13),m2]c = 05 [[[T(24),3]cs T3)es 23] = 0;
Zq43 = 0; z3 = 0; =0, ae ol.

Here 07 = {1,3,3%4,12324,12233643 1223442 1233643, 2324, 324,3%42 34,4} and the de-
gree of the integral is

g = 30aq + ddas + 138as + 7204.

10.6.6. The Dynkin diagram (10.39 b).
The Nichols algebra By is generated by (2;);er, with defining relations

ruz=0;  2{=0; 2 =0, i < j, Gy = 1;
(10.41) [55(13)a-732]c = 0; [[.%‘23,[1323, x(24)]c]c, ;c3]c = 0;

Here 01 = {12,23,1223%4,233%4, 12253643 1233442 1243643 92324 2324,233342 234, 4} and
the degree of the integral is

a = 30a; + 1162 + 138a3 + T204.

10.6.7. The Dynkin diagram (10.39 c).
The Nichols algebra By is generated by (z;);er, with defining relations

To21 = 0; x9293 = 0; .7}% = 0; Tij = 0, ¢ <y, aij =1;
(10.42) w4 =0;  23=0; 23=0; 2,=0, a€O%;
T(24) = ¢34C[T24, T3] + q23(1 + () T3724.

Here 0% = {2,123,12234,2334,2234,12253243, 123342, 233242 234,12%34%, 24,34} and the
degree of the integral is

g = 3001 + 1162 + T2a3 + 520y.
10.6.8. The Dynkin diagram (10.39 d).
The Nichols algebra By is generated by (x;);er, with defining relations
To21 = 0; w443 = 0; @223 = 0; w5 =0, 1 < j, ¢ = 1;
(10.43) :L'% =0; m% = 0; xi =0, a € (’)i;

[w27 [x(24)7 x3](3]c = 123943
1+¢

Here 07 = {2,23,12%324,233%4,123324, 12253142, 122324, 22324, 12324, 233342, 234, 4} and the
degree of the integral is

(223, T (24)]e + (¢ — 1)q23q247 (20) 23

g = 30y + 116 4+ 98as + 52ay4.
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10.6.9. The Dynkin diagram (10.39 e).

The Nichols algebra By is generated by (2;);er, with defining relations

T201 =05 @ae3 =0; w5 =0, @ <j,qj =1
(10.44) 0 20 20 oA q
T3 =0; 27=0; 23=0; z,=0, a€O].
Here 0% ={2,123,13233%4,1222324, 13233342, 122324, 13253643, 12233142 13213643, 12324, 1234, 4}
and the degree of the integral is
g = 88a + 116ce 4+ 138ag + 7204.

10.6.10. The Dynkin diagram (10.39 f).
The Nichols algebra By is generated by (z;);er, with defining relations

2 2 L~
21 =0; [z124,22)c = O; x5 =0; xy; =0, <], qj =1,

(1045) 23=0; [[r12,003)e22]le =0; 23=0; z, =0, a € O0%;
w35 =07 @01y = q34C[24, ¥3]c + q23(1 + w3224

Here 0% = {12,23,132334,122234,12234,13233242, 13253243 1223342 1324343, 1234, 124, 34}
and the degree of the integral is
g = 88aq + 116 4+ 72a3 + 520y4.
10.6.11. The Dynkin diagram (10.39 g).
The Nichols algebra By is generated by (z;);er, with defining relations
(10.46) Tas =0; 21 =0; 23=0; @5=0,1<j, G =1
' [[712, 2(13)]e; T2]c = 0; :z:% =0; x§3 =0; fci =0, a € Oi.

Here OF ={12,123,13243%4,1323334,1223324,1222324, 13253442 122324, 13233342, 1234, 2324, 4}
and the degree of the integral is

g = 88aq + 116as + 98aig + 52ay.

10.6.12. The Dynkin diagram (10.39 h).
The Nichols algebra By is generated by (x;);er, with defining relations

T2 =0; 2443 =0; 23 =0; 25=0, i<j, G =15
(10.47) L4490 = 0; :r%g =0; x% =0; a:4a =0, a € (’)1;
[T124, 2] = 0;  T(24) = q34C[T24, 23]c + q23(1 + ) z3724.

Here 01 = {1,3,1223%4,122324,12213342 12234, 1234, 12233343 1223242, 1233343, 234, 1224}
and the degree of the integral is

a = 52aq + 98as + 723 + 88ay.
10.6.13. The associated Lie algebra. This is of type G2 X Gs.

10.7. Type ufo(7). Here ¢ € G)5. We describe first the root system ufo(7).
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10.7.1. Basic datum and root system. Below, Agl), By, Cy and G5 are num-
bered as in (3.2), (4.7), (4.15) and (4.43), respectively. The basic datum and
the bundle of Cartan matrices are described by the following diagram:

1
G 2 & 1 AY o B 1 (G
[ ] [ ] [ ] [ ] [ ] .

al a2 as aq4 as
Using the notation (3.1), the bundle of (positive) root sets is the following;:
AT ={1,1%2,1%2,12,2} = 7(AP), A% ={1,172,12,12% 2},

AP ={1,172,1%22,12,2} = 7(A%).
10.7.2. Weyl groupoid. The isotropy group at az € X is
W(az) = (s° 2616261 = S5°s1626162) =~ Z/2.

10.7.3. Incarnation. This is called ufo(7). We assign the following Dynkin
diagrams to a;, @ € I5:

¢ ¢ 1 -7 ¢ -1 —¢7 ¢ ¢
a1 — © o, ag+— O o, az+— O o,
(10.48)
-1 —¢ =¢ -1 —¢ =¢
ag — O o , as —» O —— O .

10.7.4. PBW-basis and dimension. Notice that the roots in each A%, i € I,
are ordered from left to right, justifying the notation 51, 52, 83, B4, O5.
The root vectors xg, are described as in Remark 2.14. Thus

{arabiagiagiagt |0.< e < Na, |
is a PBW-basis of B;. Hence dim By = 22324 = 144.

10.7.5. The Dynkin diagram (10.48 a).
The Nichols algebra By is generated by (z;);er, with defining relations

(10.49) z} = 0; x3 = 0; (2112, 212]c = 0.
Here, O1 is empty and the degree of the integral is s1 = 12a; + 6.

10.7.6. The Dynkin diagram (10.48 b).
The Nichols algebra By is generated by (z;);er, with defining relations

(10.50) l’? = 0; l’% = O; [[113112, 1’12]0,1'12]0 =0.
Here, O1 is empty and the degree of the integral is s1 = 12a1 + 8a.
10.7.7. The Dynkin diagram (10.48 ¢).

The Nichols algebra By is generated by (z;);er, with defining relations

4
(10.51) z3 = 0; x5 = 0; (21, T122]c + @mfz =0.

(3)¢

Here, Oi is empty and the degree of the integral is s = 81 + 8awo.
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10.7.8. The Dynkin diagram (10.48 d).
This diagram is of the shape of (10.48 b) but with ¢° instead of . There-
fore the corresponding Nichols algebra has relations analogous to (10.50).

10.7.9. The Dynkin diagram (10.48 e).
This diagram is of the shape of (10.48 a) but with ¢® instead of . There-
fore the corresponding Nichols algebra has relations analogous to (10.49).

10.7.10. The associated Lie algebra. This is trivial.
10.8. The Nichols algebras ufo(8). Here ¢ € G)s.

10.8.1. Basic datum, root system and Weyl groupoid. The root system is of
type ufo(7) as in §10.7.1; hence the Weyl groupoid is as in §10.7.2.

10.8.2. Incarnation. This is a new incarnation, denoted ufo(8). We set the
matrices (q));er,, from left to right:

_F 3 _ 2 3 _ 2 )
(10.52) P - R
Now this is the incarnation:
a; — q(i), 1 € I3; a; — T(q(ﬁ_i)), i €lys.

10.8.3. PBW-basis and dimension. Notice that the roots in each A%, i € I,
are ordered from left to right, justifying the notation 81, 52, 83, B4, O5.
The root vectors xg, are described as in Remark 2.14. Thus

{xggmgjxgsxgjxgll |0 <ng < N/Bk} .
is a PBW-basis of By. Hence dim B; = 223212 = 432.

10.8.4. The Dynkin diagram (10.52 a).
The Nichols algebra By is generated by (z;);er, with defining relations

(1053) "L‘P = O; CL‘% = O; 11112 = 0; [xng,mu]c =0.
Here, Oi = {1} and the degree of the integral is s = 20c; + 16ca.

10.8.5. The Dynkin diagram (10.52 b).
The Nichols algebra By is generated by (x;);er, with defining relations

(10.54) :n:{’ =0; x% =0; :rg =0; [[z112, Z12]e; T12]c = 0.
Here, (’)1 = {a1 + as} and the degree of the integral is ss = 20cv; + 16cs.

10.8.6. The Dynkin diagram (10.52 ¢).
The Nichols algebra By is generated by (2;);er, with defining relations

(10.55) 2 =0; 25=0; 2{3=0; [z1,z122]c = (1 + ¢+ ) qroaiy
Here, (’)1 = {a1 + as} and the degree of the integral is s = 16cv; + 16cs.
10.8.7. The associated Lie algebra. This is of type Aj.
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10.9. Type ufo(9). Here ¢ € G),. We describe first the root system ufo(9).

10.9.1. Basic datum and root system. Below,Ca, G2, Hs 1 and Hz 3 are num-
bered as in (4.43), (4.15) and (3.21), respectively. The basic datum and the
bundle of Cartan matrices are described by the following diagram:

Hsp o C; 1 Haz o 7(G2)
[ ] [ ] [ ] o
al a as aq

Using the notation (3.1), the bundle of root sets is the following:
AT ={1,1°2,1%2,1%2,1°22 172,12, 2},
A% ={1,122,1523 13221428 1524 12,2},
A% ={1,1%2,12,1%2% 1324 12,123 2},
A% ={1,12,122% 1325 1225 122 12 2}.

10.9.2. Weyl groupoid. The isotropy group at az € X is

W(az) = (s c1%81, S5 %6152) ~ Z/2 X Z/2.

10.9.3. Incarnation. We set the matrices (q¥);er,, from left to right:

. - =4 s = =5
(1056) Cb _C *C CO C g 74 <5 -1 g C -1

o — (¢] (¢] o .

Now this is the incarnation:
ai — q(4), as — q(3), az +— T(q(l)), ag — T(q(z)),
10.9.4. PBW-basis and dimension. Notice that the roots in each A%, i € I,

are ordered from left to right, justifying the notation 5y, ..., Bs.
The root vectors xg, are described as in Remark 2.14. Thus

{ajgs agirgt |0 <mny < Nﬂk} :
is a PBW-basis of B;. Hence dim B, = 223%24224% = 21234,

10.9.5. The Dynkin diagram (10.56 a).
The Nichols algebra By is generated by (x;);er, with defining relations

21 =0; afh, =0; 2y =0;
(10.57) 14 ¢7
23 =0; [z1,T120)c = 7CC10(]12£E%2-

1+¢
Here, O = {301 + a2, a1 + as} and the degree of the integral is
Jr
g = 108y + 58ax.
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10.9.6. The Dynkin diagram (10.56 b).
The Nichols algebra By is generated by (2;);er, with defining relations

(1058) 56111 = 0; :L‘%4 = 0; 56%112 = O; 9921 — 0; [[SEHQ, .’Elg]c,l‘lg}c = 0.
Here, 01 = {201 + ag, a2} and the degree of the integral is
g = T4daq + 60as.

10.9.7. The Dynkin diagram (10.56 ¢).
The Nichols algebra By is generated by (z;);er, with defining relations

(10.59) z3 = 0; 23 =0; (112, [T112, T12]cJ2" = 0 i3 = 0;

1+¢+¢5+2¢7+ ¢
1_|_<’4+C6_|_<’11

Here, (’)1 = {ba1 + 3az, a1 + ao} and the degree of the integral is

[90112, [[$112, 1312]07 $12]c]c - CQCJ12[IE112, 9012]2 =0.

9= 168a1 + 112as.

10.9.8. The Dynkin diagram (10.56 d).
The Nichols algebra By is generated by (z;);er, with defining relations

2470.
=Y

2% _ (. 2 A
xy = 0; x5 =0; [z1112, T112)5

(10.60)
z1111112 = 0; (%112, Z12]c = 0.
Here, Ol = {bay + 2as, a1} and the degree of the integral is

a = 168aq + H58as.
10.9.9. The associated Lie algebra. This is of type A1 x Aj.

10.10. Type ufo(10). Here ¢ € GY,. We describe first the root system.

10.10.1. Basic datum and root system. Below, G2 and Aé2) are numbered as
in (4.43) and (3.4), respectively. The basic datum and the bundle of Cartan
matrices are described by the following diagram:

2 2
G o AP AP, g
[ ] [ ] [ ] o .
al al al ai

Using the notation (3.1), the bundle of root sets is the following:
AT ={1,1%2,172,1°23,132% 112% 12,2} = A%,
AP ={1,1%2,1%2,1°22,1%2,1%2% 12,2} = A%,

10.10.2. Weyl groupoid. The isotropy group at a; € X is

Wi(ar) = (sf, 5  s1sas1626162) ~ Z/2 X Z/2.
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10.10.3. Incarnation. We assign the following Dynkin diagrams to a;, ¢ € Iy:

3 =2 5

¢ ¢ -1 ¢ ¢ -1
ai+— o o, ag — © o,
(10.61)
-C* —¢® -1 —¢ =T° 1
a3z — O o, Q4+> © o .

10.10.4. PBW-basis and dimension. Notice that the roots in each AY', i € Iy,
are ordered from left to right, justifying the notation 1, ..., Bs.
The root vectors xg, are described as in Remark 2.14. Thus

{xg: a0 <y < Nﬁk} .
is a PBW-basis of B;. Hence dim By = 2452202 = 160000.

10.10.5. The Dynkin diagram (10.61 a).
The Nichols algebra By is generated by (z;);er, with defining relations

(10.62) 2’ = 0; x5 = 0; (2112, 212]2° = 0;
r11112 = 05 [[[*112, Z12]e, T12)6, T12]e = 0.
Here, Ol = {a1,3a1 + 2} and the degree of the integral is
s = 100a7 + Sda.

10.10.6. The Dynkin diagram (10.61 b).
The Nichols algebra By is generated by (x;);er, with defining relations

5_0. 20 _ . .20 _q.
vy =05 27310 =05 273 = 0;

(10.63) 1-¢Yv
23 =0; [z1, [w112, 212)c]e + ﬁ‘hﬂ%w =0.

Here, Oi = {3a1 + ag, a1 + aa} and the degree of the integral is

1 = 100aq + 48as.

10.10.7. The Dynkin diagram (10.61 c).
This diagram is of the shape of (10.61 b) but with —( instead of ¢. Thus
the information on the corresponding Nichols algebra is analogous to (10.63).

10.10.8. The Dynkin diagram (10.61 d).
This diagram is of the shape of (10.61 a) but with —( instead of ¢. Thus
the information on the corresponding Nichols algebra is analogous to (10.62).

10.10.9. The associated Lie algebra. This is of type A1 X Aj.

10.11. Type ufo(11). Here ¢ € G}5. We start by the root system ufo(11).
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10.11.1. Basic datum and root system. Below, Agz), Cy and Hp 3 are num-
bered as in (3.4), (4.15) and (3.21), respectively. The basic datum and the
bundle of Cartan matrices are described by the following diagram:
AP AY 5 e Hag
[ J

[ [} o .
al as as a4

Using the notation (3.1), the bundle of root sets is the following:
A% ={1,112,1%2,122,1%22112° 12,2},
A% ={1,1%2,1%2,1%2° 1°22,122,12, 2},
AP ={1,172,1°2°,152%,192%,1%2% 12, 2},
A% ={1,1%2,12,1%2% 1221225, 123 2}.

10.11.2. Weyl groupoid. The isotropy group at a; € X is

Wi(ar) = (51" @s162616261,$5") = Z/2 X /2.

10.11.3. Incarnation. We assign the following Dynkin diagrams to a;, ¢ € Iy:

¢ ¢t ¢ ¢ ¢
aj o o , az++ O o,
(10.64) ,
¢ ¢ -1 ¢ -C* ¢
ag +— o o, a4 — O o .

10.11.4. PBW-basis and dimension. Notice that the roots in each AY i € Iy,
are ordered from left to right, justifying the notation 1, ..., fs.
The root vectors xg, are described as in Remark 2.14. Thus

{a ozt 10 << N3 )
is a PBW-basis of B;. Hence dim B, = 223%5230% = 213%5%.

10.11.5. The Dynkin diagram (10.64 a). The Nichols algebra By is generated
by (z;)ie1, with defining relations

. 1— C2
2 30 9 2
2 =0; a5 =0; [x1,[z112,2 = > z2,;
(10.65) ! 2 (21, [T112, T10]c]e I C7C q127712
209 =0; 221 =0; [[[x112, T12]e, T12]e, T12]e = 0.

Here, O1 = {9, 2a1 + a2} and the degree of the integral is

1= 861 + T2ac.
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10.11.6. The Dynkin diagram (10.64 b). The Nichols algebra By is generated
by (zi)ier, with defining relations

(10.66) ifz =0; 35(5):1))(1)2 = 0; (2112, Z12]c = 0;
vy =0; @112 = 0; [[T1112, T112]es T112)e = 0.
Here, Oi = {4aq + ag,2a1 + as} and the degree of the integral is

g = 210aq + 72a0.
10.11.7. The Dynkin diagram (10.64 c). The Nichols algebra By is generated
by (zi)ier, with defining relations

30_0.
=Y

xi’ = 0; :n% =0; [[z112, 212]e, T12]7

(10.67) “

715 = 0;  [[[v112, Z12]e, T12)e, T12)e = 0.

Here, Oi = {4a1 + 3az, 201 + a2} and the degree of the integral is
a = 210a + 140ass.

10.11.8. The Dynkin diagram (10.64 d).
The Nichols algebra By is generated by (z;);er, with defining relations

2" = 0; 23 =0; [x1,212]c + LCBCIOQHJC%Q =0;
(10.68) 1+ (12
230 =0; 211112 =0, [[112, 212]es T12)e = 0.
Here, Ol = {a1,3a1 + a2} and the degree of the integral is
g = 140a7 + Tdao.
10.11.9. The associated Lie algebra. This is of type A1 x Aj.
10.12. Type ufo(12). Here ¢ € G;. We start by the root system ufo(12).

10.12.1. Basic datum and root system. Below, G2 and Hj 1 are numbered as
in (4.43) and (3.21), respectively. The basic datum and the bundle of Cartan
matrices are described by the following diagram:

Go 3 Hs 1

o— o

al a

Using the notation (3.1), the bundle of root sets is the following:
AT ={1,1%2,172,1724 1523 182° 1322 1725 1723 1°2% 12,2},
AP ={1,1°2,1%2,1722,132,182% 1°2% 1723 122, 1322 12, 2}.
10.12.2. Weyl groupoid. The isotropy group at a1 € X is
Wi(ar) = (51", 65 s1652) =~ Dg.

10.12.3. Incarnation. We assign the following Dynkin diagrams to a;, ¢ € Io:

o _ -
(10.69) P e S -
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10.12.4. PBW-basis and dimension. Notice that the roots in each AY', i € Iy,
are ordered from left to right, justifying the notation Sy, ..., 812.
The root vectors xg, are described as in Remark 2.14. Thus

{apz ozt 105 e < Ny, }.
is a PBW-basis of By. Hence dim B; = 26146 — 21276

10.12.5. The Dynkin diagram (10.69 a).
The Nichols algebra By is generated by (z;);er, with defining relations

(10.70)

1112 =0; 23 =0; [[z112, T12]e, 212) 20 = 0;
z1ly = 0; (2112, 12) 21 = 0;
it =0; 215=0; [r112, [2112, 712t = 0;

¢ —3¢* =3¢ +¢* —3¢°

—2¢+2¢3 — >+ (8
Here, Oi = {a1, 201 + ag, 5a1 + 3ag, dag + 3ag, 3ag + 2a2, a1 + as} and the
degree of the integral is

[36112, [[35112, 96'12]& 3012](;](; = q12 [36112, 3712]2-

4 = 238a1 + 150a.

10.12.6. The Dynkin diagram (10.69 b).
The Nichols algebra By is generated by (x;);er, with defining relations

2 A 14 A 14 Q. 14 _ Q.
vy =0; @179 =0; 17110 =0; [71112,7112]0" = 05

a0y t=0 si=0 el =0
1+¢*
iz =05 [21, [#112, T12]e)e = qwmﬂﬁlz-

Here, Oi = {a1,4a1 + a2,3a1 + a2, 5a1 + 2a9, 201 + g, a1 + as} and the
degree of the integral is

1 = 238a1 + 90as.
10.12.7. The associated Lie algebra. This is of type Gbs.
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