
JOURNAL OF CHEMICAL PHYSICS VOLUME 111, NUMBER 18 8 NOVEMBER 1999
Viscoelasticity and generalized Stokes–Einstein relations
of colloidal dispersions
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The linear viscoelastic and diffusional properties of colloidal model dispersions are investigated and
possible relations between the~dynamic! shear viscosity and various diffusion coefficients are
analyzed. Results are presented for hard sphere and charge-stabilized dispersions with long-range
screened Coulomb interactions. Calculations of the dynamic long-time properties are based on a
~rescaled! mode coupling theory~MCT!. For hard sphere suspensions a simple hydrodynamic
rescaling of the MCT results is proposed which leads to good agreement between the theory and
experimental data and Brownian dynamics simulation results. The rescaled MCT predicts that the
zero-shear limiting viscosity of hard sphere dispersions obeys nearly quantitative generalized
Stokes–Einstein~GSE! relations both with regard to the long-time self-diffusion coefficient and the
long-time collective diffusion coefficient measured at the principal peak of the static structure factor.
In contrast, the MCT predicts that the same GSEs are violated in the case of dispersions of highly
charged particles. The corresponding short-time GSEs are found to be partially violated both for
charged and uncharged colloidal spheres. A frequency dependent GSE, relating the elastic storage
and viscous loss moduli to the particle mean squared displacement, is also investigated, According
to MCT, this GSE holds fairly well for concentrated hard spheres, but not for charge-stabilized
systems. Remarkably good agreement is obtained, however, with regard to the frequency
dependence of the Laplace-transformed reduced shear stress relaxation function and the
Laplace-transformed reduced time-dependent self-diffusion coefficient for both charged and
uncharged particle dispersions. ©1999 American Institute of Physics.@S0021-9606~99!50541-2#
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I. INTRODUCTION

The prediction of rheological and diffusional transpo
coefficients of colloidal suspensions from microscopic mo
els is a major theoretical challenge. It is important to deve
an understanding of the microscopic origins of these prop
ties to aid, e.g., in the modeling of more complex and ind
trially relevant dispersions. The calculation of colloid
transport properties from first principles is complicated b
cause of the presence of long-range many-body hydro
namic interactions~HI! mediated by the intervening solven
The presence of HI distinguishes colloidal systems fr
simple liquids in which the molecular motion is ballistic an
is determined only by the intermolecular force law.

Of particular technological relevance is the viscoelas
behavior of colloidal dispersions, characterized by the r
part, h8(v), and imaginary part,h9(v), of the complex-
valued dynamic viscosityh~v!. The function h~v! deter-
mines the macroscopic stress induced in a suspension
the application of a low-amplitude oscillatory shear strain
frequencyv ~cf. Sec. II!. The dynamic viscosity and its zero
frequency limit, the zero-shear limiting suspension viscos
h, have been determined experimentally for a variety of c
loidal systems using mechanical rheometers.1–8

a!Corresponding author, electronic mail: gerhard.naegele@uni-konstan
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In contrast, diffusional properties like the short-time a
long-time collective and self-diffusion coefficients, partic
mean square displacements~MSDs!, and the dynamic struc
ture factor,S(q,t), are nearly always determined using d
namic light scattering~DLS! techniques.9,10 For an infinitely
dilute suspension, the shear viscosityh becomes equal to the
solvent viscosityh0 that is related to the single particle di
fusion coefficientD0 by the well-known Stokes–Einstein re
lation D05kBT/(6ph0a), wherea is the radius of a spheri
cal colloidal particle.

In concentrated dispersions and in dilute dispersio
with long-range particle interactions, particle diffusion
slowed down due to potential and hydrodynamic particle
teractions. Furthermore, the suspension viscosity can be
stantially larger than the infinite dilution valueh0 . As a
consequence of these interactions, the Stokes-Einstein
mula no longer represents the particle diffusivity. In mon
disperse suspensions of correlated particles, one needs
to distinguish between self-diffusion and collective diffusio
coefficients, depending on whether the Brownian motion o
tagged particle or the density relaxation involving the sim
taneous motion of many particles is considered. Moreov
the viscosity and the diffusion coefficients associated w
the short-time regimet!ta have to be distinguished from
the corresponding quantities for the long-time regimet
@ta . Here,ta5a2/D0 is the time required for a nonintere
1 © 1999 American Institute of Physics
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acting spherical particle of radiusa to diffuse a distance
comparable to its own size.

Many attempts have been made in the past to con
experimentally the rheological and diffusional transport p
cesses of concentrated colloidal suspensions.1–3,7,11,12 The
idea underlying these attempts is that both processes re
relaxation by diffusion in response to a structural deform
tion caused by an applied flow or by the diffusing partic
themselves. These types of studies have led to a numb
empirical generalized Stokes–Einstein~GSE! relations in
which a diffusional property correlates with a rheologic
property.1,2,12,13

One well-known example, studied extensively in the p
as a function of the particle volume fraction,F, is the GSE
between the zero-shear limiting shear viscosityh and the
long-time self-diffusion coefficientDS

L , given by

h~F!

h0
5

D0

DS
L~F!

. ~1!

TheF dependence of these quantities is made explicit in
~1!. This GSE has been explored for hard sph
dispersions,14–18 surfactant systems,19 and protein
dispersions.20 Although this GSE works reasonably well in
qualitative sense for these systems, experiments by Im
and co-workers12 revealed that it is a poor approximation fo
charge-stabilized dispersions. However, for concentra
hard sphere dispersions near the~idealized mode coupling!
glass transition concentration, Fuchset al. have verified the
GSE in Eq. ~1! using the MCT predictions for the
a-relaxation scaling regime.21,22 According to their calcula-
tions, (DS

L/D0)(h/h0)'0.94.22

It is worth noting that there is no obvious theoretic
reason to expect Eq.~1! to hold in an extended concentratio
regime sinceh can be is expressed as a time integral ove
transverse stress autocorrelation function@cf. Eq. ~38!#,
whereasDS

L can be expressed in terms of the Green-Ku
formula,

DS
L5

1

3 E0

`

dt^V~ t !•V~0!&, ~2!

over the velocity autocorrelation function of a representat
particle with velocityV, which is obviously a one-particle
property.

Segrèand co-workers2 used a two-color DLS techniqu
and viscometric measurements ofh to identify another GSE
which appears to be nearly quantitative for hard sphere
persions for particle volume fractions up to the freezing tr
sition. Their experimental results show that the shear visc
ity of a hard sphere dispersion scales quantitativ
according to

h~F!

h0
5

D0

DC
L ~qm ;F!

, ~3!

with the reciprocal of the so-called long-time collective d
fusion coefficient,DC

L (qm), measured at a wave numbe
qm , corresponding to the peak position of the maximum
the static structure factor,S(q). The coefficientDC

L (qm) is
Downloaded 06 Aug 2004 to 128.104.68.125. Redistribution subject to AI
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determined experimentally by noting that for long correlati
times t@ta , S(qm ,t) decays exponentially as2

S~qm ,t !'S~qm!e2qm
2 DC

L (qm)t. ~4!

While long-time structural relaxation over distances 2p/qm

and inverse viscosity might be expected to show similar
pendences on concentration, there is again no obvious re
to expect the GSE in Eq.~3! to hold quantitatively. Through
its dependence on the long-time form ofS(qm ,t), the diffu-
sion coefficientDC

L (qm) is linked to a time integral over the
longitudinal~i.e., not transversal as it is the case forh! stress
autocorrelation function, evaluated now at a finite wa
number qm . In fact, while the GSE has been establish
experimentally for colloidal hard spheres~and appears to
hold also for other types of colloidal–like systems23!, recent
mode coupling theory~MCT! calculations13 suggest that the
same GSE does not hold for salt-free charge-stabilized
pensions of spherical particles~cf. also Sec. V!. It follows
that these calculations predict that Eq.~3! does not provide a
universal quantitative relation for concentrated dispersion
dependent of the type of particle interaction.

Further GSEs arise from considering the short-time v
sions of Eqs.~1! and ~3!, i.e.,7

h 8̀ ~F!

h0
5

D0

DS
S~F!

, ~5!

and

h 8̀ ~F!

h0
5

D0

DC
S~qm ;F!

. ~6!

In these short-time GSEs,h 8̀ 5h(v→`) is the high fre-
quency limiting shear viscosity~cf. Sec. II!, and DS

S is the
short-time self-diffusion coefficient. Furthermore,DC

S(qm) is
the short-time collective diffusion coefficient associated w
the short-time relaxation of the dynamic structure factor
wave numberqm . The short-time form ofS(qm ,t) is given
by Eq. ~4!, with DC

L (qm) replaced byDC
S(qm) and t!ta .

The diffusion coefficientDS
S is a purely hydrodynamic prop

erty quantifying the small-displacement mobility of a trac
particle in the equilibrium dispersion. Correspondingly, t
high frequency viscosityh 8̀ reflects viscous dissipation du
to a high frequency, low-amplitude shear oscillation in t
linear viscoelastic regime. The short-time properties ofh 8̀ ,
DS

S , andDC
S(qm) are related to the diffusive motion on tim

scales that are long relative to the momentum relaxation
fluid vorticity diffusion times, but short relative to the struc
tural relaxation timeta .

Experimental work of Shikata and Pearson3 and of Zhu
and co-workers11 on hard sphere suspensions support
short-time GSE in Eq.~5! within experimental accuracy
whereas theoretical calculations~cf. Sec. V B! and computer
simulations24,25suggest that there are measurable differen
betweenh 8̀ /h0 and D0 /DS

S . For charge-stabilized system
with intermediate high salt content, Bergenholtz a
co-workers7 showed experimentally thath 8̀ /h0 lies above
(DS

S/D0)21 for all volume fractions considered. In Sec. V
we examine theoretically the short-time GSE in Eq.~5! for
both hard sphere and salt-free charge-stabilized dispers
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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as well as the short-time version in Eq.~6! of the long-time
GSE of Segre` et al.2 for neutral and charged colloida
spheres.

So far no test has been provided for the short-time v
sion in Eq.~6! of the long-time GSE of Segre` et al.2 Such a
test will be provided in Sec. V B, for both neutral an
charged colloidal spheres.

An interesting heuristic extension of the GSEs in E
~1! and ~5! to finite strain frequencies has been proposed
Mason and Weitz.1 According to them, an approximate GS

h̃~s!

h0

'
D0

s2W̃~s!
5

D0

sD̃~s!
, ~7!

exists between the dynamic viscosity,h̃(s), in the Laplace
domain, with

h̃~s!5h~s5 iv!5h 8̀ 1E
0

`

dtDh~ t !e2st, ~8!

and the Laplace transform,

D̃~s!5E
0

`

dte2stD~ t !5sW̃~s! ~9!

of the self-diffusion functionD(t)5dW(t)/dt. Here,W(t)
5^@R(t)2R(0)#2&/6 is the MSD of a representative partic
with position vectorR. Equation~7! is supposed to hold fo
frequenciess in the Laplace domain sufficiently small so th
inertial effects are not resolved. In Eq.~8! Dh(t) is the shear
stress relaxation function associated with noninstantane
stress relaxations~cf. Sec. II!.

Since h̃(s→0)5h and h̃(s→`)5h 8̀ , as well as
lims→0 sD̃(s)5DS

L and lims→` sD̃(s)5DS
S , Eq. ~7! reduces

to the GSEs in Eqs.~1! and ~5! in the zero-frequency and
high-frequency limits, respectively. Mason and Weitz ha
tested Eq.~7! experimentally for a variety of systems, includ
ing polymer networks and a concentrated metastable h
sphere dispersion.1,26 For these systems they find good qua
tative, albeit not quantitative agreement with Eq.~7!. Besides
Eq. ~7! we will discuss in Sec. V C another frequency depe
dent GSE related to the Mason and Weitz GSE.

From a practical point of view, the GSE in Eq.~7! is
quite intriguing: if it were to hold for a variety of particle
pair potentials, thenh8(v) andh9(v) could be determined
over a very large frequency regime using dynamic light sc
tering techniques. In contrast, the accessible frequency ra
of conventional rheometers is far more restricted. It is the
fore of relevance to investigate the general validity of t
Mason and Weitz GSE. Such an investigation is perform
in Sec. V C over an extended range of volume fractions
both colloidal hard spheres and charge-stabilized sus
sions located in the fluid regime.

The purpose of this article is twofold: first we provide
thorough discussion of the differences and similarities of
viscoelastic and diffusional behavior of hard sphere disp
sions and of charge-stabilized dispersions of spherical
ticles with long-range potential interactions. Several lon
time and short-time rheological properties~within the limit
of small applied strain! and diffusional quantities are calcu
Downloaded 06 Aug 2004 to 128.104.68.125. Redistribution subject to AI
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lated and discussed. Comparisons with experiments
computer simulations are made to assess the accuracy o
theoretical predictions.

Second, we employ a~rescaled! mode coupling theory
for the calculation of long-time rheological and diffusion
properties, and we explore in detail its predictions with
gard to the GSEs introduced here in Sec. I. In this work,
make use of an idealized version of the mode coupl
theory. This type of MCT was developed several years a
for the description of the dynamics of simple liquids.21,27–29

It was later recognized that this theory is particularly w
suited to study the glass transition because the slowing d
of the dynamics and structural arrest is captured through
tain bifurcation scenarios that appear in the self-consis
long-time solution of the MCT equations.21,30–33 Further-
more, the results of the MCT have been shown to be
accord with experimental measurements of the dynamic
concentrated colloidal hard spheres near the g
transition.33–38

Recently, starting from the Smoluchowski equation d
scribing colloidal dynamics, we have attempted to inclu
the effect of hydrodynamic interactions within the fram
work of the original MCT, in anticipation of their importanc
in colloidal systems with particle concentrations below t
glass transition. This inclusion of HI has been accomplish
for the far-field, pairwise additive part of the HI, for bot
monodisperse suspensions39 and multicomponent colloida
mixtures;40–42 it can be used to determine the properties
suspensions for which near-field HI are not important, su
as de-ionized suspensions of charged particles. For h
sphere suspensions where many-body HI is important e
at moderate densities, we employ a semi-empirical hydro
namic short-time rescaling procedure in the spirit
Medina-Noyola43 and of Brady16,17 to approximate the effec
of HI on the particle dynamics. The outcome of our theor
ical treatment is compared with results from experiments
Brownian dynamics~BD! computer simulations. For an a
ternative treatment of the effect of HI within the MCT fram
work see Ref. 44. The results presented in this work w
demonstrate that the~rescaled! MCT is a versatile tool for
determining a large number of dynamic properties of co
centrated colloidal dispersions.

This article is organized as follows: in Sec. II pertine
relations and concepts associated with the general theor
linear viscoelasticity of colloidal dispersions are introduce
Section II also includes a discussion of the asymptotic
havior of various viscoelastic properties. For charg
stabilized suspensions, the well-known concept of the eff
tive hard sphere fluid model is introduced, as is commo
done in the analysis of soft sphere suspensions,8–10 which
allows a simplified qualitative and physically intuitive de
scription of, in particular, short-time dynamic quantities.
Sec. III, we summarize and discuss the self-consis
coupled MCT equations used for numerically calculating
structural part of the linear viscoelastic functions and dif
sional properties of neutral and charged particle dispersio
The limiting behavior of the viscoelastic functions obtain
from MCT is established in Sec. IV and compared w
known exact results. We examine in Sec. IV the nonlin
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



p
p
n
e

a
d
is
tio

lid

n
e

th
c

s
s

ric
e-

en

.
b

m
u

ni
rt

q.
es
ar
at
cy

rm

a
ng

nd
he
cro-
lax-

-

re-

l to

the

-

y
pic
in

vis-
is
pa-
cy
-

y

us
ius.
a
the

ski
l

8724 J. Chem. Phys., Vol. 111, No. 18, 8 November 1999 Banchio, Nägele, and Bergenholtz
volume fraction dependence of short-time diffusional pro
erties of salt-free charge-stabilized suspensions, and com
it with corresponding results for hard sphere dispersio
These short-time quantities are used in Sec. V A for the
ploration of the short-time GSEs.

Numerical results for the viscoelastic and diffusion
properties of hard sphere and salt-free charge-stabilized
persions are presented and discussed in Sec. V. Compar
are made with experimental data and computer simula
results. Section V A contains the~rescaled! MCT results for
the viscoelastic functions and the shear viscosity. The va
ity of the frequency independent GSEs introduced here
investigated in Sec. V B on the basis of our numerical a
analytical results. The accuracy of the frequency depend
Mason and Weitz GSE is analyzed in Sec. V C using
~rescaled! MCT. Our final conclusions are contained in Se
VI.

II. LINEAR VISCOELASTICITY: GENERAL RELATIONS

Here in Sec. I we summarize some pertinent relation
the theory of linear viscoelasticity of colloidal dispersion
These relations will be needed in the ensuing analysis.

We consider a homogeneous suspension of sphe
particles subjected to a weak oscillatory fluid flow of fr
quencyv and shear rate amplitudeġ. More explicitly, the
ambient oscillatory fluid velocity field is assumed to be giv
by the real part of

u~r ,t !5ġyx̂eivt ~10!

with the Peclet number Pe5ġta!1. Here,x̂ is the unit vec-
tor in x-direction andv is the frequency of the applied strain
The Newtonian shear viscosity of the solvent is denoted
h0 . For Pe!1, the suspension is only slightly distorted fro
its isotropic equilibrium microstructure, and there exists th
a linear relation between the xy component,Sxy(t), of the
macroscopic suspension stress tensor at timet and the shear
rate amplitudeġ. This relation is40

Sxy~ t !5ġFh 8̀ eivt1E
2`

t

dtDh~ t2t!eivtG
5Sxy

H ~ t !1Sxy
T ~ t !, ~11!

whereh 8̀ is the high frequency limiting viscosity andDh(t)
is the shear stress relaxation function describing the no
stantaneous stress relaxation of the slightly shear-disto
microstructure. Both quantitiesh 8̀ and Dh(t) are taken
within the limit of vanishing shear rate. According to E
~11!, there are two distinct contributions to the shear str
Sxy(t). On the time scale of interest, the hydrodynamic p
Sxy

H (t) of the shear stress follows the applied strain r
ġ cos(vt) instantaneously, giving rise to the high frequen
limiting shear viscosityh 8̀ .8,45 This is a purely hydrody-
namic quantity that is due to the particles being nondefo
able. To first order in the volume fractionF5(4/3)na3,
wheren is the number density of particles,h 8̀ is given by
the well-known Einstein resulth 8̀ /h05112.5F. The non-
instantaneous so-called thermodynamic contributionSxy

T (t)
to the macroscopic shear stress lags behind the strain rate
arises from Brownian and potential equilibrium restori
Downloaded 06 Aug 2004 to 128.104.68.125. Redistribution subject to AI
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forces.8,45 These forces resist the flow-induced distortion a
strive to retain the isotropic equilibrium microstructure. T
noninstantaneous relaxation of the shear-distorted mi
structure towards equilibrium is described by the shear re
ation functionDh(t).

Equation~11! can be rewritten in terms of the complex
valued dynamic shear viscosityh~v! as

Sxy~ t !5h~v!ġeivt, ~12!

where

h~v!5E
0

`

dte2 ivth~ t !5h8~v!2 ih9~v! ~13!

is the Fourier-Laplace transform of the total shear stress
laxation function h(t)52h 8̀ d(t)1Dh(t) which accounts
also for the instantaneous hydrodynamic part proportiona
the delta functiond(t). The dynamic shear viscosityh~v! is
related to the complex-valued dynamic shear modulusG(v)
via

G~v!5G8~v!2 iG9~v!5 ivh~v!, ~14!

where

G8~v!5vh9~v!5vE
0

`

dt sin~vt !Dh~ t ! ~15!

is the frequency dependent elastic storage modulus and

G9~v!5vh8~v!5vFh 8̀ 1E
0

`

dt cos~vt !Dh~ t !G ~16!

denotes the viscous loss modulus. The real parth8(v) is in
phase with the oscillatory rate of strain and accounts for
dissipated energy, whereas the phase-shifted parth9(v)
measures the elastically stored energy. Notice thath9(v) is
in phase with the applied strainġ sin(vt). Purely viscous
behavior corresponds toh950, whereas purely elastic be
havior, aside from the high frequency contributionh 8̀ , cor-
responds toh82h 8̀ 50. For intermediate to high-frequenc
strain there is enough time for the system to restore isotro
equilibrium during one cycle and elastic energy is stored
the distorted configuration: the system behaves like a
coelastic fluid. Within the limit of large frequencies, there
no structural relaxation at all and consequently no accom
nying dissipation of energy. Therefore, the high frequen
limit of the complex shear viscosity is determined com
pletely by hydrodynamic interactions. Indeed, from Eq.~11!
it follows at large frequencies that

Sxy~ t !'ġFh 8̀ 2 i
G8̀

v Geivt, ~17!

provided thatvta@1 and provided that the high frequenc
limiting elastic shear modulusG8̀ 5G8(v→`) exists. The
limit v→` should be understood asta

21!v!th
21 where

th5ra2/h0 is the time required for an overdamped visco
shear wave to diffuse a distance equal to the particle rad
In the above,r is the mass density of the solvent. As
consequence, the high frequency regime corresponds to
short-time regime described by the Smoluchow
equation.9,40,45The upper bound onv guarantees that inertia
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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effects are absent in the particle dynamics and that solv
mediated hydrodynamic interactions can be considered to
instantaneously between the particles. The high-freque
modulusG8̀ exists provided that the shear relaxation fun
tion Dh(t) is regular att50, i.e., in the short-time regime
th!t!ta . For a regularDh(t), G8̀ is given by

G8̀ 5Dh~ t50!. ~18!

There are instances whereG8̀ does not exist. For a sus
pension of hard spheres without HI, it has been shown46,47

that G8(v) grows asymptotically without bounds asv1/2,
corresponding toDh(t), diverging like t21/2 for t→0. As
was derived in Ref. 47, the exact short-time form of t
reduced shear relaxation function of a hard sphere disper
in the absence of HI is given by

taDh~ t !

h0
'

18

5
F2A2

p
g~2a1!S t

ta
D 21/2

, ~19!

provided thatt!ta . Here,g(2a1) is the contact value o
the hard sphere radial distribution function for which acc
rate analytic expressions are known. The singular short-t
behavior ofDh(t) implies an asymptotic high frequency b
havior of the shear moduli according to

ta

h0
G8~v!'

18

5
F2g~2a1!~vta!1/2, ~20!

and

ta

h0
G9~v!'

18

5
F2g~2a1!~vta!1/21

h 8̀

h0
vta , ~21!

with vta@1. A finite plateau valueG8̀ of G8(v) is recov-
ered, however, when near-field HI is accounted for.18,47

Near-field HI causes the relative mobility of two spheric
particles to vanish upon contact.48

The high frequency limiting modulusG8̀ remains finite
also for suspensions with soft long-range repulsive inter
tions, where the effect of the physical hard core is co
pletely masked, such as in charge-stabilized suspens
with low salinity.

At zero frequency, Eq.~11! reduces to

Sxy5ġh, ~22!

whereh is the zero-frequency suspension viscosity. In t
work, we focus on the contribution,

h2h 8̀ 5Dh5E
0

`

dtDh~ t !, ~23!

to the shear viscosity due to noninstantaneous stress r
ations. As far ash 8̀ is concerned, Lionberger and Russe47

provide a semi-empirical expression for hard sphere sus
sions which covers the entire concentration range. This
pression is

h 8̀

h0
5

111.5F~11F20.189F2!

12F~11F20.189F2!
, ~24!

and it agrees well with measured values ofh 8̀ for hard
sphere dispersions and conforms to the exact low den
Downloaded 06 Aug 2004 to 128.104.68.125. Redistribution subject to AI
t-
ct

cy
-

on

-
e

l

c-
-
ns

s

x-

n-
x-

ity

result up to quadratic order@cf. Eq. ~25!#. Furthermore,h 8̀
diverges at the valueF50.64 where random close packin
occurs.

Exact numerical values for the low shear limiting visco
ity h of hard sphere suspensions are known only up to q
dratic order inF, i.e., h5h 8̀ 1Dh with49,50

h 8̀

h0
511

5

2
F15F21O~F3!, ~25!

and

Dh

h0
50.913F21O~F3!. ~26!

When the HI are neglected,Dh is given instead by8,46

Dh

h0
5

12

5
F21O~F3!. ~27!

For dilute suspensions of strongly repelling charge-stabili
particles, HI can be treated as a pairwise additive andh 8̀ is
well approximated by8,51

h 8̀

h0
511

5

2
F1

5

2
F21

15

2
F2E

0

`

dxx2g~x!J~x!, ~28!

with J(x)' 15
2 x26 for x5r /a@1. The integral on the right-

hand side of Eq.~28! is a number of at most the order of 1
Henceh 8̀ /h0 is expected to be well approximated by th
Einstein result forF!1.

Previous work10,52–54has revealed that the dilute limit
ing behavior of short-time transport properties of low-s
charge-stabilized suspensions is modified due to the lo
range repulsion among the particles. This leads to a qua
tively different volume fraction dependence compared
hard spheres. However, the Einstein term in the virial-ty
expansion of the high frequency viscosity is a single parti
property; it is unaffected by particle correlations, which a
the source of often fractionalF dependence of, e.g., th
~short-time! sedimentation velocity and the short-time se
diffusion coefficient@cf. Eq. ~70!#. As a consequence, th
Einstein termh 8̀ /h05112.5F is always, i.e., regardless o
the pair potential, a good approximation provided the volu
fraction is sufficiently small.

This point is clarified further by crudely approximatin
the radial distribution functiong(x) of a charge-stabilized
system by the zero-density formgEHS

(0) (x)5Q(x22b/a) of
an effective hard sphere~EHS! system. The effective radiu
b.a is assumed to be substantially larger than the hydro
namic radiusa. Here, Q(x) is the unit step function. The
effective volume fractionFeff is related to the physical on
by Feff5F(b/a)3. The effective particle radiusb accounts for
the electrostatic repulsion between the particles and can
identified asb5r m/2, wherer m is the principal peak position
of the actualg(r ). For the present case of salt-free suspe
sions of strongly charged particles,r m coincides to within
3% of the average geometrical distancer̄ 5a(4p/3F)1/3 of
two particles.55 Using the effective zero densityg(x) in Eq.
~28! with b5 r̄ /2, we obtain
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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h 8̀

h0
511

5

2
F1

5

2
F214.48F3. ~29!

The zero-density form ofg(x) for the effective hard spher
model used in deriving Eq.~29! can be improved to
gEHS(x)52(b/a)A(Feff)d(x22b/a)1Q(x22b/a) by adding
a delta-function term which accounts for the well-develop
first maximum of theg(r ) of charged particles. The dimen
sionless functionA(Feff) is determined from the compres
ibility equation56

11nE d3r @g~r !21#5
xT~Feff!

xT
id , ~30!

wherexT(Feff) is the isothermal compressibility calculate
using the Carnahan-Starling equation of state,56 and xT

id

5(nkBT)21 is the corresponding ideal gas value. Again u
ing b5 r̄ /2 and henceFeff5p/6, it follows that A(Feff)
50.25. As a result, the prefactor 4.48 in the cubic term
Eq. ~29! increases to 7.90 when the delta term contribution
considered. Since the prefactor of the cubic term is of
order of one, Eq.~29! reduces indeed to Einstein’s low de
sity result forF!1. It should be stressed that, contrary
hard sphere dispersions, theg(r ) of charge-stabilized col-
loids can exhibit strong oscillations even for volume fra
tions as low as 1024.10

It will be convenient for later discussion to introduce t
reduced dynamic viscosities4,50

R~v!5
h8~v!2h 8̀

h2h 8̀
, ~31!

and

I ~v!5
h9~v!

h2h 8̀
, ~32!

that correspond to the real and imaginary parts ofh~v!. The
quantitiesR(v) andI (v) vary between 0 and 1. As we wil
show in Sec. V,R(v) equals unity atv50, and it decays
monotonically to zero with increasing frequency. The fun
tion I (v) vanishes forv→0 andv→`, exhibiting a broad
maximum at intermediate frequencies.

III. CALCULATION OF VISCOELASTIC AND
DIFFUSIONAL PROPERTIES

We proceed now to establish an exact expression for
shear relaxation function with HI included, together with
Green-Kubo formula for the static shear viscosity. The ex
expression forDh(t) is the basis for a self-consistent mod
coupling theory for the linear viscoelastic functions and
the dynamic structure factorS(q,t). The latter is defined as9

S~q,t !5K 1

N (
l ,p51

N

eiq•(Rl (t)2Rp(0))L , ~33!

whereq is the wave vector with modulusq, andRl(t) is the
center-of-mass position vector of particlel at time t. The
equilibrium average of the unsheared suspension is den
by ^¯&. The functionS(q,t) includes information on the
diffusional properties and is the key property determined
DLS experiments.9,10 The many-body HI effects on the pa
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ticle dynamics in concentrated hard sphere dispersions
be accounted for using a semi-empirical hydrodynamic s
ing procedure. Since a full account of the derivation of t
exact Green-Kubo formula forh and for the MCT equations
determiningS(q,t) andDh(t) has been given in Refs. 40
42, we will discuss only the final results and some of th
implications. The predictions of the~rescaled! MCT will be
explored Secs. IV and V.

Using a projection operator formalism and linear r
sponse theory based on the many-particle Smoluchow
equation, two of the present authors have derived an e
expression for the shear relaxation function within the lim
of small shear rates.40 As derived in Ref. 40,Dh(t) can be
expressed as an equilibrium stress autocorrelation functi

Dh~ t !5
1

kBTV
^ŝxyetV̂†

ŝxy&, ~34!

with the xy component of the microscopic stress tensor gi
by

ŝxy5(
i 51

N S @Ri
xdyg1Ci

xyg~RN!#
]U~RN!

]Ri
g

2kBT
]

]Ri
g Ci

xyg~RN! D . ~35!

In the above equation,Ri
g is thegth Cartesian component o

Ri out of N particles in the system volumeV, and summa-
tion over repeated Cartesian indexes is implied. Moreove

V̂†~RN!5 (
i , j 51

N S ¹ i2
1

kBT
¹ iU~RN! D •Di j ~RN!•¹ j ~36!

is the adjoint Smoluchowski operator of an unsheared s
pension, andU(RN) is the total potential energy of the co
loidal particles. The hydrodynamic diffusivity tenso
Di j (R

N) depends in general on the particle position config
ration RN5(R1 ,...,RN), and it relates the hydrodynami
force on particlei to the resulting drift velocity on particlej .
The function Ci

abg(RN) is a Cartesian component of th
third rank shear mobility tensorCi(R

N) which accounts for
the shear-induced hydrodynamic interaction of particlei with
the remaining particles. For a force- and torque-free sphei
advected by the ambient flow field as described in Eq.~10!,
the ath component of the convective velocityV i(R

N,t) is
given by40,45

Vi
a~RN,t !5ġ@Ri

ydxa1Ci
xya~RN!#cos~vt !. ~37!

We emphasise that^(¯)&5*dRNPeq(R
N)(¯) is the equi-

librium average with respect to the equilibrium distributio
function Peq(R

N) in the absence of shear flow. Explicit an
lytical expressions for the hydrodynamic tensorsDi j (R

N)
andCi(R

N) are available only on the two-body level in term
of inverse distance expansions.57,58

From Eq. ~34! we conclude thath can be written in
terms of a Green-Kubo formula,

h2h 8̀ 5
1

kBTV E
0

`

dt^ŝxyetV̂†
ŝxy&. ~38!
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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The high-frequency modulus is then identified using Eq.~18!
as

G8̀ 5
1

kBTV
^~ ŝxy!2&. ~39!

These expressions have proven useful for calculating
low-shear rate viscosity59 and high-frequency shea
modulus60 using Stokesian dynamics computer simulation

Without HI, Di j 5D0d i j 1, where 1 is the three-
dimensional unit tensor, andCi50. As discussed in Ref. 40
the Green-Kubo formula in Eq.~38! agrees then formally
aside from an irrelevant kinetic contribution, with a corr
sponding expression for the shear viscosity of a sim
atomic liquid. However, it should be recalled that the tim
evolution in colloidal dispersions is governed by the irreve
ible Smoluchowski equation instead of by the Liouvil
equation. Consequently,Dh(t), like any regular autocorre
lation function obeying Smoluchowski dynamics, deca
monotonically towards zero as long as the system is loca
in the fluid regime of the phase diagram. The expression
Eq. ~39! for G8̀ is particularly useful since it allows a direc
numerical calculation ofG8̀ with many-body HI included
using a Monte Carlo generation of particle configuratio
~see Ref. 24 for such a determination ofh 8̀ !.

SinceDh(t) is given in terms of an equilibrium averag
in Eq. ~34!, it provides an ideal and rigorous starting poi
from which to formulate a mode coupling theory of line
viscoelasticity. A detailed derivation of the coupled equ
tions forDh(t) andS(q,t) with the inclusion of the pairwise
additive far-field part of the HI and the extension to colloid
mixtures was presented in Refs. 40–42. In the absence o
the MCT equation determiningDh(t) is

Dh~ t !5
kBT

60p2 E
0

`

dqq4F 1

S~q!

d

dq
S~q!G2FS~q,t !

S~q! G2

,

~40!

whereS(q)5S(q,t50) is the static structure factor relate
to the pair correlation functiong(r ). Equation ~40! for
Dh(t) is formally identical to the corresponding MCT ex
pression for a one-component simple fluid.61 For simple flu-
ids there is, of course, no additional viscous contribut
2h 8̀ d(t) to the total shear relaxation functionh(t).

We note that Verberg, de Schepper and co-workers62,63

have evaluated Eq.~40! by substituting a simple exponentia
form for S(q,t), consistent with the short- and expect
long-time limiting behavior, but at the expense of sacrifici
the inherent self-consistency of the MCT. This, in turn, p
cludes the possibility of obtaining a glass transition and
corresponding divergence of the shear viscosity. Notice
Dh(t) is uniquely determined throughS(q,t) andS(q).

Without HI, S(q,t) follows self-consistently from solv-
ing the coupled set of equations~see, e.g., Refs. 13, 42, 44
and 64!,

]

]t
S~q,t !52q2DC

S~q!S~q,t !

2E
0

t

duMC
irr~q,t2u!

]

]u
S~q,u!, ~41!
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with the irreducible collective memory function,

MC
irr~q,t !5

nD0

2~2p!3 E d3k@Vc~q,k!#2S~k,t !S~ uq2ku,t !,

~42!

and the vertex amplitude,21,31,39,65

VC~q,k!5q̂•kc~k!1q̂•~q2k!c~ uq2ku!, ~43!

related to collective diffusion. Here,c(q)5@121/S(q)#/n is
the Fourier-transformed two-body direct correlation fun
tion, andDC

S(q) is theq-dependent short-time collective dif
fusion coefficient. Without HI the following result holds
DC

S(q)5D0 /S(q).
There exists an additional set of MCT equations det

mining the self-intermediate scattering function

G~q,t !5^eiq•(R1(t)2R1(0))&, ~44!

which contains information on self-diffusion. This set
explicitly39,41,64

]

]t
G~q,t !52q2DS

SG~q,t !

2E
0

t

duMS
irr~q,t2u!

]

]u
G~q,u!, ~45!

with the irreducible memory function,

MS
irr~q,t !5

D0

~2p!3n E d3k~ q̂•k!2@VS~k!#2S~k,t !

3G~ uq2ku,t !, ~46!

related to self-diffusion and the vertex amplitude given wi
out HI by

VS~k!512
1

S~k!
. ~47!

In Eq. ~45!, DS
S is the short-time self-diffusion coefficien

equal to the initial slope of the particle mean squared d
placementW(t). For vanishing HI,DS

S reduces toD0 . The
MSD is determined by39,41

W~ t !5DS
SF t2E

0

t

du~ t2u!DV~u!G , ~48!

whereDV(t) is essentially the regular part of the veloci
autocorrelation function.10 The Laplace transform ofDV(t)
is related to the irreducible memory function through

DṼ~s!5E
0

`

dte2stDV~ t !5 lim
q→0

M̃S
irr~q,s!

11M̃S
irr~q,s!

, ~49!

whereM̃S
irr(q,s) is the Laplace transform ofMS

irr(q,t). The
initially linear increase ofW(t) with slopeDS

S is followed by
a sublinear regime that originates from the retarding infl
ence of the cage of neighboring particles. At long tim
W(t) again becomes linear int with a slope equal to the
long-time self-diffusion coefficientDS

L,DS
S . The coefficient

DS
L follows from
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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DS
L5 lim

t→`

W~ t !

t
5

DS
S

11M̃S
irr~q→0,s→0!

. ~50!

Alternatively,W(t) and its long-time slopeDS
L can be deter-

mined directly fromG(q,t) via the extrapolation,

W~ t !52 lim
q→0

logG~q,t !

q2 . ~51!

Equations~40!–~47! constitute a self-consistent set
equations determiningS(q,t), G(q,t), Dh(t), and hence the
related quantitiesh, h8(v), h9(v), W(t), and DS

L . The
only input is the static structure factorS(q) which can be
calculated independently for a given pair potential using
tegral equation schemes or computer simulations.10,56An im-
portant feature of the coupled MCT equations with nonlin
feedback is that they predict an~idealized! glass transition
scenario where long-time diffusion ceases and the zero-s
viscosity diverges. Within MCT,h diverges not at random
close packing ash 8̀ does, but at a somewhat smaller volum
fraction corresponding to the glass transition point. Rec
experimental studies on hard sphere suspensions stro
support this scenario.33–38

IV. MCT LIMITING BEHAVIOR AND HYDRODYNAMIC
RESCALING

Having established the basic MCT equations, we anal
next the asymptotic behavior of the MCT viscoelastic
sponse functions for hard sphere dispersions ignoring
The neglect of HI in the equations presented above canno
justified for actual hard sphere dispersions due to the str
near-field HI acting between nearly touching spheres. Ho
ever, the MCT calculations of rheological and diffusion
properties without many-body HI are important to assess
accuracy of the treatment of many-body direct interactio
Moreover, Brownian dynamics simulations are concern
generally with just direct potential interactions on the coll
dal dynamics because of the difficulty to incorporate HI66

and to provide a useful check of the theoretical results.
From a short-time analysis of Eq.~40! for hard sphere

colloids in the fluid regime, we obtain

taDh~ t !

h0
'

9

5
F2A2

p
g~2a1!2S t

ta
D 21/2

, ~52!

provided thatt!ta . Correspondingly, the high-frequenc
behavior of the MCT moduliG8(v) andG9(v) differs from
the exact result in Eqs.~20! and ~21! only by a factor of
g(2a1)/2. Another limiting case which can be treated an
lytically in MCT is the asymptotic long-time behavior o
Dh(t) for a dilute hard sphere system without HI. Using E
~40! and noting that dS(y)/dy524F j 2(y)/y1O(F2),
wherey52ka and j 2 denotes the spherical Bessel functi
of the order of 2, we obtain in MCT the relaxation functio
to leading order inF:

taDh~ t !

h0
'

36

5p
F2E

0

`

dyy2 j 2~y!2e2y2t/(2ta)1O~F3!.

~53!
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Since j 2(y)'y2/15 for smally, we readily obtain the long-
time form of the normalized shear relaxation function
leading, i.e., quadratic, order inF:

taDh~ t !

h0
' f `F2A2

p S t

ta
D 27/2

, ~54!

which is valid whent@ta . In MCT, the prefactor is given
by f `536/7550.48. The long-time behavior of the exa
expression forDh(t) obtained in Ref. 46 differs from Eq
~54! only in the somewhat larger prefactorf `52/3'0.67.
While not reproducing accurately the prefactors of the ex
short-time and long-time forms ofDh(t), the MCT is at
least qualitatively correct in predicting the exact asymptott
dependence.

In performing the time integral of Eq.~53!, we obtain the
hard sphere MCT result,

Dh

h0
5 f F21O~F3!, ~55!

for the thermodynamic part of the viscosity, withf 536/25
51.44. For comparison, the exact result is Eq.~55! with the
prefactor determined asf 512/552.4.46

We proceed now to a discussion of the high frequen
behavior ofh~v! for a model dispersion of charge-stabilize
colloidal particles ignoring HI. The effective pair potenti
between two spherical particles is assumed to consist
~masked! hard-core part with radiusa, and of a long-range
screened Coulomb partuel(r ) which for r .2a is

uel~r !

kBT
52Ka

e2k(r 22a)

r
. ~56!

Here,K is a dimensionless coupling parameter given by

K5
LB

2a S Z

11kaD 2

, ~57!

whereLB5e2/(ekBT) is the Bjerrum length for a suspendin
fluid of dielectric constante; in addition,Z is the effective
charge number of a colloidal particle in units of the eleme
tary chargee. The screening parameterk is given by k2

54pLB@nuZu12ns#5kc
21ks

2 wherens is the number den-
sity of a possibly added 1-1 electrolyte. We note thatk com-
prises a contributionkc due to counterions, which are as
sumed to be monovalent, and a second contributionks

arising from the added electrolyte. Equation~57! is a good
approximation of the effective pair potential of strong
charged particles, where the effective chargeZ accounts for
nonlinear screening effects.10,67

For charge-stabilized systems,G8̀ exists even in the ab
sence of HI and the large-v behavior of h9(v) is given
according to Eq.~17! by

h9~v!

h0
'

ta

h0
G8̀ ~vta!21, vta@1, ~58!

with a regularv21 decay, different from thev21/2 decay for
colloidal hard spheres. The MCT result forG8̀ without HI is
given by
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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ta

h0
G8̀ 5

1

80p E
0

`

dyF y2

S~y!

d

dy
S~y!G2

, ~59!

with y52ka. Since the singular hard core potential
masked by the strong electrostatic repulsion such thatg(r )
behaves smoothly at distancesr , we can employ Parseval’
theorem and rewrite Eq.~59! as

ta

h0
G8̀ 52

18

5
F2E

0

`

dxg~x!
d

dx Fx4
d

dx
c~x!G , ~60!

with x5r /(2a) and c(x) denoting the direct correlation
function. This MCT result forG8̀ should be compared with
the exact expression40,68

ta

h0
G8̀ 5

18

5
F2E

0

`

dxg~x!
d

dx Fx4
d

dx

uel~x!

kBT G . ~61!

Quite remarkably, the MCT result forG8̀ becomes exac
when c(x) is approximated byc(x)'2uel(x)/(kBT) for
distancesx with g(x)Þ0. This well-established approxima
tion for c(x) is known in the literature as the rescaled me
spherical approximation~RMSA!.10

It is also possible to deduce the large-v behavior of
h8(v) from the large-q asymptotic behavior ofS(q). In
RMSA, S(q)21'O(q23) for q→` since g(2a1)50 in
contrast to a hard sphere colloidal fluid whereS(q)21
'O(q22). This large-q behavior gives rise toh8(v)2h 8̀
decaying like (vta)23/2 for v→`. Using the RMSA to cal-
culate the static inputS(q) for the MCT equations, we will
discuss in detail the frequency dependence ofh~v! in Sec. V.

In the MCT equations shown in Sec. III, we have so
not included the effect of HI. For concentrated hard sph
dispersions, one needs to account for many-body HI. Th
ries of diffusion and viscoelasticity which incorporate man
body HI exactly have not been developed to date, altho
many approximate theories of a varying degree of accur
exist. For hard sphere dispersions we will employ a sim
semi-empirical hydrodynamic rescaling procedure similar
that proposed by Medina-Noyola43 and developed in more
detail by Brady.16,17 This rescaling procedure derives fro
the assumption that the diffusional and rheological transp
properties with HI can be factorized into a hydrodynam
part, given by the corresponding short-time transport pr
erty with HI included, and a purely structural part witho
HI. In other words, it is assumed that the memory funct
contribution to the transport property is determined by str
tural effects only and not by HI.69 To determine the struc
tural part, we employ the MCT according to Sec. III, i.e., w
use

W~ t !'S DS
S

D0
DW~ t !MCT, ~62!

corresponding to

DS
L'S DS

S

D0
DDS

L,MCT . ~63!

Furthermore,Dh(t) with HI is approximated by
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Dh~ t !'S h 8̀

h0
DDhMCT~ t !, ~64!

with h determined from Eq.~23!, and

DC
L ~qm!'H~qm!DC

L,MCT~qm! . ~65!

Here, the transport propertiesWMCT(t), DS
L,MCT , and

DhMCT(t) without HI are calculated using the MCT expre
sions, Eqs.~51!, ~50!, and ~40!, respectively. The long-time
collective diffusion coefficientDC

L,MCT in Eq. ~65! is calcu-
lated from the MCT-S(q,t) without HI by extrapolating to
the large-t regime according to@cf. Eq. ~4!#

DC
L ~qm!52

1

qm
2 lim

t→`

]

]t
logS~qm ,t !. ~66!

In Eq. ~65!, H(qm) is the so-called hydrodynamic functio
evaluated at wave numberqm where the principal peak o
S(q) occurs. Without HI it reduces toH(q)51. The factor
H(qm) in Eq. ~65! arises from the ratio of the short-tim
self-diffusion coefficient with HI,DC

S(q)5D0H(q)/S(q), to
that without HI, i.e.,D0 /S(q) @cf. Eq. ~41!#. We point out
that the rescaling procedure in Eq.~63! is originally that of
Medina-Noyola,43 while Brady,16 using a different justifica-
tion for the factorization, also considered the viscosity. N
ther of them, however, addressed rescaling of collective
fusion as proposed in Eq.~65!. The hydrodynamic rescaling
in Eq. ~64! does not change the time dependence ofDh(t).
As a consequence, the hydrodynamically rescaled redu
dynamic viscositiesR(v) andI (v) remain the same as with
out HI.

The hydrodynamic rescaling procedure in Eqs.~62!–
~65! for colloidal hard spheres is semi-empirical and does
reproduce the known exact dilute limits of the long-tim
transport coefficients. Moreover, Eq.~64! does not recover a
finite G8̀ in the limit of v→`, i.e., the exact short-time
behavior ofDh(t) is not reproduced. Notice that Eq.~62!
gives the exact short-time form ofW(t). For the important
case of concentrated dispersions, however, we will show
Sec. V that the hydrodynamic rescaling procedure lead
good agreement with experimental data, provided theF de-
pendence of the MCT long-time transport properties with
HI are renormalized with respect to the glass transition c
centration~discussed below!. To make quantitative compari
sons with experimental hard sphere data using the resca
procedure in Eqs.~62!–~65!, we require the short-time trans
port coefficientsDS

S(F), h 8̀ , and H(qm ;F) as input. For
h 8̀ (F), we use the semi-empirical formula quoted in E
~24!. For DS

S(F), we employ an additional semi-empirica
formula,

DS
S~F!

D0
5~121.56F!~120.27F!, ~67!

suggested by Lionberger and Russel.47 This expression con-
forms to the rigorous dilute limitDS

S/D05121.83F, with
DS

S vanishing at random close packingF50.64.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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We will demonstrate, by comparing with lattice
Boltzmann computer simulation data and experimental d
of H(q) by Segre` et al.,70 thatH(qm) is well represented by
the form

H~qm!5121.35F, ~68!

up to the hard sphere freezing transition atF'0.49. This
result unexpectedly conforms also to the exact numer
value in the dilute limit, which was determined by us usi
the exact two-body form ofDi j (R

N).13

The hard sphere static structure factor, which is requi
as input for the MCT equations, is calculated according
the Verlet-Weiss correction of the Percus-Yevick~PY!
S(q).56 The~idealized! MCT glass transition for this particu
lar choice ofS(q) occurs atF50.525,21,33,71whereDS

L van-
ishes. The caging of particles is, however, overestimate
MCT, leading to a glass transition concentration which is
low compared to experiments.21,33–35,38,71While the MCT
does not predict an exact glass transition concentration
does reproduce the special features of the colloidal h
sphere glass transition scenario. We therefore follow Go¨tze
and co-workers21,33,38,64and renormalize the concentratio
dependence of the MCT-calculated quantities~and only
these!, according to

F→F
Fg

0.525
, ~69!

with the concentrationFg determined such that the MC
result for DS

L(F) agrees well with BD data ofDS
L at high

concentrations. This density renormalization yieldsFg

50.62. A similar fit of the MCT predictions forDS
L of

atomic hard spheres to molecular dynamics data resulte
Fg50.60.71

Contrary to hard sphere dispersions in which near-fi
lubrication forces are important, the dynamics of charg
colloidal spheres is influenced only by the far-field part
the HI. There is no obvious reason to expect that the hyd
dynamic rescaling relations in Eqs.~62!–~65! should apply
for charge-stabilized colloids. In this context it should
noted that, while charge-stabilized fluid systems are usu
dilute from a hydrodynamic point of view, they are effe
tively concentrated as far as the strong structural correlat
are concerned@as measured, e.g., byFeff introduced in Eq.
~28! ff.#. Consider, e.g., the case of the self-diffusion
charged colloidal particles at low salinity, i.e., whenks

!kc . For this case, a nonlinearF dependence of the form

DS
S~F!

D0
5122.5F4/3, ~70!

has been predicted provided thatF<0.05 and provided tha
electroviscous effects arising from the mobility of the cou
terion clouds are negligibly small.10,53 The F dependence o
DS

S according to Eq.~70! has been qualitatively confirmed b
recent dynamic light scattering experiments.72 If the scaling
relation in Eq.~63! for DS

L would also hold for charged par
ticles, then the ordering relationDS

L,(DS
L)wo should gener-

ally be valid, with (DS
L)wo denoting the long-time self

diffusion coefficient in the absence of HI. In other word
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there would be a hydrodynamic de-enhancement of lo
time diffusion for both uncharged and charged colloidal p
ticles.

However, using a~not fully self-consistent! simplified
solution of the MCT equations for charged spheres with
leading far-field HI included, it was observed that far-fie
HI leads instead to enlargement ofDS

L .39 This finding has
been corroborated by an exact low-density result for theDS

L

of the effective hard sphere system discussed in the final
of Sec. II. For the effective hard sphere system the long-t
self diffusion coefficient is given in the dilute limit by

DS
L

D0
512FF2X32

33

16
X21

567

2560
X1O~1!G , ~71!

with X5b/a.39,73 For X>3, it follows from Eq. ~71! that
DS

L/D0.(DS
L/D0)wo5122FX3. The hydrodynamic contri-

butions in Eq.~71! proportional toX2 andX are due to the
leading Oseen term. The hydrodynamic enhancement ofDS

L

due to prevailing far-field HI has been observed very
cently in experiments and in BD simulations on quasi-tw
dimensional superparamagnetic colloids with long-range
polar magnetic forces,74 and in de-ionized charge-stabilize
dispersions.75 The present discussion of long-time se
diffusion is meant to illustrate the qualitatively different d
namic behavior of colloidal hard spheres and of particle s
pensions with long-range repulsive forces.

Another short-time feature that illustrates the quali
tively different behavior of hard sphere colloids and
charge-stabilized suspensions is the density dependenc
the hydrodynamic functionH(q). One might expect that HI
always leads to a slowing down of the particle density rel
ation such thatH(q),1 should hold at all wave numbersq.
However, both experiments76–78 and theoretical10,39 calcula-
tions dealing with charged colloidal particles show thatH(q)
can exceed 1 for values ofq aroundqm , and that the peak
valueH(qm) of H(q) increases with increasingF. This be-
havior differs from that of hard spheres whereH(qm) never
exceeds unity and decreases~linearly up to freezing! with
increasingF @cf. Eq. ~68!#. Indeed, from our numerical cal
culations ofH(q) for de-ionized, i.e., salt-free, aqueous co
loids of highly charged particles with effective charge nu
berZ5500 and radiusa550 nm, in which the full two-body
HI are accounted for, we find thatH(qm) is, overall, well
parametrized by the nonanalytic form,

H~qm!'11pF0.4, ~72!

with p51.5 for all volume fractions in the extended rang
FP(0,0.1) ~cf. Sec. V!. The exponent 0.4, in particular, i
found to be independent ofZ as long as the physical har
core remains completely masked. On the other hand,
prefactorp decreases with decreasingZ for a fixed particle
radius. For example,p51.5, 1.35, and 1.12 forZ5500, 400,
and 300, respectively. Experimental results for the hydro
namic function of suspensions of highly charged partic
have been reported recently by Ha¨rtl and co-workers.78 The
measurements reveal pronounced oscillations inH(q) even
at volume fractions as low as 1024, in excellent agreemen
with the theoretical predictions of Na¨gele and Baur.39
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Values ofH(qm) larger than 1 are observed whenev
the leading contribution of the far-field partDi j (R

N)
'D0@d i j 11(12d i j )O(Ri2Rj )# of the diffusivity tensor
dominates. Here,

O~r !5
3

4 S a

r D @11 r̂ r̂ #, ~73!

is the Oseen tensor andr̂5r /r .10,39 The Oseen contribution
dominates in dilute suspensions of strongly repelling char
particles. Using the Oseen approximation forDi j (R

N),
H(qm) is approximated by the integral,

H~qm!5116pnaE
0

`

drr @g~r !21#H j 0~qmr !2
j 1~qmr !

qmr J .

~74!

Substituting z5qmr and noting that qmr̄
5qma@4p/(3F)#1/3'2p holds for de-ionized systems, w
can rewrite Eq.~74! as

H~qm!511amF1/3, ~75!

with an exponent 1/3 rather close to 0.4 and the prefacto

am5S 81

32p4D 1/3E
0

`

dzz@g~z!21#H j 1~z!

z
2 j 0~z!J . ~76!

Within the framework of the effective hard sphere mod
discussed in Sec. II, we could approximate theg(r ) of the
charge-stabilized system by the radial distribution funct
gEHS(z;Feff) of the EHS model, evaluated at the effecti
volume fractionFeff5p/6. However, for numerical simplic
ity we again use the low density formgEHS

(0) (r )5Q(r 22b)
corresponding togEHS

(0) (z)5Q(z22p). The integral in Eq.
~76! can then be performed analytically with the result,

am5S 81

32p4D 1/3

'0.3. ~77!

The very small value obtained foram in Eq. ~77! and the
slight underestimation of the exponent 0.4 is due to the v
crude step function approximation used for the actualg(r ).
The latter can exhibit strong oscillations with a large pe
valueg(r m) which increases withF. Whereas theF depen-
dence of the peak position of the actualg(r ) is accounted for
in the step function approximation, theF dependence of the
peak height is completely disregarded. Nonetheless, our
plified calculation shows that the nonlinearF dependence o
H(qm) can be qualitatively understood in terms of th
simple model of effective hard spheres withF-dependent
effective particle radiusb.

A second physically more intuitive explanation for th
occurrence of values ofH(q).1 is as follows:H(q) can be
regarded as a generalized~short-time! sedimentation coeffi-
cient of particles exposed to spatially periodic external for
aligned with q̂, and derived from a weak potential propo
tional to exp@2iq•r #.79 For q'qm'2p/r m , S(q,t) relaxes
mainly by the motion of neighboring particles in oppos
directions. The motion of a particle induces a backflow
displaced fluid, which can support the antagonistic motion
another neighbouring particle a distancer m apart, thus lead-
ing to H(q).1. The backflow becomes effective typical
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whenr m.4a and this holds for many charge-stabilized su
pensions. In contrast,r m52a for hard sphere dispersions
and the weak~far-field! backflow effect is then outweighe
by near-field HI, which favors the motion of particle pairs
the same direction. In other words, a hard sphere part
tends to drag along a closely spaced particle toge
with a thin coating of solvent sticking to the surfaces
both particles. Therefore, hard sphere dispersions exh
H(qm),1.

Results for the short-time and long-time transport co
ficients of charged and uncharged colloidal particles are p
sented and discussed in Sec. V.

V. NUMERICAL RESULTS AND DISCUSSION

Here in Sec. V we present extensive numerical res
for the ~frequency dependent! viscosity and short- and long
time diffusional and viscoelastic transport properties int
duced in Secs. II–IV. Both fluid hard sphere suspensions
de-ionized charge-stabilized suspensions are considered.
thermore, we examine the general validity of the vario
generalized Stokes-Einstein relations.

The MCT equations were solved in discretized form on
uniform wave vector grid with grid pointsq5 iDq, where
Dq'qm/34, using the algorithm developed by Fuchset al.80

The equations are numerically integrated forward in tim
starting from the known short-time behavior. In this alg
rithm it is made sure that the memory equations@Eqs. ~41!
and ~45!# are satisfied at each discrete time step. To cap
the short-time divergence of the irreducible memory fun
tions and ofDh(t), the integrals in Eqs.~42!, ~46!, and~40!
are performed on an extended wave number grid by extra
lating S(q,t) andG(q,t) to large values ofq.

The effective pair potential of charged particles is mo
eled by Eq.~56!, which constitutes the repulsive part of th
well-known ~Derjaguin–Landau–Vervey–Overbeck! DLVO
potential. We limit ourselves to studying a de-ionized su
pension with ns50, i.e., a suspension where the ion
strength is determined only by the counterions so that
potential is of long range and the particles become stron
correlated even at small volume fractions. The system
rameters employed for the charge-stabilized systems
given by Z5500 for the effective particle charge numbe
a550 nm for the particle radius, and Bjerrum lengthLB

50.714 nm. These parameters are typical, e.g., of aque
dispersions of highly charged polystyrene spheres. The s
hard sphere inputS(q) and g(r ) are calculated using the
Verlet-Weiss corrected PY approximation. In all MCT ca
culations of hard sphere properties, theF renormalization
according to Eq.~69! with Fg50.62 is used. The RMSA
structure functionsS(q) andg(r ) are employed in the cas
of charge-stabilized dispersions. NoF renormalization is
used in our MCT calculations for charge-stabilized system
since no experimental or computer simulation referen
points forFg(Z,k) are known for systems with high particl
charges. There is, however, experimental support for
presence of a glass transition scenario in charge-stabil
systems.81

To compare the numerical results for the hard sph
dispersions with experimental data, we employ the hydro
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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namic short-time rescaling procedure described in Eqs.~63!–
~65!, with h 8̀ , DS

S , and H(qm) determined by Eqs.~24!,
~67!, and~68!, respectively. Since a corresponding hydrod
namic rescaling procedure for the long-time properties
charged colloidal particles is not available at this time,
neglect the effect of the far-field HI on diffusion and vi
coelasticity. For de-ionized systems, however, we expect
transport properties to be only modestly influenced by
Our expectation is supported by exact low-density effect
hard sphere model results forDS

L @cf. Eq. ~71!# andh,46 and
by ~not fully self-consistent! MCT calculations ofDS

L ,39

which show only a modest hydrodynamic enhancement. F
thermore, the short-time properties of salt-free char
stabilized dispersions vary also moderately as functions oF
@cf. Eqs.~29!, ~70!, and~72!#. To assess the accuracy of o
numerical results, we compare them with both Brownian
namics computer simulation results~without HI!, and experi-
mental data.

A. Viscoelasticity of uncharged and charged particles

In Fig. 1 we show the frequency dependence of the
duced dynamic viscositiesR(v) and I (v) for a dilute hard
sphere system without HI atF50.001. The MCT results are
compared with exact low-density results up toO(F2), ob-
tained by Cichocki and Felderhof.46 In their expressions for
R(v) and I (v), we have corrected for a missing fact
(vta)1/2 multiplying the number 9 in the coefficientD given
in Eq. ~3.12! of Ref. 46. As can be seen in Fig. 1, the d
namic viscosity exhibits a broad spectrum of relaxat
times. The maximum of the reduced imaginary part,I (v), of
h~v! occurs in MCT at a reduced frequencyvmta'6.2,
rather close to the exact valuevmta'5.8. We note that the
approximations made in the MCT are aimed at describing
collective dynamic effects in highly correlated liquids.21,33

There is therefore little reason to expect that the MCT w
produce accurate results for the viscoelastic properties o

FIG. 1. Real partR(v) and imaginary partI (v) of the reduced dynamic
viscosity vsvta for a dilute hard sphere suspension withF50.001 and HI
ignored. Comparison between MCT results~thick lines! and exact low den-
sity results~thin lines!. The latter are reproduced from Ref. 46.
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lute hard sphere dispersions. Nevertheless, we find that t
is relatively good agreement between the MCT and the ex
low-density results.

Figure 2 shows the MCT prediction for the reduced v
cosities~without HI! for a concentrated hard sphere dispe
sion atF50.45. The accuracy of our MCT results forR(v)
and I (v) is assessed by comparison with BD data of Hey
and Mitchell.82 The BD data have been obtained for a co
tinuous pair potentialu(r )/(kBT)5(2a/r )36, which closely
approximates the singular hard core potential. The MCT
sults are seen to be in good qualitative agreement with
BD results. We have also included the results for the redu
viscosities obtained by Lionberger and Russel using a~hy-
pernetted chain! HNC closure scheme for the shear-distort
nonequilibrium microstructure, also neglecting HI.18 These
results do not agree as well with the BD data as do thos
the MCT, suggesting that the MCT provides a better a
proximation of the nonhydrodynamic excluded volume
fects in colloidal hard sphere dispersions. An advantage
the nonequilibrium closure schemes developed by Li
berger and Russel is, however, that they can be used to
dict the non-Newtonian rheological properties of shea
dispersions.18,47

Our MCT results for theF dependence of the zero-she
limiting suspension viscosityh of colloidal hard spheres
with HI ignored are presented in Fig. 3. They are compa
with the recent BD data of Strating.66 As can be seen, the
MCT predicts a strong increase in the viscosity with incre
ing volume fraction, in relatively good agreement with th
BD data. It appears that the BD data are consistent wit
viscosity which diverges at a volume fraction substantia
lower than that of random close packing; recall that we ha
used a density renormalization such that the MCT visco
diverges at a glass transition located atF50.62. In prin-
ciple, the glass transition is preempted by a fluid-solid tra
sition atF'0.49. This phase transition can be suppresse
actual experiments by using dispersions with a slight s

FIG. 2. Reduced dynamic viscositiesR(v) and I (v) for a concentrated
hard sphere suspension withF50.45 and HI ignored. Thick lines: MCT
results; open symbols: BD data of Heyes and Mitchell~Ref. 82!; thin lines:
nonequilibrium HNC closure scheme of Lionberger and Russel~Ref. 18!.
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polydispersity. The MCTh shown in Fig. 3 has been calcu
lated from Eq.~23! with Dh(t) determined according to Eq
~40!. For the high frequency limiting viscosity the Einste
form h 8̀ /h05112.5F is used, which holds in the absenc
of HI ~which was also done in the BD simulations!. Accord-
ing to Fig. 3, the Einstein contribution to the potential part
h becomes negligible forF.0.45.

At this point, a few remarks are in order concerning t
MCT renormalized valueFg50.62 used throughout our ca
culations. This value was chosen to obtain optimal agr
ment of the MCTDS

L with the corresponding hard sphere B
data at largeF @cf. Fig. 13~b!#. There is, of course, a certai
ambiguity in selecting this particular value ofFg . For in-
stance, choosing a valueFg50.60, a value somewhat close
to the experimentally determined glass transition concen
tion of 0.58,34–37would yield a MCTh in perfect agreemen
with the BD h shown in Fig. 3~cf. the thin solid line!.
However, the BDDS

L for concentrated hard spheres are th
slightly underestimated. In general, it can be stated that o
all good agreement between MCT and BD data for the
fusional and rheological properties is obtained for any cho
of FgP(0.58– 0.62).

So far we have disregarded the influence of HI on
~dynamic! viscosity. We account now for the influence of H
on h by using the approximate semi-empirical rescaling p
cedure given in Eq.~64! in conjunction with Eq.~23!. For
h 8̀ (F), we use the accurate expression in Eq.~24! which
reduces to the Einstein form at smallF. The HI-rescaled
MCT result for h~F! is displayed in Fig. 4 and compare
with experimental data of Segre` and co-workers2 as well as
with the MCT h without HI. Also shown is theF depen-
dence ofh 8̀ according to Eq.~24!. We find that the rescaling
of the MCT h brings the theory into good accord with th
experimental data, at least on the semi-logarithmic scale u
in Fig. 4. However, in absolute terms, the scaled MCTh can
differ from the experimental data by as much as 25%
large F. Notice further that the experimentalh is much

FIG. 3. Normalized shear viscosity without HI for colloidal hard spheres
volume fractionF. Comparison between MCT results~thick solid line! and
BD simulation data reproduced from Ref. 66. Thin solid line: MCTh/h0

usingFg50.60 instead ofFg50.62. Dashed line: Einstein limiting result
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greater than the MCTh for F.0.4 when short-time rescal
ing is not used.

For hard sphere systems we analyze next theF depen-
dence of the reduced dynamic viscosities. Recall thatR(v)
and I (v) remain unchanged when hydrodynamic rescal
according to Eq.~64! is applied. MCT results for concentra
tions F50.30, 0.45, and 0.53 are presented in Fig. 5
functions ofvta , with the corresponding curves given from
right to left. In the range of high volume fractions consider
here, the frequencyvm(F) where the maximum ofI (v)
occurs and the curves ofR(v) are monotonically shifting
towards smaller frequencies with increasingF. However,
vm(F) is a nonmonotonic function when the wholeF range
of the fluid phase is considered. To make this quantitative
introduce the relaxation timetm(F)5vm

21(F) correspond-

sFIG. 4. Normalized shear viscosity with HI for hard sphere suspensio
Comparison between the HI-rescaled MCT result~thick solid line! and ex-
perimental data of Segre` et al. ~Ref. 2! ~open circles!. Thin sold line: MCT
result without HI; dashed line:h 8̀ /h0 according to Eq.~24!.

FIG. 5. Frequency dependence of reduced MCT dynamic viscositiesR(v)
andI (v) of colloidal hard spheres atF50.30, 0.45, and 0.53~from right to
left!.
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ing to the frequencyvm . The timetm(F) can be regarded a
an order of magnitude estimate of the mean~Maxwellian!
relaxation time,50

tM~F!5E
0

`

dtt
Dh~ t !

Dh
5 lim

v→0

d

dv S h9~v!

Dh D , ~78!

related to the monotonically decaying shear relaxation fu
tion, with Dh being the time integral ofDh(t) according to
Eq. ~23!. To leading order inF, tM is given exactly by
tM /ta52/9'0.22 without HI, and bytM /ta50.49 when HI
is considered.50 For comparison, the small density MCTtM

without HI follows from the time integral of Eq.~53! and
with Eq. ~55! astM

MCT/ta54/21'0.19. The MCTtM is thus
rather close to the exact value.

When the frequency dependence ofR(v) and I (v) are
scaled with respect totm(F), all curves essentially collaps
on two single master curves. This is shown in Fig. 6 wh
MCT results forR(v) and I (v) are plotted versusvtm(F)
for various volume fractions as indicated. Similar findin
have been obtained by van der Werffet al.4 on sterically
stabilized dispersions, and in the BD results of Heyes
Mitchell.82

The relaxation timestm(F) andtM(F) of hard spheres
are nonmonotonic functions ofF, with their respective
minima occurring atF'0.3. The nonmonotonic dependen
of tm and tM on F is shown in Fig. 7, where the MCT
tm(F) andtM(F) curves without HI are included. At sma
F, the exact low-density result fortm is tm /ta'0.17 with-
out HI.46 The corresponding MCT result istm /ta'0.16. It
would be worthwhile to determinetm(f) and tM(F) by
computer simulations or by experiment in a density inter
of F'0.3 to assess their nonmonotonic behavior. While
being identical, Fig. 7 reveals that both times have very si
lar F dependence. A physically intuitive explanation for t
nonmonotonic behavior is as follows: the initial decrease
tM(F) originates from the increasing number of collisio
with increasingF, leading to faster relaxation of the she

FIG. 6. MCT results for the reduced dynamic viscositiesR(v) andI (v) vs
vtm(F) for hard sphere systems at varying volume fractions as labele
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stress. At valuesF.0.3 it appears that particle caging b
comes important, giving rise to a slower relaxation of t
shear stress by particle diffusion with a further increase oF
~cf. also the discussion for self diffusion in Ref. 83!. In Fig.
7 we have also included experimental results fortm /ta ob-
tained for hard sphere dispersions by van der Werffet al.4 In
their work, tabulated values for a so-called longest relaxat
time t1(F) are provided. By determining the maximum o
h9(v) according to Eq.~16! in Ref. 4, we find thattm is
related tot1 by tm(F)5t1(F)/1.176.

It is interesting to compare theF dependence oftm and
of tM with the F dependence of the characteristic diffusio
times tC

L (qm ;F) and tS
L(F). The latter two quantities are

related to long-time density relaxations atq5qm and to long-
time self-diffusion, respectively, over a distance compara
to the geometric mean particle distancer̄ 5n21/3}F21/3. For
the definition of these characteristic times consult the inse
Fig. 7. The constantsc155.8831023/ta and c259.09
31023/ta are conveniently chosen so thattC

L andtS
L are of

comparable magnitude totm , since we are only concerne
here with their functional dependence onF.

The diffusion timetS
L(F) diverges in the dilute limit,

sincer̄→` andDS
L is a bounded quantity. Notice further tha

the characteristic timestm , tM , tL
C(qm), andtS

L diverge in a
similar fashion when the glass transition concentration
approached.33 The MCT results in Fig. 7 suggest that th
times tC

L and tS
L , related to long-time collective and sel

diffusion, respectively, behave similar totM(F) andtm(F).
Having analyzed in detail the viscoelastic behavior

colloidal hard spheres, we investigate in the following t
viscoelastic behavior of de-ionized suspensions of hig
charged particles. Figure 8 contains MCT results without
for the reduced dynamic viscosities of charged particles
volume fractionF50.04. The remaining system paramete
Z, ns50, andLB determining the pair potential in Eq.~57!

FIG. 7. F dependence of hard sphere normalized shear relaxation ti
tm(F) and tM(F) in comparison with normalized diffusion relaxatio
timestC

L (qm ;F) andtS
L(F). All quantities are calculated using MCT with

out HI, and compared with experimental data fortm of van der Werffet al.
~Ref. 4!.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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are chosen as those stated in the introductory part of
V A. For this particular choice of potential parameters t
MCT idealized glass transition occurs atF'0.1, when the
rescaled mean spherical approximation is used forS(q). In
Fig. 8, we also show the high frequency asymptotic for
Ras(v)}(vta)23/2 andI as(v)}(vta)21 of R(v) andI (v).
As discussed within the context of Eqs.~20!, ~21!, ~58!, and
~61!, the high frequency asymptotes of charged particles
qualitatively different from those of hard spheres. The lat
exhibit an asymptotic tail proportional to (v)21/2 when the
HI are neglected. The intersection ofR(v) and I (v) in Fig.
8 is caused by the faster asymptotic decay ofR(v).

The F dependence of the characteristic timestm(F),
tM(F), tC

L (qm ;F), andtS
L(F) for charge-stabilized disper

sions with the same coefficientsc1 and c2 as those for the
hard sphere suspensions is displayed in Fig. 9. The cha
teristic times diverge as the glass transition volume fract
is approached. All four characteristic times exhibit a simi
density dependence as that observed also for the hard sp
dispersions. For the charge-stabilized system, the minim
of tm andtM at F'0.02 is about two orders of magnitud
larger than that for the hard sphere dispersions. Contrar
hard spheres,tM(F) is now nearly identical withtm(F). As
seen in Fig. 10,R(v) and I (v) essentially collapse on th
master curves when plotted versusvtm(F). Note that the
maximum of I (v) yields a somewhat larger value fo
charged particles than for hard spheres~cf. Fig. 6!.

B. Frequency-independent generalized
Stokes-Einstein relations

Proceeding, we analyze next the validity of the sho
time GSE relations in Eqs.~5! and ~6!, relating the high
frequency viscosityh 8̀ to the short-time self-diffusion coef
ficient DS

S and to the short-time collective diffusion coeffi

FIG. 8. MCT reduced dynamic viscositiesR(v) and I (v) ~thick lines! vs
vta for a de-ionized charge-stabilized system withF50.04, charge number
Z5500, particle radiusa550 nm, and Bjerrum lengthLB50.714 nm. Thin
lines: corresponding high frequency asymptotic formsRas(v) and I as(v).
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S(qm)5D0H(qm)/S(qm), respectively. Accurate ex

pressions for the quantities involved in Eqs.~5! and~6! were
provided earlier.

Consider first theF dependence of the hydrodynam
function H(qm). In Fig. 11~a!, the hard sphereH(qm),
evaluated according to Eq.~68!, is plotted in comparison
with experimental data of Segre` et al.2 for concentrated dis-
persions~closed circles! and exact low-density calculation
~crosses!, with the two-body HI accounted for. The linea
decrease ofH(qm ;F), given by Eq.~68!, holds up to high
particle concentrations.

The corresponding density dependence ofH(qm) for a
charge-stabilized system, according to the nonanalytic p

FIG. 9. F dependence of charged sphere normalized shear relaxation t
tm(F) and tM(F) in comparison with normalized diffusion relaxatio
timestC

L (qm ;F) andtS
L(F), calculated using MCT without HI. Aside from

F, all system parameters as in Fig. 8.

FIG. 10. MCT results for reduced dynamic viscositiesR(v) and I (v) vs
vtm(F) for de-ionized charge-stabilized suspensions at varying volu
fractions as labeled. All other parameters are the same as those in Fig
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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metric form in Eq.~72! with p51.5, is shown in Fig. 11~b!.
This parametric form provides a good description of the
merical results forH(qm), calculated with the full two-body
HI included. As is seen, the calculatedH(qm) is in good
agreement with the experimental data of Ha¨rtl et al.78 on
de-ionized suspensions of highly charged particles. The
tem parameters of the charge-stabilized suspensions stu
by Härtl et al.78 are very similar to ours. Notice the qualita
tively different F dependence for hard sphere dispersio
and charge-stabilized systems.

In Fig. 12~a!, we test the validity of the short-time GS
relations for hard spheres. Here,h 8̀ , DS

S , andDC
S(qm) are

determined from Eqs.~24!, ~67!, and ~68! with S(q) calcu-
lated using the Verlet-Weiss correction of the PY appro
mation. According to Fig. 12~a!, h 8̀ deviates from the recip
rocal of DS

S for all volume fractions. This finding is in
agreement with the calculations of Beenakker forDS

S .84

There is far better agreement betweenh 8̀ and the recip-
rocal of DC

S(qm), the coefficients which are involved in th
second short-time GSE in Eq.~6!, at least for volume frac-
tions up toF50.4. The calculations ofDC

S(qm) are in ex-
cellent agreement with the experimental data of Se`
et al.,70 which reflects the accuracy of Eq.~68! for H(qm) of
hard sphere dispersions. This shows that the short-time G
in Eq. ~6!, which is analogous to the long-time GSE disco
ered by Segre` et al.,2 provides a relatively good approxima
tion for hard sphere dispersions. As seen,D0 /DS

S according
to Eq. ~67! is in good agreement with experimental data
Segrèet al.70 ~cf. also to Fig. 11!.

Figure 12~b! contains the corresponding results for d
ionized charge-stabilized systems. Here,h 8̀ is approximated
by Eqs. ~28! and ~29!, respectively, which are practicall
equal to the Einstein form even up to the largestF of ;0.1.
DS

S is approximated by the nonanalytic form in Eq.~70!, and
H(qm) is determined from Eq.~72!. The static structure fac

FIG. 11. ~a! Hydrodynamic functionH(qm) of colloidal hard spheres vsF.
Solid line: parametric form Eq.~68!; crosses: exact low density calculation
closed circles: experimental and computer simulational results taken
Ref. 70. ~b! H(qm) of de-ionized charge-stabilized systems withF
P(0,0.1). The other parameters are the same as those in Fig. 8. Solid
parametric form of Eq.~72!; crosses: numerical low density results; clos
circles: experimental results taken from Ref. 78.
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tor is obtained using the RMSA. As can be seen, bothh 8̀ /h0

andD0 /DS
S barely deviate from unity for concentrations u

to F50.03. The deviation between the two quantities
creases with increasingF, with h 8̀ /h0 being somewhat
aboveD0 /DS

S . This agrees qualitatively with the experime
tal measurements of Bergenholtz and co-workers on cha
stabilized dispersions at intermediate to high ionic streng7

Contrary to hard sphere dispersions, the GSE relation
tweenh 8̀ and DC

S(qm) is found to be strongly violated fo
the present case of de-ionized suspensions of highly cha
particles.

In the following, we use the~rescaled! MCT to examine
the two long-time GSE relations in Eqs.~1! and~3!, relating
h to the long-time self-diffusion coefficientDS

L and to the

m

e:

FIG. 12. ~a! Calculated normalized high frequency limiting shear viscos
h 8̀ /h0 , reciprocal short-time collective diffusion coefficientD0 /DC

S(qm) at
qm , and reciprocal short-time self-diffusion coefficientD0 /DS

S for hard
sphere suspensions vsF. Open circles: ExperimentalD0 /DC

S(qm); closed
squares: experimentalD0 /DS

S reproduced from Ref. 70.~b! Corresponding
short-time transport properties of charge-stabilized suspensions with sy
parameters, aside fromF, the same as those in Fig. 8.h 8̀ is shown accord-
ing to Eq.~28!.
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FIG. 13. ~a! Experimental results for the normalized shear viscosityh/h0

~closed circles! and for the normalized reciprocal long-time collective di
fusion coefficientD0 /DC

L (qm) ~open circles! of hard sphere suspensions v
F reproduced from Ref. 2. The lines are the corresponding HI-resc
MCT predictions, including the reciprocal long-time self-diffusion coef
cient D0 /DS

L . ~b! BD results without HI forh/h0 ~closed circles, taken
from Ref. 66! and for D0 /DS

L ~open circles, taken from Ref. 83! of hard
sphere suspensions as functions ofF. The lines are the corresponding MC
predictions without HI as labeled.~c! MCT results without HI for the nor-
malized ~reciprocal! long-time transport coefficients of charge-stabilize
systems with system parameters, aside fromF, the same as those in Fig. 8
Various definitions of effective radii are displayed in the inset.
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long-time collective diffusion coefficientDC
L (qm), respec-

tively.
The HI-rescaled MCT hard sphere results forh/h0 ,

D0 /DS
L , and D0 /DC

L (qm) are displayed in Fig. 13~a!, to-
gether with experimental data of Segre` et al.2 for h and for
DC

L (qm). On the semi-logarithmic scale in Fig. 13~a!, there is
good agreement betweenh/h0 and D0 /DS

L . Close agree-
ment between these two quantities was also observed ex
mentally by Imhofet al.,12 while Segre` et al. found devia-
tions at high particle concentrations.2 The rescaled MCT
predicts thath also very crudely obeys a GSE withDC

L (qm).
This MCT DC

L (qm) agrees qualitatively with the data ob
tained by Segre` et al. for FP(0.2820.45). As we will argue
below,DC

L (qm) and hence the GSE in Eq.~3! cease to exist
for hard spheres at small volume fractions.

The GSE relation betweenh and DS
L has also been in

vestigated theoretically for hard spheres by Lionberger
Russel18 using the nonequilibrium HNC closure scheme w
HI accounted for in two different ways. Their findings for th
product of hDS

L/(h0D0) vs F are qualitatively similar to
Downloaded 06 Aug 2004 to 128.104.68.125. Redistribution subject to AI
ri-

d

ours, in particular for the so-called discontinuous HI appro
mation used in their work.

To study the effect of the excluded volume interactio
alone, we show the hard sphere MCT results without
rescaling in Fig. 13~b!. Also shown are Strating’s BD dat
for h66 and BD data forDS

L obtained by Cichocki and
Hinsen.83 In comparing Fig. 13~b! with Fig. 13~a!, the hydro-
dynamically induced enhancement ofh and the more modes
de-enhancement ofDS

L are clearly observed. Let us reca
that the valueFg50.62 in the MCTF renormalization was
chosen so that the high density part of the BD data forDS

L

agrees well with the MCTDS
L @cf. Fig. 13~b!#. As is seen in

Fig. 13~b!, the BD data forh/h0 and D0 /DS
L are in good

agreement and in accord with the corresponding MCT
sults. The MCT results forD0 /DS

L are seen to be somewha
closer toh/h0 than the MCT results forD0 /DC

L (qm).
Notice in Figs. 13~a! and 13~b! that DC

L (qm) is shown
only for densitiesF.0.22. ForF&0.22, the MCTS(qm ,t)
ceases to be a purely exponentially decaying function at l
times. The disappearance of the exponential mode
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



ta
t
de

fi

t

th
lin
-
to

s
on
s
iv

t
-

e
te

el
w
re
re

-
r
ea

o-
w
u
h
t
ez

s
-

cr
o
ui

ca

-

th

f a

nt

rd
As
e

ity

e of

low
SE

f

no-

I

for
re-

cy
n

ay

es,

een
e-
the

the

8738 J. Chem. Phys., Vol. 111, No. 18, 8 November 1999 Banchio, Nägele, and Bergenholtz
S(qm ,t) at smallerF is not an artifact of the MCT, but is
corroborated by hard sphere calculations ofS(qm ,t) at inter-
mediate concentrations based on the so-called con
Enskog approximation.85,86 It should be kept in mind tha
S(q,t) shows, in general, an overall nonexponential time
pendence. For example, for hard sphere suspensions to
order inF, an asymptotic long-time behavior ofS(q,t) pro-
portional to t23/2exp@2q2(D0/2)t# is obtained from exac
calculations at all wave numbersq.0.85–87 The same
algebraic-exponential long-time decay form ofS(q,t) is pre-
dicted in MCT, up to a somewhat different prefactor, bo
for dilute hard sphere suspensions and in the weak coup
limit. The coefficientDC

L (qm) characterizes the long-time ex
ponential decay of density fluctuation correlations linked
the average extension, 2p/qm , of a next-neighbor cage. Thi
so-called collective mode should therefore only occur at c
centrations that are large enough that caging effects are
nificantly strong. The occurrence of an exponential collect
long-time mode inS(qm ,t) at valuesF.0.22 is intimately
related to the presence of an isolated satellite peak at
small frequency~i.e., smalll! side of the otherwise continu
ous spectral densitypqm

(l), related to S(qm ,t) by

S(qm ,t)/S(qm)5*0
`dl exp(2lt)pqm

(l). A detailed analysis
of the functional form of the MCT spectral density will b
given elsewhere, since it is not central to the topic presen
in this work.

Next, we examine whether the long-time GSEs are lik
to hold independent of the pair potential. To this end,
apply the MCT to the dispersions of highly charged sphe
for which the interaction potential is far from hard sphe
like.

The MCT results forh/h0 , D0 /DS
L , andD0 /DC

L (qm) as
functions ofF are shown in Fig. 13~c! up to the glass tran
sition volume fraction (F'0.1). Neither HI rescaling no
the F renormalization has been employed here for the r
sons discussed in the introductory part of Sec. V.

According to the MCT, both long-time GSEs are vi
lated for de-ionized systems. The deviations from the t
GSEs are so strongly pronounced that it appears very
likely that the inclusion of far-field HI effects will reestablis
either of the two relations. A somewhat reassuring aspec
these MCT calculations is that they agree with the two fre
ing criteria proposed by Hansen and Verlet88 and by Löwen
et al.;89 the former relates the volume fraction at which cry
tallization begins toS(qm)'2.85, whereas the latter is dy
namic in nature in that it states thatDS

L/D0'0.1 at the freez-
ing volume fraction. AtF'2.431023 the RMSA S(qm)
'2.85 corresponds indeed toDS

L/D0'0.1 in Fig. 13~c!.
Thus, according to the MCT calculations, these freezing
teria are consistent, revealing that for concentrations ab
F'2.431023 these dispersions are in an undercooled liq
state.

For the charge-stabilized systems in this study, we
formally write DS

L5kBT/(6phaeff
S ) and DC

L (qm)
5kBT/(6phaeff

C ), which defines two effective~hydrody-
namic! radii aeff

S .a andaeff
C .a. Their F dependence is dis

played in the inset of Fig. 13~c!, and compared with theF
dependence ofr m' r̄}F21/3 and the Debye screening leng
lD5k21}F21/2. Both effective radiiaeff

S andaeff
C are non-
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monotonic inF and hence cannot be expressed in terms o
single power law inF. Notice thatS(qm)'2.1 for the small-
est concentrationF51024 considered in Fig. 13~c!.

C. Frequency-dependent generalized Stokes-Einstein
relations

In the following we investigate the frequency depende
empirical GSE relation in Eq.~7! given by Mason and
Weitz,1,26 using the rescaled and unscaled MCT for ha
sphere and charge-stabilized dispersions, respectively.
pointed out in Sec. I, this GSE conforms to the short-tim
GSE betweenh 8̀ andDS

S and the long-time GSE betweenh
andDS

L in the limit of s→` ands→0, respectively.
For hard sphere dispersions, we compare in Fig. 14~a!

the Laplace-transformed normalized dynamic viscos
h̃(s)/h05h( iv)/h0 with the function D0 /@sD̃(s)#. Both
quantities are computed using the HI-rescaling procedur
Eqs.~62! and ~64!, with h 8̀ according to Eq.~24!. The res-
caling of the MCT results leads to good agreement in the
frequency regime, suggesting that the Mason and Weitz G
is valid approximatively over an extendedF range. It should
be noted thath̃(s) is a monotonically decreasing function o
s sinceDh(t) is non-negative. The high- and low-s limits of
the Mason and Weitz GSE are compatible with the mo
tonic decrease ofh̃(s), sinceDS

L,DS
S is valid independent

of the pair potential.
The MCT results for charged colloidal particles with H

neglected are shown in Fig. 14~b!. As can be seen, the MCT
predicts that the frequency dependent GSE is violated
charged colloidal particles, as was found also for the f
quency independent long-time GSEs.

In the remainder of Sec. V, we analyze the frequen
dependence ofh̃(s) and the Laplace-transformed diffusio
function. For this we define the reduced quantities,

Ch~s!5
h̃~s!2h 8̀

h2h 8̀
, ~79!

and

CD~s!5
1/~sD̃~s!!21/DS

S

1/DS
L21/DS

S , ~80!

associated withh̃(s) and 1/@sD̃(s)#. The functionsCh(s)
and CD(s) vary between 0 and 1. For fluids, they dec
monotonically from 1 ats50 to 0 for s→`. Since the HI-
rescaling procedure in Eqs.~62!–~65! does not affect the
time dependence ofWMCT(t) andDh(t), Ch(s) andCD(s)
remain unchanged with and without it.

Figures 15~a! and 15~b! show MCT results forCh(s)
and CD(s) for colloidal hard spheres and charged spher
respectively, as functions of the reduced frequencysta , and
in the hard sphere case, for volume fractions up toF
50.57. We observe remarkably good agreement betw
Ch(s) and CD(s) for hard spheres, but even better agre
ment results for de-ionized systems. For hard spheres,
agreement betweenCh(s) and CD(s) becomes good for
concentrated systems withF.0.2, improving further with
increasingF @cf. the inset of Fig. 15~a!#. Notice that charge-
stabilized systems are effectively concentrated even for
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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smallest physical volume fractions considered. Con
quently, the MCT predicts the following frequency depe
dent GSE to provide a good approximation for both ha
sphere and charged sphere dispersions:

Ch~s!5CD~s!. ~81!

Computer simulations or experiments can be used to d
sively test this new finding.

VI. CONCLUDING REMARKS

We have examined in detail the linear viscoelastic pr
erties and the diffusion of hard sphere and charge-stabil
dispersions of colloidal particles. Particular focus has b
directed at evaluating the range of validity of several gen
alized Stokes-Einstein relations which have been propose

FIG. 14. ~a! Comparison of Laplace-transformed normalized dynamic v

cosity h̃(s)/h0 ~solid lines! with D0 /@sD̃(s)# ~dashed lines! vs sta for hard
sphere dispersions. Both quantities are calculated using the HI-res
MCT. The volume fractions are as labeled.~b! MCT results without HI for
charge-stabilized systems with system parameters, aside fromF, the same
as those in Fig. 8.
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hold to various degrees of approximation for concentra
and highly correlated dispersions. In addition, this study
identified new extensions of them for short times and fin
frequencies, which may prove useful for estimating line
viscoelastic properties from dynamic light scattering me
surements, or vice versa.

The MCT results can be brought into accord wi
Brownian dynamics simulation data for the shear viscos
and long-time self-diffusion coefficient of hard spheres
renormalizing the volume fraction. Inclusion of a full ac
counting of HI in the MCT calculations is, as for any theo
of concentrated suspensions, a daunting task that has no
been accomplished. In this work for hard spheres we emp
a simple hydrodynamic rescaling procedure. In this way
MCT results can be quantitatively compared with expe

-

led

FIG. 15. ~a! MCT hard sphere results for reduced dynamic quantitiesCh(s)
~solid lines! andCD(s) ~dashed lines! defined in Eqs.~79! and~80!, respec-
tively, as functions ofsta . The volume fractions are as labeled. For clarit
results forF50.15 and 0.30 are shown in the inset.~b! Corresponding MCT
results for charge-stabilized systems. The system parameters, aside froF,
are the same as those in Fig. 8. The volume fractions are as labeled.
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mental measurements of the frequency dependent visc
and the long-time diffusion coefficients of hard sphere d
persions.

The MCT results suggest that a connection exists
tween the linear viscoelastic behavior and the self and co
erative particle motion in dispersions. The Maxwell rela
ation time was found to be linked to appropriate
normalized long-time diffusion coefficients irrespective
the nature of the interaction potential. Both short- and lo
time versions of the frequency independent GSEs w
found to hold approximately for hard spheres, whereas
such relation appears to be valid for dispersions of hig
charged particles. A similar conclusion holds for the case
the frequency dependent GSE suggested in Ref. 1, where
modified version of this GSE should, according to our c
culations, yield an improved frequency dependent GSE c
relation for dispersions with strong concentration-
potential-induced interactions.
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40G. Nägele and J. Bergenholtz, J. Chem. Phys.108, 9893~1998!.
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