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It is proved that a complex cosemisimple Hopf algebra has at most one compact invo-
lution modulo automorphisms.
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Introduction

Let H be a complex cosemisimple Hopf algebra, that is, any finite dimensional
H-comodule is completely reducible, or equivalently H is completely reducible as
comodule via the comultiplication (see 1.3 (¢) in [1]). We prove that two compact
involutions of H [2] are necessarily conjugated by a Hopf algebra automorphism.
This extends a well-known theorem of Cartan to the quantum case. Using results
from [3], this was proved recently for finite Hopf algebras [4]. Since then, the author
noticed however the paper [5] which contains a weak form of those results from [3]
and enables him to extend the theorem to the infinite case. The second part of the
proof is a variation of Mostow’s proof of the above mentioned Cartan’s theorem
— see p. 182 in [6]. In the first section of this paper, we recall some results on
cosemisimple Hopf algebras (some of them go back to [7]) and give a formula (1.8)
for the Killing form — an invariant bilinear form on H arising from (a choice of) the
integral and normalized by a further invariant condition. In the second, we prove
the theorem. For this, we use an invariant sesquilinear form on H also derived from
the integral, first considered in [8].

1 Killing forms on cosemisimple Hopf algebras

We shall work over an arbitrary field K in this section. The notation for Hopf al-
gebras is standard: A, S, ¢, denote respectively the comultiplication, the antipode,
the counit; we use Sweedler [9] notation but drop the summatory.
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1.1. Let H be a Hopf algebra. Recall that for a finite dimensional right comodule
¢:V — VQ@H, its left and right duals 4c and ¢? are the right H-comodule structures
on V* defined as follows. Let (h;)ier be a basis of H. Then c¢(v) = ), Ti(v) ® hi,
with T; € EndV, T; = 0 for all but a finite number of i. Define

@) =Y "T(@)® S (h), ) =3 "Ti(e) ® S(hy),

13 2

for a € V*. 4V, V4 denote V* considered as H-comodule via, respectively, %c, ¢?.

In the category of finite dimensional right comodules, the functors V + 4V and
V ~ V¢ are inverse to each other; therefore, the following are equivalent:

(a) V= (VHY (b)) V=4dV); (o) Vix4v

1.2. H* has an algebra structure provided by the transposes of the multiplication
and the counit. Any (left or right) H-comodule is then a (right or left) H*-module;
such H*-modules are called rational. For example, H is an H*-bimodule via

£ — h=ha)(z, ko), h<—z=(z,ha)he); heH,zec H*.

This correspondence is in fact an isomorphism between the categories of H-comodules
and rational H*-comodules. By psychological reasons, it is often helpful to state
properties in terms of H*-actions. By abuse of notation, we write § : H* — H* for
the transpose of the antipode and ¢ : H* — K for evaluation in 1. The represen-
tations p? and %p can be defined for any representation p of H*; for rational ones,

they agree with those derived from the previous ¢4, %c.

1.3. Define ¢V : (EndV)* — H by ¢V (a) = 3 ;{a,Ti)h;. Then ¢" is a mor-
phism of coalgebras. Furthermore, it is injective if V is irreducible, and the simple
subcoalgebras of H are exactly the Im4Y for V irreducible [1]. Thus, if H is
cosemisimple,
H=o, ;1my",

where H denotes the set of isomorphism classes of irreducible H comodules. (We
often confuse a class with a representant). Im%Y is the isotypic component of
H, for the coaction given by the multiplication, of type V. We shall denote it
alternatively as H. or H,; p will be then the representation of H* derived from
the coaction ¢. We shall also identify H with the set of isomorphism classes of
irreducible rational H*-modules.

Given a finite dimensional representation p : H* — EndU, let ¢V : U* ®
U — H* be the “matrix coefficient” map defined, for v € U, « € U*, by
(#Ygy> ) = (a, p(z)v). Modulo the usual identifications (End U)* ~ End U (pro-
vided by the trace) and EndU ~ U*®U., it coincides with the usual transpose map
tp: (EndU)* — H**:

'p(T) = ¢Ygy, if T €EndU, T(u)= (a,u)v.
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Note that tS( X@u) = ¢fféa Let © : H — H™** be the natural injection; then
O¢Y = ¢V (V is an H-comodule and hence a rational H*-module). @ is a mor-
phism of H*-bimodules.

1.4. Let d : W — W ® H be another finite dimensional right comodule structure;
then V @ W also is an H-comodule whose coaction we shall denote ¢ ® d. Let
S; € EndW be, similarly as above, such that d(w) = ) S;(w) ® h;. Define
a comodule structure on Hom (V,W) by 4 v -, .S; 0 Ao T; ® h;jS(h;). The
natural isomorphism between Hom (V,W) and W ® V* is in fact an H-comodule
isomorphism between Hom (V, W) and W ® V¢. The isotypic component of trivial
type of Hom (V, W) with respect to the adjoint action is exactly the space of H-
comodule maps. Therefore, if W and V are irreducible, the multiplicity of the
trivial representation in W ® V4 is 1 (resp., 0) if W and V are (resp., are not)
isomorphic. In other words, W ® V' contains the trivial representation if and only
if W~dv.

1.5. Recall that a linear functional [ : H — K is a right integral if
([ )L = (], by hay, forallh € H. (1.1)
It is equivalent to provide [10]
(a) A right integral [.
(b) A bilinear form ((|)) : H x H — K satisfying

((uvfw)) = ((u|vw)), (1.2)
((z = v[w)) = ((vISz — w)), (1.3)

for all w,v,we€ H, z € H*.

Explicitly, (f,v) = ((v[1)), ((u|v)) = ([, uv). In general, if (|) is a bilinear form
which satisfies (1.3), then A € H* given by (A, v) = (v|1) is a right integral; (1.2)
is a “normalization” condition which ensures the bijectivity of the correspondence.
Indeed, if (| ) satisfies (1.3) then ((u|v)) = (uv|1) also does, and in addition satisfies
(1.2).

Now let M, N C H be submodules for — and let § : M — N be given by
(8(m), n) = ((m|n)); @ is a morphism of A-modules by (1.3). Therefore if M and
N are both irreducible, 8 is either 0 or an isomorphism. Taking M = K1 = H,,
the trivial submodule of H, we conclude that (f,v) = 0 for all v € N, for all
irreducible, non-trivial, N.

Now assume that H is cosemisimple. For a € H, write a = ) _=a,, with

peH
a, € H,. By abuse of notation, we shall write a..1 instead of a, with a. € K. Then

<f’ h) = as(frl)' (1.4)

Conversely, the linear map defined by (1.4) and an arbitrary value of (f, 1) is a right
integral, because H, is a subcoalgebra of H. It follows that, for H cosemisimple,
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the space of right integrals is one-dimensional. Interchanging right by left and
viceversa, one sees that any left integral also is expressed by (1.4); hence H is
unimodular. In particular, by the “dual hand” version of the equivalence above,

((])) also satisfies
((v — Szjw)) = ((vlw — z)). (1.5)

Finally, if H is an arbitrary Hopf algebra admitting a right integral such that
(f,1) # 0 then H is cosemisimple. See [7}, where the formula (1.4) appears for the
first time.

Lemma 1.6. Let H,H' be Hopf algebras, let T : H' — H be an isomorphism
of coalgebras such that T(1) = 1 and let [ be a right integral for H. Then [oT
is a right integral for H'. In particular, [o8 is a left integral for H. If H is
cosemisimple, T' is an automorphism of Hopf algebras of H and [ is normalized by
(J,1) =1, then ((Tu|Tv)) = ((u|v)), for allu,v e H.

Proof. Straightforward. |

1.7. Let H be a cosemisimple Hopf algebra as above.

Theorem (Thm. 3.3 in [5]). For each simple subcoalgebra C of H, 82C = C.

Corollary. For any irreducible H-comodule ¢, ¢*¢

Proof. Let V be the space of c. Then 8% (¢Ys,) = X(;: € H. N H_.ae (modulo
identification by ©). Thus H, = H,ss and hence ¢ ~ ¢%4. a

As observed in [5], the proof of this theorem implies that ((})) is non-degenerate.
This fact will also follow from formula (1.8) below.

1s tsomorphic to c.

1.8. We still assume that H is cosemisimple and normalize [ by (f,1) = 1. The
corresponding ((})) will be named the Killing form of H. We shall give a formula

for it in the spirit of [3]. Let a = Eceﬁ ac, b= zceﬁ b. € H. Then

((al6)) = > ((@cabe))-

c€§

So we need only to precise ((|)) : Hee ® H, — K, for ¢ : V — V ® H irreducible.
Recall that we have identified H, ~ (End V)* with End V' via the trace map. Fix
M € Aut V such that

N TiM@ hi =) MT; @ S2(hs). (1.6)
Let p: H* — End V be the representation corresponding to ¢. Then (1.6) means
that Mp(S%z) = p(z)M, for all z € H*. Let S € End (V9), T € End V and define
B.(S,T) = Tr *STM). (1.7)

Then

I

B(z — 5,T) = Te(*(p*(2)S)TM) = Tr (*S*(p%(2))TM) =

Tr (*Sp(Sz)TM) = B.(S,Sz —T).
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On the other hand,

B.(S — 8z,T) = Tr (*(Sp?(Sz))TM) = Tr (*(p?(Sz))! STM) =
Tr *STM (p*(8z))) = Tr (ST Mp(S%z)) =

= Tr (*STp(z)M) = B(S,T — z).

As End V isirreducible as H*-bimodule, there is only one bilinear form satisfying
(1.3) and (1.5), up to scalars. Therefore,

((aalbe)) = C.B.(S,T) = CTr (*STM),

for some scalar C,, where S € End (V¥) corresponds to a.¢, and T to b,. Next we
compute C,. The preceding B.(, ) depends on M and hence is also defined up to
a scalar; what we need, therefore, is to take C, = 1 and adjust M.

So let a,4, by, S and T be as above. We wish to compute ((a,¢[b,)) = ((a,4b,|1))
= de, if @b, = Ereﬁ d,, with d;, € H; and d..1, d. €K, instead of d.. We
compute a,ab, (compare with [11]). V4@V decomposes as direct sum of irreducible
A-submodules: V4@V = ®resUr. Let 1 : U — V4@V be the inclusion
and 7, : V¢ ® V — U,, the projection with respect to this direct sum. Let
Ry =m(S®T), € Hom(Ur,Uy). Then S®T =3, tuRrumr; that is, (Ryy)
is the “partition” of S ® T in blocks with respect to the decomposition above, and
d. corresponds to R... We already know that (Vd ® V), is one dimensional. A
generator is Z = ) ; cp<cp @h ® Muy, where (vy) is a basis of V and (a3) is the
dual basis. Indeed, ~ ~

(@c)(2) = Y 'Ti(an) ® Ti(Mus) ® S(hy)hi
1<h<n i jel
= ) (v 'Ti(om))ak ® Ti(Muy) ® S(hj)h
1<h,k<n,i,jel
= Y ap®Ti{MTju) ® S(hy)h
1<k<n,i,jel
= Y a®TTiM(w)®S ' (hj)hi=201.
1<k<n,i,jel

Now the projector 7. : V¢ ® V —KZ must be of the form =.(P) = (2, P)Z, for
PeVi@V, with 2 e (VI@V). Let 2 = Y cicn, ¥ ® a; (with the usual
vector space identification of (V¢ ® V) with V® Vd_) and write tentatively = for
P (.Q, P)Z. Then Cﬂom(vd®v,KZ)(7r) = Zi,jEI idowo (tT; ® T}) ®S (S(h,)hj)
Evaluating in § ® w the first factor, we get

> (2, 'Ti(B) @ Tj(w))Z ® S(S(hi)hy)
i,jel
= > (o, 'T(BN o, Tj(w)Z ® S (S(hi)hy) =

1<k<n
1,j€rl
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D B TT;(w)Z ® S (S(hi)hy)

i,j€l

= S (B, Ti(w)Z ® S (S(higr))hi(z)
i€l

= fw)Z01=(2,88w)Z11,

that is, 7 is invariant, and nonzero. As some multiple of it is a projector, #(Z) =
(2,Z2)Z = Tr Z # 0. Therefore, we can normalize M, as promised, by Tr M = 1.
We can now write m, instead of 7. But d.Z = 7. ((S®T)Z) = (£2,(S®T)Z)Z and
hence

de = (‘Qa(‘S@T)Z) = <Z’U,‘ ®a"’25aj ®TMUj>

t

= \;(a,», TMu;){ej, Sv) = Tr (PSTM).

%,

We have proved
((apalb,)) = Tr ('STM), (1.8)

where a,q corresponds to S € End (V?), b, to T and M € End V satisfies (1.6) and
TTM=1.

1.10. Is the Killing form symmetric? We compute ((by|a,a)) = ((b;¢|a,)), for
7 = p?. Note that (1.6) is equivalent to

(tM)_lpd(Szz) = Pd(-’l?) M)~ forall z € H*.

Also, if b, corresponds to T' € End V then it corresponds to M~TM € End V4.
Let g = (Tr (M~1))~!. Applying (1.8) to p? we get
((bplage)) = pTx ((MTITM)SCM)™Y) =
= puTr CT(M)71S) = yTr (SM™IT).

Thus the Killing form is symmetric if and only if M = (dim V)~ !idy for all irre-
ducible V| if and only if $? = id. Indeed, §2b, corresponds to MTM~! € End V.

2 Killing forms and *-Hopf algebras

We assume in this section that K=C. We suppose further that H is a *-Hopf
algebra, i.e., it is a *-algebra and the comultiplication is a morphism of *-algebras;
H* is then considered as *-algebra by (z*,v) = (z, S(v)*). It is known that (Sz)* =
8§ !(z*). For convenience, we shall denote 7 (z) = (Sz)* = S~ 1(z*).

Lemma 2.1. (i) The following data are equivalent:
(a) A right integral [ : H —C.
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(b) A bilinear form ((|)) satisfying (1.2), (1.3).
(¢} A sesquilinear form (|) satisfying
(uolw)e = (v|u w)e, (2.1)
(g —v|w)e = (vlg” — w)e. (22)
(ii) Also, the following are egquivalent:
(d) A left integral [ : H —C.
(e) A bilinear form ((|)). satisfying (1.2), (1.6).
(f) A sesquilinear form (|), satisfying

(uv|w)y = (u|v*w), (2.3)
(v — z|w)y = (vjw«z*),. (2.4)

Proof. We have already discussed the equivalence between (a) and (b), resp. (d)
and (e). The correspondence between (b) and (c), resp. () and (f), is given by

(vfw)e = ((w|v)),  resp.  (v|w), = ((v"|w))-, (2.5)

and correspondingly, ((v|w)) = (w|v*)e, ((v|w)), = (v*|w),. For the proof, we need
the formulas

(z — v)* = (Sz)* — v*, (v—2z)" =v" —(Sz)".

Thus (v]z* — w)e = (" — w)*|v)) = ((S7'z — w*|v)) = (w*|z — v)) = (2 —
v[w), and the rest is similar. 0

2.2. Let [ be a right integral and let A be defined by (A, k) = ([, h*). Then A is
also a right integral:

(A, hyyhezy = ([ by Yoy = ([ by V™) = ((J,R™)1)" = (4, h)1.

Assume now that H is cosemisimple. We shall normalize, in what follows, [ by
(f,1) = 1. Then, by the uniqueness of the right integral, [ = A. It follows that
the corresponding sesquilinear form (| ), is Hermitian:

(vlw)e = ([, w*) = (4,w"v) = ([, (w*v)*) = (w|v): .

Remark. These facts were essentially first observed by Majid [8].

2.3. A x-representation of H* is a representation p : H* — End V together with
a non-degenerate sesquilinear form (|) such that (p(z)vjw) = (v|p(z*)w), for all
x € H*, v,w € V. Such form shall be called invariant. We consider in the
following only finite dimensional rational representations. A representation is a
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*_representation if and only if there exists a sesquilinear isomorphism J : V — V¢
such that J(p(z)w) = p*(Tz)J(w). Explicitly, (Jw,v) = (v|w). ¥ T € EndV,
define as usual T* € End V by (Tv|w) = (v|T*w), or equivalently by T* = J~1*T'J.
Let V be a right H-comodule and let T; as in 1.1. Let &= Y, T; ® h;; it follows
easily from the comodule axioms that & is inversible and 6! = ", T; ® S(h;), in
the algebra EndV @ H. The last is a *-algebra once a non-degenerate sesquilinear
form is chosen. It can be shown that the corresponding rational representation
of H* is a *-representation if and only if &~! = &*: hence the present definition
agrees with that of [2].
Let V be a *-representation. Let (J‘l)t : V* — V be given by
(p,(J”l)Ta) = (a,J~1u). Then the * in H of the matrix coefficients is given
(modulo @) by [11], p. 306

v o* ve
= . 2.6
247 ¢(J—1)Jfa®1v (2.6)

Equivalently, if 7" € End V' corresponds to w € H, then w* corresponds to
JTJ' € End V4. (2.7)

Here one uses that Tr(JAJ™!) = Tr A, for A € End V. L

If (|) is an invariant form, then (|)opp, given by (v|w)epp = (wlv), also is.
Assume that V is irreducible. Then invariant forms are unique up to multiplication
of a scalar; in particular (| )opp = A(]) for some scalar A. Applying this twice, we
see that AA = 1. Multiplying (|) by a suitable scalar, we can assume that A = 1,
i.e., that (|) is Hermitian.

Let V be a *-representation, with invariant form (|), and let M € AutV sat-
isfying (1.6). Let (|)q be the form on V¢ defined by (uln)as = (M~1J~1q|J~1u);
it is also invariant. If V is irreducible, then V¢ also is; assuming this, we shall
normalize first (|) to get an Hermitian form, and second M, to get an Hermitian
form on V9. In such case, M = M*, i.e., M is self-adjoint. Now asume in addition
that (|) is an inner product. Then (| )q4 also is, if and only if M is positive definite;
in such case, Tr M > 0. Conversely, if V¢ admits an invariant inner product, then
some multiple of M is positive definite.

A representation is not always a *-representation. For example, let H* be
the group algebra of an abelian finite group with the involution (3,5 Ase;)* =

> 9€G —/\_geg. Let x be a one-dimensional representation of G which is not real; this
admits no sesquilinear invariant form.

2.4. Now we are ready to state the key point of the proof of the main result. We
first recall a definition [2].

Definition. We shall say that H is a compact quantum group if any rational, finite
dimensional, representation of H* carries an invariant inner product.

By a standard argument, if H is compact, then is cosemisimple. It is known (see
e.g. [12], [13]) that completions of compact quantum groups as in the preceding
definition with respect to a suitable norm give rise to compact quantum groups as
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in [2]; the preceding notion corresponds to that of “algebras of regular functions”
in Woronowicz definition [2].

Proposition. H is a compact quantum group if and only if the hermitian form
(|)e ts positive defined.

Proof. If (|)e is positive defined then any H*-submodule of H (for —) carries an
invariant inner product and H is a compact quantum group. Conversely, assume
that H is a compact quantum group. Let v € H,, w € H,; then w* € H.a by (2.6),
and (vJw), = 0 if p and 7 are not isomorphic, by (2.5). So assume that p = 7 and
let S,7 € End V correspond to v, w, respectively. By (1.7) and (2.7), we have

(v|w)e = (w*|v)) = Tr ((JTIH)SM) = Tr (M*SJTJ1)
= Tr (JMS*TJ™Y) = Tr (MS*T) = Tr (T*SM)
(This formula also implies that (] ), is Hermitian). Thus (v|v), = T (S*SM) > 0
if § # 0, because M, normalized by Tr M = 1, is positive definite. m]

2.5. The preceding Proposition enables us to adapt Mostow’s proof of Cartan’s
theorem of the uniqueness of compact involutions (see Ch.1I, Thm. 7.1 in [6]) to
our setting. See also Proposition 2 in [4].

Proposition. Let H be a compact quantum group with respect to * and let z — z#
be another structure of *-Hopf algebra on H. Then there exists a Hopf algebra
automorphism T of H such that # and T * T~ commulte.

Proof. Let N be given by N(u) = (u*)¥; this is a Hopf algebra automorphism
and any finite dimensional submodule of H is contained in some finite dimensional
submodule W such that N(W) = W. By Proposition 2.4, the Hermitian form (| ),
(defined with respect to *) is positive definite. From Lemma 1.7, we deduce that N
is self-adjoint with respect to (|),. Then the Hopf algebra automorphism P = N?
is diagonalizable with positive eigenvalues; let (X;);cr be a basis of H such that
PX; = X\ X;. For each s € R, one has a well-defined linear automorphism P* of H.
We claim that P* is also a Hopf algebra automorphism. Let (:’c be constants such
that A(Xi) =3, ;¢ ¢t X; ® Xj, for all k. Hence

Aidjeh = Aeck;

for all 4,5,k and a fortiori A} Aick;, = Aje fj, that is, P* preserves the comultiplica-

tion. With similar arguments, one shows that P? is a morphism of Hopf algebras.
Now T = P!/4 does the job, cf p.183 in [6]. ]
Theorem 2.6. Let H be a compact quantum group with respect to * and also with
respect to #. Then there exists a Hopf algebra automorphism T such such that
*T = TH.

Proof. Taking into account that H, is *- and #-stable, the proof in [6], p. 184, (see
also [4]) can be adapted here. 0

The final writing of this paper was done at the University of Poitiers. I thank the kind
hospitality of Thierry Levasseur and the Department of Mathematics.
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