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The linear viscoelastic and diffusional properties of colloidal model dispersions are investigated and
possible relations between thdynamig shear viscosity and various diffusion coefficients are
analyzed. Results are presented for hard sphere and charge-stabilized dispersions with long-range
screened Coulomb interactions. Calculations of the dynamic long-time properties are based on a
(rescaled mode coupling theonfMCT). For hard sphere suspensions a simple hydrodynamic
rescaling of the MCT results is proposed which leads to good agreement between the theory and
experimental data and Brownian dynamics simulation results. The rescaled MCT predicts that the
zero-shear limiting viscosity of hard sphere dispersions obeys nearly quantitative generalized
Stokes—EinsteifGSE relations both with regard to the long-time self-diffusion coefficient and the
long-time collective diffusion coefficient measured at the principal peak of the static structure factor.

In contrast, the MCT predicts that the same GSEs are violated in the case of dispersions of highly
charged particles. The corresponding short-time GSEs are found to be partially violated both for
charged and uncharged colloidal spheres. A frequency dependent GSE, relating the elastic storage
and viscous loss moduli to the particle mean squared displacement, is also investigated, According
to MCT, this GSE holds fairly well for concentrated hard spheres, but not for charge-stabilized
systems. Remarkably good agreement is obtained, however, with regard to the frequency
dependence of the Laplace-transformed reduced shear stress relaxation function and the
Laplace-transformed reduced time-dependent self-diffusion coefficient for both charged and
uncharged particle dispersions. 999 American Institute of Physids$S0021-96069)50541-2

I. INTRODUCTION In contrast, diffusional properties like the short-time and
long-time collective and self-diffusion coefficients, particle
The prediction of rheological and diffusional transport mean square displacemeriddSDs), and the dynamic struc-
coefficients of colloidal suspensions from microscopic mod-+ure factor,S(q,t), are nearly always determined using dy-
els is a major theoretical challenge. It is important to develophamic light scatteringDLS) techniques:*° For an infinitely
an understanding of the microscopic origins of these properdilute suspension, the shear viscosjthecomes equal to the
ties to aid, e.g., in the modeling of more complex and indussoelvent viscosityz, that is related to the single particle dif-
trially relevant dispersions. The calculation of colloidal fusion coefficientD, by the well-known Stokes—Einstein re-
transport properties from first principles is complicated be4ation D,=kgT/(677a), wherea is the radius of a spheri-
cause of the presence of long-range many-body hydrodycal colloidal particle.
namic interactiongHI) mediated by the intervening solvent. In concentrated dispersions and in dilute dispersions
The presence of HI distinguishes colloidal systems fromyjth |ong-range particle interactions, particle diffusion is
Simple ||qU|dS in which the molecular motion is ballistic and slowed down due to potentia] and hydrodynamic partide in-
is determined only by the intermolecular force law. teractions. Furthermore, the suspension viscosity can be sub-
Of particular technological relevance is the viscoelasticstantia”y larger than the infinite dilution valug,. As a
behavior of colloidal dispersions, characterized by the reatonsequence of these interactions, the Stokes-Einstein for-
part, »'(w), and imaginary partys”(w), of the complex-  myla no longer represents the particle diffusivity. In mono-
valued dynamic viscosityp(w). The function 7(w) deter-  gisperse suspensions of correlated particles, one needs now
mines the macroscopic stress induced in a suspension Upgd gistinguish between self-diffusion and collective diffusion
the application of a low-amplitude oscillatory shear strain Ofcoefﬁcients, depending on whether the Brownian motion of a
frequencyw (cf. Sec. I). The dynamic viscosity and its zero- tagqed particle or the density relaxation involving the simul-
frequency limit, the zero-shear limiting suspension Viscosity taneous motion of many particles is considered. Moreover,
7, have been determined experimentally for a variety of COlyne viscosity and the diffusion coefficients associated with
loidal systems using mechanical rheometefs. the short-time regime<r, have to be distinguished from
the corresponding quantities for the long-time regitne
aCorresponding author, electronic mail: gerhard.naegele@uni-konstanz.de> 7, . Here, r,=a?/Dy, is the time required for a noninter-
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acting spherical particle of radius to diffuse a distance determined experimentally by noting that for long correlation

comparable to its own size. timest>r,, S(q,,,t) decays exponentially s
Many attempts have been made in the past to connect 2ot
experimentally the rheological and diffusional transport pro- ~ S(0m,t)~S(qy) e dm°ctm’t, (4)

H =37,11,12 i . ) .
cesses of concentrated colloidal suspenston&!™**The  \ypije long-time structural relaxation over distances/g,

idea underlying these attempts is that both processes reflegt,j inverse viscosity might be expected to show similar de-

relaxation by diffusion in response to a structural deformayengences on concentration, there is again no obvious reason

tion caused by an applied flow or by the diffusing particles;, expect the GSE in Ed3) to hold quantitatively. Through
themselves. These types of studies have led to a number gf dependence on the long-time form®(fg,,,t), the diffu-

empirical generalized Stokes—EinsteiGSE relations in sion coefficientDé(qm) is linked to a time integral over the

which algiifzulgional property correlates with a rheological |t dinal(i.e., not transversal as it is the case fprstress

property. _ o autocorrelation function, evaluated now at a finite wave
One well-known example, studied extensively in the pasfy ;mperq,. . In fact, while the GSE has been established
as a function of the particle volume fractiol, is the GSE gy nerimentally for colloidal hard spherdéand appears to
between the zero-shear limiting sLhear viscosiyand the 11414 also for other types of colloidal—like systeéthsrecent
long-time self-diffusion coefficienDs, given by mode coupling theoryMCT) calculation$® suggest that the

(D) D same GSE does not hold for salt-free charge-stabilized sus-
= L_O_ (1)  pensions of spherical particldsf. also Sec. V. It follows
7o Ds(®) that these calculations predict that E8). does not provide a

The ® dependence of these quantities is made explicit in qunlversal quantitative relation _for c_oncent_rated dispersion in-
dependent of the type of particle interaction.

1). This GSE has b lored for hard sph . i :

fji;persii)sné“‘% sm?r?actae:tn g/(gtgrrr% (;rnd arpm;riJnere Further GSEs arise from considering the short-time ver-
L ] . . 7

dispersion€° Although this GSE works reasonably well in a S'°"S of Egs(1) and(3), i.e.,

qualitative sense for these systems, experiments by Imhof ;' () Do

and co-worker¥ revealed that it is a poor approximation for ~ ————= 5

= ——,
charge-stabilized dispersions. However, for concentrated 0 Ds(®)

hard sphere dispersions near ftligealized mode coupling and

glass transition concentration, Fuokisal. have verified the ,

GSE in Eq. (1) using the MCT predictions for the 7(P) __ Do ®)
a-relaxation scaling regim@:?? According to their calcula- 70 D(Qm;®)

tions, (D5/Do) (7! 70)~0.9422
It is worth noting that there is no obvious theoretical
reason to expect Eq1) to hold in an extended concentration

regime sincen can be is expressed as a time integral over . . e - . .
fransverse stress autocorrelation functiff. Eq. (38)], %he short tl.me collectl\(e diffusion coeﬁlqlent associated with
whereasDL can be expressed in terms of the Green-Kubothe short-time relaxation of the dynamic structure factor at
formula S wave numbeng,,. The short-time form of5(q,,,t) is given
: by Eq. (4), with D&(qy,) replaced byD2(q,) andt<r,.
L 1 The diffusion coefficienD§ is a purely hydrodynamic prop-
DS:EI dt(V(t)-V(0)), (2)  erty quantifying the small-displacement mobility of a tracer
0 particle in the equilibrium dispersion. Correspondingly, the
over the velocity autocorrelation function of a representativeigh frequency viscosityy., reflects viscous dissipation due
particle with velocityV, which is obviously a one-particle 0 @ high frequency, low-amplitude shear oscillation in the
property. linear viscoelastic regime. The short-time properties;0f
Segreand co-workersused a two-color DLS technique D3, andDg(dy,) are related to the diffusive motion on time
and viscometric measurements gto identify another GSE  Scales that are long relative to the momentum relaxation and
which appears to be near|y quantitative for hard Sphere d|sﬂU|d VortiCity diffusion times, but short relative to the struc-
persions for particle volume fractions up to the freezing traniural relaxation timer, . _
sition. Their experimental results show that the shear viscos- Experimental work of Shikata and Pearamd of Zhu

ity of a hard sphere dispersion scales quantitativelyand cg-workerjsl on hard sphere suspensions support the
according to short-time GSE in Eq(5) within experimental accuracy,

whereas theoretical calculatiofsf. Sec. VB and computer
(®) Do simulationé*?°suggest that there are measurable differences
70 - DE(qm?‘D)’ 3) betweeny./ 5, and DO/DE. For charge-stabilized systems
with intermediate high salt content, Bergenholtz and
with the reciprocal of the so-called long-time collective dif- co-worker$ showed experimentally thah./ 7, lies above
fusion coefficient,Dé(qm), measured at a wave number, (D§/D0)‘1 for all volume fractions considered. In Sec. VB
Jm, corresponding to the peak position of the maximum ofwe examine theoretically the short-time GSE in Es). for
the static structure factof(q). The coefficiemDE(qm) is both hard sphere and salt-free charge-stabilized dispersions,

In these short-time GSEsp.,= n(w—») is the high fre-
quency limiting shear viscositicf. Sec. 1), and D3 is the
short-time self-diffusion coefficient. Furthermog(q,) is
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as well as the short-time version in E®) of the long-time lated and discussed. Comparisons with experiments and
GSE of Segreetal? for neutral and charged colloidal computer simulations are made to assess the accuracy of our
spheres. theoretical predictions.

So far no test has been provided for the short-time ver-  Second, we employ &escaledl mode coupling theory
sion in Eq.(6) of the long-time GSE of Segret al?> Such a  for the calculation of long-time rheological and diffusional
test will be provided in Sec. VB, for both neutral and properties, and we explore in detail its predictions with re-
charged colloidal spheres. gard to the GSEs introduced here in Sec. I. In this work, we

An interesting heuristic extension of the GSEs in Eqs.make use of an idealized version of the mode coupling
(1) and(5) to finite strain frequencies has been proposed bytheory. This type of MCT was developed several years ago
Mason and Weit2.According to them, an approximate GSE, for the description of the dynamics of simple liqufd€’-2°

It was later recognized that this theory is particularly well

7(s) Do _ Do (77  Suited to study the glass transition because the slowing down

0 s2W(s) sD(s) ' of the dynamics and structural arrest is captured through cer-
tain bifurcation scenarios that appear in the self-consistent
exists between the dynamic viscosiBy(s), in the Laplace long-time solution of the MCT equatior$3°~3 Further-

domain, with more, the results of the MCT have been shown to be in
B accord with experimental measurements of the dynamics of
%(S):n(sziw):,];Jrj dtA 5(t)e™ s, (8)  concentrated colloidal hard spheres near the glass

0 transition33-38

Recently, starting from the Smoluchowski equation de-
scribing colloidal dynamics, we have attempted to include
_ o - the effect of hydrodynamic interactions within the frame-
D(s)= fo dte”*D(t)=sW(s) (9 work of the original MCT, in anticipation of their importance
in colloidal systems with particle concentrations below the
of the self-diffusion functiorD(t) =dW(t)/dt. Here, W(t) glass transition. This inclusion of HI has been accomplished
=([R(t)—R(0)1?)/6 is the MSD of a representative particle for the far-field, pairwise additive part of the HI, for both
with position vectorR. Equation(7) is supposed to hold for monodisperse suspensidhsand multicomponent colloidal
frequencies in the Laplace domain sufficiently small so that mixtures?®=#?it can be used to determine the properties of
inertial effects are not resolved. In E®) A 5(t) is the shear suspensions for which near-field HI are not important, such
stress relaxation function associated with noninstantaneowss de-ionized suspensions of charged particles. For hard
stress relaxation&f. Sec. 1). sphere suspensions where many-body HI is important even
Since 7(s—0)=7 and %(s—x)=175,, as well as at moderate densities, we employ a semi-empirical hydrody-
limg o s~D(s)=D§ and limy_... sb(s)=D§, Eq.(7) reduces hamic short-time rescaling procedure in the spirit of
to the GSEs in Eqs(1) and (5) in the zero-frequency and Medina-Noyol4® and of Brady®*’to approximate the effect
high-frequency limits, respectively. Mason and Weitz haveof HI on the particle dynamics. The outcome of our theoret-
tested Eq(7) experimentally for a variety of systems, includ- ical treatment is compared with results from experiments and
ing polymer networks and a concentrated metastable harf@rownian dynamic§BD) computer simulations. For an al-
sphere dispersioh? For these systems they find good quali- ternative treatment of the effect of HI within the MCT frame-
tative, albeit not quantitative agreement with ). Besides ~Work see Ref. 44. The results presented in this work will
Eq. (7) we will discuss in Sec. V C another frequency depen-demonstrate that th@escaledd MCT is a versatile tool for

and the Laplace transform,

dent GSE related to the Mason and Weitz GSE. determining a large number of dynamic properties of con-
From a practical point of view, the GSE in E(f) is  centrated colloidal dispersions.
quite intriguing: if it were to hold for a variety of particle This article is organized as follows: in Sec. Il pertinent

pair potentials, them' (w) and ”(w) could be determined relations and concepts associated with the general theory of
over a very large frequency regime using dynamic light scatlinear viscoelasticity of colloidal dispersions are introduced.
tering techniques. In contrast, the accessible frequency ranggection Il also includes a discussion of the asymptotic be-
of conventional rheometers is far more restricted. It is therehavior of various viscoelastic properties. For charge-
fore of relevance to investigate the general validity of thestabilized suspensions, the well-known concept of the effec-
Mason and Weitz GSE. Such an investigation is performedive hard sphere fluid model is introduced, as is commonly
in Sec. V C over an extended range of volume fractions fodone in the analysis of soft sphere suspensioHsyhich
both colloidal hard spheres and charge-stabilized suspemlows a simplified qualitative and physically intuitive de-
sions located in the fluid regime. scription of, in particular, short-time dynamic quantities. In
The purpose of this article is twofold: first we provide a Sec. Ill, we summarize and discuss the self-consistent
thorough discussion of the differences and similarities of thecoupled MCT equations used for numerically calculating the
viscoelastic and diffusional behavior of hard sphere disperstructural part of the linear viscoelastic functions and diffu-
sions and of charge-stabilized dispersions of spherical paisional properties of neutral and charged particle dispersions.
ticles with long-range potential interactions. Several long-The limiting behavior of the viscoelastic functions obtained
time and short-time rheological propertiésithin the limit ~ from MCT is established in Sec. IV and compared with
of small applied strainand diffusional quantities are calcu- known exact results. We examine in Sec. IV the nonlinear
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volume fraction dependence of short-time diffusional prop-forces®° These forces resist the flow-induced distortion and
erties of salt-free charge-stabilized suspensions, and compas&ive to retain the isotropic equilibrium microstructure. The
it with corresponding results for hard sphere dispersionsnoninstantaneous relaxation of the shear-distorted micro-
These short-time quantities are used in Sec. V A for the exstructure towards equilibrium is described by the shear relax-
ploration of the short-time GSEs. ation functionA #7(t).

Numerical results for the viscoelastic and diffusional Equation(11) can be rewritten in terms of the complex-
properties of hard sphere and salt-free charge-stabilized disalued dynamic shear viscositfw) as
persions are presented and discussed in Sec. V. Comparisons _ e
are made with experimental data and computer simulation 2= n(w) ye g (12)
results. Section V A contains theescaled MCT results for  where
the viscoelastic functions and the shear viscosity. The valid- .
?ty of _the frequency independent G_SEs introducedl here is U(w):f dte “'p(t)=5'(0)—i7"(w) (13
investigated in Sec. VB on the basis of our numerical and 0

analytical results. The accuracy of the frequency dependeqt o Fourier-Laplace transform of the total shear stress re-
Mason and Weitz GSE is analyzed in Sec. VC using th§ayation function 7(t) =27. 8(t)+ A 7(t) which accounts
(rescalef MCT. Our final conclusions are contained in Sec. 554 for the instantaneous hydrodynamic part proportional to
VL. the delta functions(t). The dynamic shear viscosity(w) is
related to the complex-valued dynamic shear mod@(i®)
via

Here in Sec. | we summarize some pertinent relations in G(w)=G'(0)—iG"(w)=iwn(w), (14)
the theory of linear viscoelasticity of colloidal dispersions.
These relations will be needed in the ensuing analysis. ~ where

We consider a homogeneous suspension of spherical o
particles subjected to a weak oscillatory fluid flow of fre- G’(w)zwn"(w)ZwJ’ dtsin(wt)A 7(t) (15
guencyw and shear rate amplitude. More explicitly, the 0

ambient Oscillatory fluid VE|0City field is assumed to be givenis the frequency dependent elastic storage modulus and
by the real part of

u(r,t)=yyge't (10 G'(w)=wn'(w)=o0

with the Peclet number Peyr,<1. Here X is the unit vec- d he vi | dulus. Th | o

tor in x-direction andw is the frequency of the applied strain. enotes .t € viscous 1oss modulus. The rea pa(ev) is in

The Newtonian shear viscosity of the solvent is denoted b hase with the oscillatory rate of strain and & ceounts for the
n0. For Pe<1, the suspension is only slightly distorted from dissipated re]nerlgy, . Wnereas éhe phasel;lsh!fted pé(t‘f)

its isotropic equilibrium microstructure, and there exists thugheasures the elastically stored energy. Notice i}’fi(i_b’) IS

a linear relation between the xy componeBi,(t), of the In phase with the applied straify sin(wt). Purely viscous

macroscopic suspension stress tensor at timed the shear Eeh_awor gé)rr(faspongs :’7 h:foy whereas pur_ily_elasnc be-
rate amplitudey. This relation 40 avior, aside from the high frequency contributigh, cor-

responds top’ — 7., =0. For intermediate to high-frequency
strain there is enough time for the system to restore isotropic
equilibrium during one cycle and elastic energy is stored in
H T the distorted configuration: the system behaves like a vis-
=20+ 2 (1), (1) coelastic fluid. Within the limit of large frequencies, there is
where ., is the high frequency limiting viscosity aniy(t) no strugtur_al r_elaxation at all and consequently no accompa-
is the shear stress relaxation function describing the noninf2ying dissipation of energy. Therefore, the high frequency
stantaneous stress relaxation of the slightly shear-distortd§nit of the complex shear viscosity is determined com-
microstructure. Both quantities), and A7(t) are taken Pletely by hydrodynamic interactions. Indeed, from Etf)
within the limit of vanishing shear rate. According to Eg. It follows at large frequencies that
(11), there are two distinct contributions to the shear stress
3,,(t). On the time scale of interest, the hydrodynamic part ~ X,(t)~%
25y(t) of the shear stress follows the applied strain rate
y cost) instantaneously, giving rise to the high frequencyprovided thatw7,>1 and provided that the high frequency
limiting shear viscosityy., .84 This is a purely hydrody- limiting elastic shear modulu§’. =G’ (w—®) exists. The
namic quantity that is due to the particles being nondeformtimit w— o should be understood as, *<w< 7;1 where
able. To first order in the volume fractio® = (4/3)na’, 'TnzpaZ/?]O is the time required for an overdamped viscous
wheren is the number density of particles,, is given by  shear wave to diffuse a distance equal to the particle radius.
the well-known Einstein resuly./7,=1+2.5P. The non- In the above,p is the mass density of the solvent. As a
instantaneous so-called thermodynamic contribuﬁdp(t) consequence, the high frequency regime corresponds to the
to the macroscopic shear stress lags behind the strain rate asldort-time  regime described by the Smoluchowski
arises from Brownian and potential equilibrium restoringequatior’*®*°The upper bound om guarantees that inertial

II. LINEAR VISCOELASTICITY: GENERAL RELATIONS

.+ foocdt cogwt)An(t)| (16

) t .
Sy0=4 7.6+ [ dran(t- e

!

'_i_°° i wt 1
Ul Bl Ca (17
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effects are absent in the particle dynamics and that solventesult up to quadratic ordécf. Eq. (25)]. Furthermore ..
mediated hydrodynamic interactions can be considered to adiverges at the valué& =0.64 where random close packing
instantaneously between the particles. The high-frequencygccurs.

modulusG/, exists provided that the shear relaxation func-  Exact numerical values for the low shear limiting viscos-
tion A (t) is regular att=0, i.e., in the short-time regime ity » of hard sphere suspensions are known only up to qua-

T,<t<7,. For a regulan\ 5(t), G is given by dratic order in®, i.e., n= 7.+ A 7 with*%%°
GL=An(t=0). (18) " . 2 3
. . — =1+ ;P +502+0(P?), (25
There are instances whe®, does not exist. For a sus- 7o 2

pension of hard spheres without Hl, it has been sH&#h
that G'(w) grows asymptotically without bounds as'?,

corresponding ta\ 7(t), diverging liket™ Y2 for t—0. As
was derived in Ref. 47, the exact short-time form of the —77:0_9131>2+ O(D3). (26)
reduced shear relaxation function of a hard sphere dispersion 70

in the absence of HI is given by

T Ap(t) 18 Z\F .
T 5PV Z2aY)

provided thatt<r,. Here,g(2a") is the contact value of ) ) . -
the hard sphere radial distribution function for which accu-For dilute suspensions of strongly repelling charge-stabilized
rate analytic expressions are known. The singular short-timgarticles, HI can be treated as a pairwise additive gHds
behavior ofA 5(t) implies an asymptotic high frequency be- Well approximated By

havior of the shear moduli according to

and

When the HI are neglected, 7 is given instead B/

-1/2
t Ay 12
Ta) ' 19 2T o2 0(@9). (27)
Mo S

7., 5 5 , 15 (=

18 — =14+ =P+ = P°+ D f dxx%g(x)JI(x), (29
Ta ~y0 o 2 + 2 Mo 2 2 2 0

n—OG (w)~®%g(2a")(w7a) ™ (20)

with J(x)~%x "8 for x=r/a>1. The integral on the right-

hand side of Eq(28) is a number of at most the order of 1.
Ta 18 . Hence 7./ 75, is expected to be well approximated by the
—G"(w)%gcng(za*)(ma)l’% — wT,, (21)  Einstein result fob<1.
70 70 Previous work®%?=**has revealed that the dilute limit-
with w7,>1. A finite plateau valués., of G’ (w) is recov- ing behavior of short-time transport properties of low-salt
ered, however, when near-field HI is accounted fdf.  charge-stabilized suspensions is modified due to the long-
Near-field HI causes the relative mobility of two spherical range repulsion among the particles. This leads to a qualita-
particles to vanish upon cont&®t. tively different volume fraction dependence compared to

The high frequency limiting modulu&., remains finite  hard spheres. However, the Einstein term in the virial-type

also for suspensions with soft long-range repulsive interacexpansion of the high frequency viscosity is a single particle
tions, where the effect of the physical hard core is com-roperty; it is unaffected by particle correlations, which are
pletely masked, such as in charge-stabilized suspensiorige source of often fractiona® dependence of, e.g., the

and

with low salinity. (short-timeg sedimentation velocity and the short-time self-
At zero frequency, Eq11) reduces to diffusion coefficient[cf. Eq. (70)]. As a consequence, the
. Einstein termy./no=1+2.5b is always, i.e., regardless of
2y = Y7, (22) the pair potential, a good approximation provided the volume
where 7 is the zero-frequency suspension viscosity. In thisfraction is sufficiently small.
work, we focus on the contribution, This point is clarified further by crudely approximating
the radial distribution functiorg(x) of a charge-stabilized
=l =Ap= fmth (1), (23  system by the zero-density for OH)S(X)=®(X—2_b/a) of
0 an effective hard spher&EHS) system. The effective radius

. . . b>a is assumed to be substantially larger than the hydrody-
to the shear viscosity due to noninstantaneous stress relax- ylarg y y

i As f A d. Lionb 4 Ruéel flamic radiusa. Here, ®(x) is the unit step function. The
ations. As 1ar asy., 1S concerned, LIonberger and RUSSE!  a¢q tive yolume fractionb o is related to the physical one
provide a semi-empirical expression for hard sphere SUSperﬂ)ytbeﬁ:q)(b/aﬁ The effective particle radius accounts for

sions which covers the entire concentration range. This Xhe electrostatic repulsion between the particles and can be

pression 1S identified aso=r /2, wherer ,, is the principal peak position
7. 1+1.5P(1+®—0.183b2) of the actualg(r). For the present case of salt-free suspen-
7]—0= 1-®(1+P—0.18907) ° (24 sions of strongly charged particles,, coincides to within

3% of the average geometrical distancea(4w/3®) of
and it agrees well with measured values #®f for hard  two particles’® Using the effective zero density(x) in Eq.
sphere dispersions and conforms to the exact low densit{28) with b=772, we obtain
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7. 5 5 ticle dynamics in concentrated hard sphere dispersions will
—=1+ Ed) + §@2+ 4.48D3, (29 be accounted for using a semi-empirical hydrodynamic scal-
0 ing procedure. Since a full account of the derivation of the
The zero-density form of(x) for the effective hard sphere exact Green-Kubo formula fop and for the MCT equations
model used in deriving Eq(29) can be improved to determiningS(q,t) andA 5(t) has been given in Refs. 40—
Jens(X) =2(b/a) A(Dq) S(x—2b/a)+O(x—2b/a) by adding 42, we will discuss only the final results and some of their
a delta-function term which accounts for the well-developedmplications. The predictions of th@escaled MCT will be
first maximum of theg(r) of charged particles. The dimen- explored Secs. IV and V.

sionless fUUCti%m(q)eﬁ) is determined from the compress-  Using a projection operator formalism and linear re-
ibility equatior? sponse theory based on the many-particle Smoluchowski
® equation, two of the present authors have derived an exact
3 XT( eff) . . . s ..
1+n| d°r[g(r)—1]=——5—, (300  expression for the shear relaxation function within the limit
XT

of small shear rate¥. As derived in Ref. 40A 5(t) can be

where x1(®) is the isothermal compressibility calculated expressed as an equilibrium stress autocorrelation function,
using the Carnahan-Starling equation of st&tend X%’ 1 )
.=(nkBT)*l is the corresponding |.deal gas value. Again us- A y(t)= m<a.xyetQTa_xY>, (34)
ing b=r/2 and hence®=/6, it follows that A(D ) B
=0.25. As a result, the prefactor 4.48 in the cubic term inW- : : ;

. ' -~ with the xy component of the microscopic stress tensor given
Eqg. (29 increases to 7.90 when the delta term contribution i y P P 9
considered. Since the prefactor of the cubic term is of the
order of one, Eq(29) reduces indeed to Einstein’s low den-

. ~ X . X X N aU(RN)
sity result for®<1. It should be stressed that, contrary to & y=21 [RI6,,+CIY"(RY)]
=

Y
hard sphere dispersions, tlgér) of charge-stabilized col- IR,
loids can exhibit strong oscillations even for volume frac- J N
tions as low as 10*.%° ~keT -5 Ci YY(RY) | (35
It will be convenient for later discussion to introduce the '
reduced dynamic viscositie¥’ In the above equatioR} is the yth Cartesian component of
7' (@)— 7! R; out of N particles in the system volumé, and summa-
R(w)= —,‘” (31) tion over repeated Cartesian indexes is implied. Moreover,
/s N .
and QT(RN)Zizl (Vi_ﬁViU(RN))‘Dij(RN)'Vj (36)
7' (w) . ’
()= n=n. B2 s the adjoint Smoluchowski operator of an unsheared sus-

pension, andJ(R") is the total potential energy of the col-

. i loidal particles. The hydrodynamic diffusivity tensor
quantitiesR(w) andl(w) vary between 0 and 1. As we wi Dij(RN) depends in general on the particle position configu-

show in Sec. VR(w) equals unity aw=0, and it decays 4, RV=(R;,...,Ry), and it relates the hydrodynamic
r_nonotonlcally to zero with increasing frqugqcy. The funC'force on particle to the resulting drift velocity on particlg
tion I (w) vanishes forw—0 andw— o, exhibiting a broad The function C*#*(RV) is a Cartesian component of the

maximum at intermediate frequencies. third rank shear mobility tensa®;(R") which accounts for

the shear-induced hydrodynamic interaction of particigth

the remaining particles. For a force- and torque-free sphere

advected by the ambient flow field as described in &G),
We proceed now to establish an exact expression for ththe ath component of the convective velociw;(RN,t) is

shear relaxation function with HI included, together with agiven by**4®

Green-Kubo formula for the static shear viscosity. The exact € oN o roy Xy ON

expression forA %(t) is the basis for a self-consistent mode VI(RE, 1) = Y[R 64+ Ci7(RT) Jcog wt). (37)

coupling theory for the linear viscoelastic functior)s and forWe emphasise thd(:--)) = fdRVP(RN)(--) is the equi-

the dynamic structure fact@(q,t). The latter is defined &s librium average W;ij(th reépect to thg( equilibrium distribution

1 N function Peq(RN) in the absence of shear flow. Explicit ana-
S(a.={y > el dRIO-Ry(0) ) (339 lIytical expressions for the hydrodynamic tens@g(R")

hp=1 andC;(RN) are available only on the two-body level in terms

whereq is the wave vector with modulug, andR(t) isthe  of inverse distance expansiotis®

center-of-mass position vector of partidieat timet. The From Eg.(34) we conclude thaty can be written in

equilibrium average of the unsheared suspension is denotedrms of a Green-Kubo formula,

by (---). The functionS(q,t) includes information on the

diffusional properties and is the key property determined in o :L

DLS experiment§:}° The many-body HlI effects on the par- 7T kg TV

that correspond to the real and imaginary parts;@$). The

IIl. CALCULATION OF VISCOELASTIC AND
DIFFUSIONAL PROPERTIES

f dt(5vet®’ 5y, (39)
0
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The high-frequency modulus is then identified using @®&) with the irreducible collective memory function,
as

: nD
. ME(@0= 5505 | SKVE(@RS00OS(a—K.,
GL=—= (52 (39)
kg TV (42)
These expressions have proven useful for calculating thand the vertex amplitucfe;*3%:%
low-shear rate viscosity and high-frequency shear N -
Y P e VE(a,k)=8-ke(k)+ 8- (a—K)c(|a—K|), (43

modulug® using Stokesian dynamics computer simulations.

Without HI, Djj=Dy8;;1, where 1 is the three- related to collective diffusion. Here(q)=[1—1/S(q)]/n is
dimensional unit tensor, an@,=0. As discussed in Ref. 40, the Fourier-transformed two-body direct correlation func-
the Green-Kubo formula in E((38) agrees then formally, tion, andDZ(q) is theq-dependent short-time collective dif-
aside from an irrelevant kinetic contribution, with a corre- fusion coefficient. Without HI the following result holds:
sponding expression for the shear viscosity of a simplqgg(q)=[)o/s(q)_
atomic liquid. However, it should be recalled that the time  There exists an additional set of MCT equations deter-
evolution in colloidal dispersions is governed by the irreversmining the self-intermediate scattering function
ible Smoluchowski equation instead of by the Liouville _
equation. Consequently 7(t), like any regular autocorre- G(q,t)=(e'd FaO=RalOD), (44)
lation function obeying Smoluchowski dynamics, decaySyhich contains information on self-diffusion. This set is
monotonically towards zero as long as the system is Iocategxp|icit|y39,41,s4
in the fluid regime of the phase diagram. The expression in
Eqg. (39 for G_, is particularly useful since it allows a direct d 2~
numerical calculation ofG. with many-body HI included EG(q't):_q DsG(a,t)
using a Monte Carlo generation of particle configurations
(see Ref. 24 for such a determination »f).

SinceA n(t) is given in terms of an equilibrium average
in Eq. (34), it provides an ideal and rigorous starting point
from which to formulate a mode coupling theory of linear
viscoelasticity. A detailed derivation of the coupled equa- _ Dy
tions for A 7(t) andS(q,t) with the inclusion of the pairwise M (g,t)= Wf d3k(g- k) VS(k)12S(k,t)
additive far-field part of the HI and the extension to colloidal
mixtures was presented in Refs. 40—42. In the absence of Hl, X G(|g—k|,1), (46)
the MCT equation determining »(t) is

t irr _ i
—foduMS(q,t u) -5 G(a.u), (45)

with the irreducible memory function,

, , related to self-diffusion and the vertex amplitude given with-
KgT (= 1 d t
sntt= gy [ ot g qes| B O
0 S(q) dq S(a) 1
(40) VS(k)=1— Sk (47)
whereS(q) =S(q,t=0) is the static structure factor related
to the pair correlation functiory(r). Equation (40) for  In Ed. (45), DS is the short-time self-diffusion coefficient
An(t) is formally identical to the corresponding MCT ex- €dual to the initial slope of the particle mean squared dis-
pression for a one-component simple fifikczor simple flu-  Placement(t). For vanishing HI,DS reduces td,. The
ids there is, of course, no additional viscous contributionMSD is determined b**
27.6(t) to the total shear relaxation functiop(t).
We note that Verberg, de Schepper and co-wofkérs W(t)=D3
have evaluated E@40) by substituting a simple exponential

form for S(q,t), consistent with the short- and expected yhere Av(t) is essentially the regular part of the velocity
long-time limiting behavior, but at the expense of sacrificing 5 tocorrelation functio®® The Laplace transform ok V/(t)

the inherent self-consistency of the MCT. This, in turn, pre-is rejated to the irreducible memory function through
cludes the possibility of obtaining a glass transition and a

t—ftdu(t—u)AV(u) , (48)
0

corresponding divergence of the shear viscosity. Notice that o MiT(q,s)
A 5(t) is uniquely determined throug®(q,t) andS(q). AV(s)=f dte S'AV(t) = lim————, (49
Without HI, S(q,t) follows self-consistently from solv- 0 a-01+Mg'(q,s)

ing the coupled set of equatiofisee, e.g., Refs. 13, 42, 44, . .
ar?d 64 P a e g whereM{(q,s) is the Laplace transform df1<'(q,t). The

initially linear increase ofV/(t) with slopeD3 is followed by
a sublinear regime that originates from the retarding influ-
ence of the cage of neighboring particles. At long times,
: 5 W(t) again becomes linear in Witfg a sslope equal to the
_f duMi(r:r(q,t_u) ~s(qu), (41) IorL19-t|me self-diffusion coefficienD s<DZ. The coefficient

0 Ju D¢ follows from

2 S(qt)=— D3
sio(a.0==9°De(a)S(a.t)
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W(t) DS Sincej,(y)~y?/15 for smally, we readily obtain the long-
Ds=lim =— ° : (500 time form of the normalized shear relaxation function to
toe 1 1+M¢g(q—0,s5—0) leading, i.e., quadratic, order ih:
Alternatively, W(t) and its long-time slopag can be deter- A p(t) 21|72
mined directly fromG(q,t) via the extrapolation, B ALY Z\ﬁ(— , (54)
7o a\T.
_10gG(q,t) )
W(t)=— “mT' (51 which is valid whent>r,. In MCT, the prefactor is given
4—0 by f.=36/75=0.48. The long-time behavior of the exact

Equations(40)—(47) constitute a self-consistent set of expression forA »(t) obtained in Ref. 46 differs from Eq.
equations determining(q,t), G(q,t), Ay(t), and hence the (54) only in the somewhat larger prefactéy=2/3~0.67.
related quantitiesy, 7' (w), 7"(w), W(t), and Dg. The  While not reproducing accurately the prefactors of the exact
only input is the static structure fact@®(q) which can be short-time and long-time forms ok 5(t), the MCT is at
calculated independently for a given pair potential using inleast qualitatively correct in predicting the exact asymptotic
tegral equation schemes or computer simulatif8i§An im-  dependence.
portant feature of the coupled MCT equations with nonlinear  In performing the time integral of E§53), we obtain the
feedback is that they predict didealized glass transition hard sphere MCT result,
scenario where long-time diffusion ceases and the zero-shear
viscosity diverges. Within MCTy diverges not at random _’7=f(p2+0(q)3), (55)
close packing ag., does, but at a somewhat smaller volume 7o
;ractlo_n correspon@ng o the glass transition point. Recen%lor the thermodynamic part of the viscosity, with=36/25

xperimental studies on hard sphere suspensions strongly . . .
support this scenarig—38 =1.44. For comparison, the exact result is Egp) with the
prefactor determined afs=12/5=2.44¢

We proceed now to a discussion of the high frequency
behavior of7(w) for a model dispersion of charge-stabilized
colloidal particles ignoring HI. The effective pair potential
between two spherical particles is assumed to consist of a

Having established the basic MCT equations, we analyzémasked hard-core part with radiua, and of a long-range
next the asymptotic behavior of the MCT viscoelastic re-screened Coulomb pawt,(r) which for r>2a is
sponse functions for hard sphere dispersions ignoring HI. (- 2a)

The neglect of HI in the equations presented above cannot be  Yel(") —oKal (56
justified for actual hard sphere dispersions due to the strong  KgT r '

near-field HI acting between nearly touching spheres. How- . . . . .
ever, the MCT calculations of rheological and diffusional Here,K is a dimensionless coupling parameter given by
properties without many-body HI are important to assess the Lg
accuracy of the treatment of many-body direct interactions. K= %a
Moreover, Brownian dynamics simulations are concerned
generally with just direct potential interactions on the c,;solloi- whereL g =€?/(ekgT) is the Bjerrum length for a suspending
dal dynamics because of the difficulty to incorporate®™l, fyig of dielectric constant; in addition, Z is the effective

and to provide a useful check of the theoretical results.  charge number of a colloidal particle in units of the elemen-
From a short-time analysis of E¢40) for hard sphere tary chargee. The screening parameter is given by 2

IV. MCT LIMITING BEHAVIOR AND HYDRODYNAMIC
RESCALING

2

, (57)

Z
1+ka

colloids in the fluid regime, we obtain =47Lg[n|Z|+2ns]= 2+ k2 wheren, is the number den-
Apt) 9 2 t\ 12 sity of a possibly added 1-1 electrolyte. We note thaom-
7]—~§<I>2 ;g(Za*)2 T—) , (52 prises a contributionc, due to counterions, which are as-
0 a

sumed to be monovalent, and a second contributgn
provided thatt<r,. Correspondingly, the high-frequency arising from the added electrolyte. Equatits¥) is a good
behavior of the MCT modulG’ (w) andG"(w) differs from  approximation of the effective pair potential of strongly
the exact result in Eq920) and (21) only by a factor of charged particles, where the effective chaZgaccounts for
g(2a™)/2. Another limiting case which can be treated ana-nonlinear screening effect&®’

lytically in MCT is the asymptotic long-time behavior of For charge-stabilized systents,, exists even in the ab-
A 5(t) for a dilute hard sphere system without HI. Using Eq.sence of HI and the large-behavior of 7"(w) is given
(40) and noting that dS(y)/dy=24Dj,(y)/y+O(P?), according to Eq(17) by

wherey=2ka andj, denotes the spherical Bessel function

of the order of 2, we obtain in MCT the relaxation function ~ 7"(@) 7a

! -1 >
to leading order inD: 7o 7o Culwra) 7, w7a>1, (58)
TaA (1) _ ﬁdﬂf&)dyyzj (y) 26 Y227) 4 O(%) with a regulare ~* decay, different from the»~ 2 decay for
7o 57 0 2 ' colloidal hard spheres. The MCT result 18t, without HI is

(53 given by
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!

2 2
=50 | mdy{y— ism} 59 A <t>~(&)A M) (64
* 80w Jo 7[S(y)dy ’ 7 0]~ '
with y=2ka. Since the singular hard core potential is wjth » determined from Eq(23), and
masked by the strong electrostatic repulsion such gffat
behaves smoothly at distancgswe can employ Parseval's DL(gm)~H(gmD5™T(qm) . (65)
theorem and rewrite Eq59) as

L,MCT
DS

Here, the transport propertie®VMCT(t), , and

1 ©
KLY —8<I>2f dxg(x)i x“’ic(x) , 60)  ApMCT(t) without HI are calculated using the MCT expres-
7o 5 0 dx|[ " dx sions, Eqs(51), (50), and(40), respectively. The long-time
collective diffusion coefficienD=™CT in Eq. (65) is calcu-

with x=r/(2a) and c(x) denoting the direct correlation
function. This MCT result foiG., should be compared with
the exact expressiéfh®®

lated from the MCTS(q,t) without HI by extrapolating to
the larget regime according t¢cf. Eq. (4)]

18 (= d
Tagr = q>2f AXg(X) —

-° 41 uel(x)
7o * b 0 dx

X dx kgT

L _ ! l a|
. (62) Dc(qm)——az im—— 09S(Qm,t). (66)

m t—o

Quite remarkably, the MCT result foB., becomes exact |n Eq. (65), H(q,,) is the so-called hydrodynamic function
when c(x) is approximated byc(x)~ —ue(x)/(kgT) for  evaluated at wave numbey,, where the principal peak of
distances< with g(x) #0. This well-established approxima- s(q) occurs. Without HI it reduces tbl(q)=1. The factor
tion for c(x) is known in the literature as the rescaled meanH(q,,) in Eq. (65) arises from the ratio of the short-time
spherical approximatiofRMSA).*° self-diffusion coefficient with HIDZ(q)=DoH(q)/S(q), to

It is also possible to deduce the largebehavior of  that without HI, i.e.,Dy/S(q) [cf. Eq. (41)]. We point out
7' (w) from the largeq asymptotic behavior 065(q). In  that the rescaling procedure in E@3) is originally that of
RMSA, S(q)—1~0(q~°) for q—o sinceg(2a*)=0 in  Medina-Noyola*® while Brady® using a different justifica-
contrast to a hard sphere colloidal fluid wheB¢q)—1  tion for the factorization, also considered the viscosity. Nei-
~0(q~?). This largeg behavior gives rise toy'(w)~ 7. ther of them, however, addressed rescaling of collective dif-
decaying like fp7,) ~3?for w—o. Using the RMSA to cal-  fusion as proposed in E465). The hydrodynamic rescaling
culate the static IanS(Q) for the MCT equations, we will in Eq. (64) does not Change the time dependence Q'(t)
discuss in detail the frequency dependence(af) in Sec. V. As a consequence, the hydrodynamically rescaled reduced

In the MCT equations shown in Sec. Ill, we have so fardynamic viscositieR(w) and! (w) remain the same as with-
not included the effect of HI. For concentrated hard sphergyyt HI.
dispersions, one needs to account for many-body HI. Theo- The hydrodynamic rescaling procedure in E¢82)—
ries of diffusion and viscoelasticity which incorporate many- (65) for colloidal hard spheres is semi-empirical and does not
body HI exactly have not been developed to date, althougheproduce the known exact dilute limits of the long-time
many approximate theories of a varying degree of accuracyansport coefficients. Moreover, E@4) does not recover a
exist. For hard sphere dispersions we will employ a simplginite G/ in the limit of w—, i.e., the exact short-time
semi-empirical hydrodynamic rescaling procedure similar tohehavior of A 7(t) is not reproduced. Notice that E¢2)
that proposed by Medina-Noydfaand developed in more gives the exact short-time form af/(t). For the important
detail by Brady:>'" This rescaling procedure derives from case of concentrated dispersions, however, we will show in
the assumption that the diffusional and rheological transpor§ec. V that the hydrodynamic rescaling procedure leads to
properties with HI can be factorized into a hydrOdynamngood agreement with experimenta| data, provided@hée_
part, given by the corresponding short-time transport proppendence of the MCT long-time transport properties without
erty with HI included, and a purely structural part without H are renormalized with respect to the glass transition con-
HI. In other words, it is assumed that the memory fUnCtioncentration(discussed be|0)NTo make quantitative Compari_
contribution to the transport property is determined by strucsons with experimental hard sphere data using the rescaling
tural effects only and not by HF To determine the struc- procedure in Eqe62)—(65), we require the short-time trans-

tural part, we employ the MCT according to Sec. Ill, i.e., weport coefficientsD(®), 7., andH(qy;®) as input. For
use 7. (D), we use the semi-empirical formula quoted in Eq.
DS (24). For D3(®), we employ an additional semi-empirical
W(t)~(§> W(t)MCT, (62) formula,
0
- DS(®)
corresponding to D =(1-1.560)(1-0.27D), (67)
s 0
ST D, S . suggested by Lionberger and Rus¥eThis expression con-
forms to the rigorous dilute IimiD§/D0=1—1.8313, with
FurthermoreA »(t) with HI is approximated by D§ vanishing at random close packidg=0.64.
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We will demonstrate, by comparing with lattice- there would be a hydrodynamic de-enhancement of long-
Boltzmann computer simulation data and experimental datéime diffusion for both uncharged and charged colloidal par-
of H(q) by Segreet al,’® thatH(q,,,) is well represented by ticles.
the form However, using anot fully self-consistent simplified

solution of the MCT equations for charged spheres with the

H(Qm)=1-1.35P, (68) leading far-field HI included, it was observed that far-field

up to the hard sphere freezing transitiondat=0.49. This HI leads instead to enlargement bt . > This finding has

result unexpectedly conforms also to the exact numericap@en corroborated by an exact low-density result formge

value in the dilute limit, which was determined by us usingOf the effective hard sphere system discussed in the final part

the exact two-body form ob;; (RV).13 of Sec. Il. For the effective hard sphere system the long-time
The hard sphere static structure factor, which is requiregelf diffusion coefficient is given in the dilute limit by

as input for the MCT equations, is calculated according to L

the Verlet-Weiss correction of the Percus-Yevi€RY) “S_1-o

S(q).%® The (idealized MCT glass transition for this particu- Do

lar choice ofS(q) occurs atb =0.5252133"\whereD¥ van- o 3973 :

ishes. The caging of particles is, however, overestimated in'th X=bia. For X=3, it follows from Eq.(71) that

L L _1_ 3 : P
MCT, leading to a glass transition concentration which is toob St/_DO>_( DES/D%WO_ 1 2t<_DX I tT?(ez hy((jjr)(zdyna;mc (tzor;Lrl
low compared to experiments33-35387\whijle the MCcT ~ Putions In q.(71) proportional toX* andX are due to the

; ; L
does not predict an exact glass transition concentration, hpadlng Oseen term. The hydrodynamic enhancemebtsof

does reproduce the special features of the colloidal har ue to prevailing far-field HI has been observed very re-

sphere glass transition scenario. We therefore followz&o g_ently n exlperlments and in ?D S|Ir|nl_1(ljat|or_1ti (I)n quasrtwc()jf
and co-workerd-333864 304 renormalize the concentration dimensional superparamagnetic colloids with long-range di-

dependence of the MCT-calculated quantitigsd only polar magnetic force& and in de-ionized charge-stabilized
thes, according to dispersions® The present discussion of long-time self-

diffusion is meant to illustrate the qualitatively different dy-
D namic behavior of colloidal hard spheres and of particle sus-
0505 (69 pensions with long-range repulsive forces.

Another short-time feature that illustrates the qualita-
with the concentrationb; determined such that the MCT tively different behavior of hard sphere colloids and of
result for Dg(®) agrees well with BD data oD at high  charge-stabilized suspensions is the density dependence of
concentrations. This density renormalization yields,  the hydrodynamic functiok(q). One might expect that HI
=0.62. A similar fit of the MCT predictions foDg of  always leads to a slowing down of the particle density relax-
atomic hard spheres to molecular dynamics data resulted iation such thaH(q) <1 should hold at all wave numbegs
P4=0.60." However, both experimerf®& 8 and theoreticaf° calcula-

Contrary to hard sphere dispersions in which near-fieldions dealing with charged colloidal particles show tH#t)
lubrication forces are important, the dynamics of chargedtan exceed 1 for values of aroundg,,, and that the peak
colloidal spheres is influenced only by the far-field part ofvalueH(q,,) of H(q) increases with increasin. This be-
the HI. There is no obvious reason to expect that the hydrohavior differs from that of hard spheres whetéq,,,) never
dynamic rescaling relations in Eq&2)—(65) should apply exceeds unity and decreasgisearly up to freezing with
for charge-stabilized colloids. In this context it should beincreasing® [cf. Eq. (68)]. Indeed, from our numerical cal-
noted that, while charge-stabilized fluid systems are usuallgulations ofH(q) for de-ionized, i.e., salt-free, aqueous col-
dilute from a hydrodynamic point of view, they are effec- loids of highly charged particles with effective charge num-
tively concentrated as far as the strong structural correlationiser Z=500 and radiusi=50 nm, in which the full two-body
are concerneflas measured, e.g., il introduced in Eq.  HI are accounted for, we find thad(q,,) is, overall, well
(28) ff.]. Consider, e.g., the case of the self-diffusion of parametrized by the nonanalytic form,
charged colloidal particles at low salinity, i.e., wheq

, 33, 567

(OB ()]

< k.. For this case, a nonlinedr dependence of the form, H(Qm) ~1+pd%% (72
DI(P) with p=1.5 for all volume fractions in the extended range
S =1-250% (70 in part :
Dy ' ' ® <(0,0.1) (cf. Sec. V). The exponent 0.4, in particular, is

found to be independent &f as long as the physical hard
has been predicted provided tiht<0.05 and provided that core remains completely masked. On the other hand, the
electroviscous effects arising from the mobility of the coun-prefactorp decreases with decreasi@gfor a fixed particle
terion clouds are negligibly sméi?:>3 The ® dependence of radius. For exampleg=1.5, 1.35, and 1.12 faZ =500, 400,
Dg according to Eq(70) has been qualitatively confirmed by and 300, respectively. Experimental results for the hydrody-
recent dynamic light scattering experimeftsf the scaling  namic function of suspensions of highly charged particles
relation in Eq.(63) for Dg would also hold for charged par- have been reported recently by idand co-workers® The
ticles, then the ordering relatioB5<(D&),,, should gener- measurements reveal pronounced oscillationsi {) even
ally be valid, with (Dg)WO denoting the long-time self- at volume fractions as low as 16, in excellent agreement
diffusion coefficient in the absence of HI. In other words, with the theoretical predictions of lgale and Baut?
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Values ofH(q,, larger than 1 are observed wheneverwhenr ,>4a and this holds for many charge-stabilized sus-
the leading contribution of the far-field pa|1Dij(RN) pensions. In contrast,,,=2a for hard sphere dispersions,
~Dg[ 6;;1+(1-6;;)O(Ri—R;)] of the diffusivity tensor and the weakfar-field) backflow effect is then outweighed

dominates. Here, by near-field HI, which favors the motion of particle pairs in
3/a the same direction. In other words, a hard sphere particle
O(r)=—(— [1+FF], (73 tends to drag along a closely spaced particle together
a\r with a thin coating of solvent sticking to the surfaces of

is the Oseen tensor arig=r/r.193° The Oseen contribution POth particles. Therefore, hard sphere dispersions exhibit
dominates in dilute suspensions of strongly repelling chargeh‘(Qm)<1'

particles. Using the Oseen approximation fo (RN) Results for the short-time and long-time transport coef-
H(q,,) is approximated by the integral N ficients of charged and uncharged colloidal particles are pre-
" sented and discussed in Sec. V.
— * . jl(qmr)
H(qm)_1+6“”afo d”[g(r)_l][m(qmr)_ ar | V. NUMERICAL RESULTS AND DISCUSSION
(74)

Here in Sec. V we present extensive numerical results
Substituting  z=qpr and noting that q,r  for the(frequency dependentiscosity and short- and long-
=qnal47/(3P)]Y*~27 holds for de-ionized systems, we time diffusional and viscoelastic transport properties intro-
can rewrite Eq(74) as duced in Secs. lI-IV. Both fluid hard sphere suspensions and
B s de-ionized charge-stabilized suspensions are considered. Fur-
H(Qm) =1+an®™, (75 thermore, we examine the general validity of the various

with an exponent 1/3 rather close to 0.4 and the prefactor, 9eneralized Stokes-Einstein relations.

g1 |13 i@ fThe MCT equations \(/jvere r?olv%d in dlscretlAzed fok:m ona

* 1 : uniform wave vector grid with grid pointg=iAq, where
327* fo dzz[g(z)—l][ z _JO(Z)]' (76) Aq~q,/34, using the algorithm developed by Fuetisal &
The equations are numerically integrated forward in time

8m

Within the framework of the effective hard sphere modelgiaiing from the known short-time behavior. In this algo-
discussed in Sec. Il, we could approximate t{e) of the

b ’ AN _rithm it is made sure that the memory equati¢iss. (41)
charge-stabilized system by the radial distribution function

_ “~Tand(45)] are satisfied at each discrete time step. To capture
9ens(Z Per) Of the EHS model, evaluated at the effective yhe ghort-time divergence of the irreducible memory func-

yolume fra_ct|on<I>eff:7-r/6. Howgver, foror)1umer|cal simplic- tions and ofA 7(t), the integrals in Eqg42), (46), and(40)
ity we again use trge low density forgyg(r)=0(r—2b)  4re performed on an extended wave number grid by extrapo-
corresponding tcg(E,jS(z)=®(z—27). The integral in EQ.  |ating S(q,t) andG(q,t) to large values of.
(76) can then be performed analytically with the result, The effective pair potential of charged particles is mod-
81 \18 eled by Eq.(56), which constitutes the repulsive part of the
W) 0.3 (77 well-known (Derjaguin—Landau—Vervey—OverbedRLVO
potential. We limit ourselves to studying a de-ionized sus-
The very small value obtained fa,, in Eq. (77) and the pension with ng=0, i.e., a suspension where the ionic
slight underestimation of the exponent 0.4 is due to the vergtrength is determined only by the counterions so that the
crude step function approximation used for the acg(al. potential is of long range and the particles become strongly
The latter can exhibit strong oscillations with a large peakcorrelated even at small volume fractions. The system pa-
valueg(r,,) which increases witld. Whereas theb depen- rameters employed for the charge-stabilized systems are
dence of the peak position of the actgét) is accounted for given by Z=500 for the effective particle charge number,
in the step function approximation, tlde dependence of the a=50nm for the particle radius, and Bjerrum lendth
peak height is completely disregarded. Nonetheless, our sim=0.714 nm. These parameters are typical, e.g., of agueous
plified calculation shows that the nonlineardependence of dispersions of highly charged polystyrene spheres. The static
H(q,) can be qualitatively understood in terms of this hard sphere inpuB(q) and g(r) are calculated using the
simple model of effective hard spheres widhrdependent Verlet-Weiss corrected PY approximation. In all MCT cal-
effective particle radiug. culations of hard sphere properties, terenormalization
A second physically more intuitive explanation for the according to Eq.(69) with ®;=0.62 is used. The RMSA
occurrence of values dfi(g)>1 is as follows:H(q) can be structure function$S(q) andg(r) are employed in the case
regarded as a generalizéshort-time sedimentation coeffi- of charge-stabilized dispersions. Nb renormalization is
cient of particles exposed to spatially periodic external forcesised in our MCT calculations for charge-stabilized systems,
aligned with@, and derived from a weak potential propor- since no experimental or computer simulation reference
tional to exp—iq-r].”® For q~q,~27/r,,, S(q,t) relaxes points for®y(Z, «) are known for systems with high particle
mainly by the motion of neighboring particles in opposite charges. There is, however, experimental support for the
directions. The motion of a particle induces a backflow ofpresence of a glass transition scenario in charge-stabilized
displaced fluid, which can support the antagonistic motion okystemg?!
another neighbouring particle a distanggapart, thus lead- To compare the numerical results for the hard sphere
ing to H(q)>1. The backflow becomes effective typically dispersions with experimental data, we employ the hydrody-

am=
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FIG. 1. Real parR(w) and imaginary part(w) of the reduced dynamic FIG. 2. Reduced dynamic viscositiéq ») and | (w) for a concentrated
viscosity vswt, for a dilute hard sphere suspension wit+=0.001 and Hl hard sphere suspension widh=0.45 and HI ignored. Thick lines: MCT
ignored. Comparison between MCT resulsick lines and exact low den-  results; open symbols: BD data of Heyes and Mitckiglf. 82; thin lines:
sity results(thin lineg. The latter are reproduced from Ref. 46. nonequilibrium HNC closure scheme of Lionberger and Ru@Ref. 18.

lute hard sphere dispersions. Nevertheless, we find that there

namic short-time rescaling procedure described in E&— is relatively good agreement between the MCT and the exact
(65), with 5., DZ, and H(q,,) determined by Eqs(24), low-density results.
(67), and(68), respectively. Since a corresponding hydrody- Figure 2 shows the MCT prediction for the reduced vis-
namic rescaling procedure for the long-time properties ofcosities(without HI) for a concentrated hard sphere disper-
charged colloidal particles is not available at this time, wesion at®=0.45. The accuracy of our MCT results fefw)
neglect the effect of the far-field HI on diffusion and vis- andl(w) is assessed by comparison with BD data of Heyes
coelasticity. For de-ionized systems, however, we expect thend Mitchell®? The BD data have been obtained for a con-
transport properties to be only modestly influenced by Hltinuous pair potentiali(r)/(kgT) = (2a/r)3, which closely
Our expectation is supported by exact low-density effectiveapproximates the singular hard core potential. The MCT re-
hard sphere model results ffﬁé [cf. Eq.(71)] and ,**and  sults are seen to be in good qualitative agreement with the
by (not fully self-consistent MCT calculations ofD5,%®  BD results. We have also included the results for the reduced
which show only a modest hydrodynamic enhancement. Furviscosities obtained by Lionberger and Russel usingya
thermore, the short-time properties of salt-free chargepernetted chainHNC closure scheme for the shear-distorted
stabilized dispersions vary also moderately as functior of nonequilibrium microstructure, also neglecting ¥iThese
[cf. Egs.(29), (70), and(72)]. To assess the accuracy of our results do not agree as well with the BD data as do those of
numerical results, we compare them with both Brownian dythe MCT, suggesting that the MCT provides a better ap-
namics computer simulation resultsithout HI), and experi-  proximation of the nonhydrodynamic excluded volume ef-
mental data. fects in colloidal hard sphere dispersions. An advantage of
the nonequilibrium closure schemes developed by Lion-
berger and Russel is, however, that they can be used to pre-

In Fig. 1 we show the frequency dependence of the redict the non-Newtonian rheological properties of sheared
duced dynamic viscositieR(w) and|(w) for a dilute hard  dispersiong®*’
sphere system without HI @& =0.001. The MCT results are Our MCT results for theb dependence of the zero-shear
compared with exact low-density results up@§®?), ob-  limiting suspension viscosityy of colloidal hard spheres
tained by Cichocki and Felderhdf.In their expressions for with HI ignored are presented in Fig. 3. They are compared
R(w) and I(w), we have corrected for a missing factor with the recent BD data of Stratirfj.As can be seen, the
(w7,)Y? multiplying the number 9 in the coefficiefit given ~ MCT predicts a strong increase in the viscosity with increas-
in Eq. (3.12 of Ref. 46. As can be seen in Fig. 1, the dy- ing volume fraction, in relatively good agreement with the
namic viscosity exhibits a broad spectrum of relaxationBD data. It appears that the BD data are consistent with a
times. The maximum of the reduced imaginary pHi&), of  viscosity which diverges at a volume fraction substantially
n(w) occurs in MCT at a reduced frequeney,,7,~6.2, lower than that of random close packing; recall that we have
rather close to the exact valug,7,~5.8. We note that the used a density renormalization such that the MCT viscosity
approximations made in the MCT are aimed at describing théliverges at a glass transition locateddat0.62. In prin-
collective dynamic effects in highly correlated liquitls®®  ciple, the glass transition is preempted by a fluid-solid tran-
There is therefore little reason to expect that the MCT willsition at®~0.49. This phase transition can be suppressed in
produce accurate results for the viscoelastic properties of dactual experiments by using dispersions with a slight size

A. Viscoelasticity of uncharged and charged particles
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FIG. 3. Normalized shear viscosity without HI for colloidal hard spheres vsFIG. 4. Normalized shear viscosity with HI for hard sphere suspensions.
volume fractiond. Comparison between MCT resulthick solid line and Comparison between the Hl-rescaled MCT resitliick solid line and ex-

BD simulation data reproduced from Ref. 66. Thin solid line: M@y, perimental data of Seget al. (Ref. 2 (open circles Thin sold line: MCT
using®4=0.60 instead ofb,=0.62. Dashed line: Einstein limiting result. ~result without HI; dashed liney./ 7, according to Eq(24).

po]ydispersity_ The MCT7] shown in F|g 3 has been calcu- greater than the MC-E] for ®>0.4 when short-time rescal-
lated from Eq.(23) with A 5(t) determined according to Eq. ing is not used.

(40). For the high frequency limiting viscosity the Einstein ~ For hard sphere systems we analyze next®hdepen-
form 7./ no=1+2.5b is used, which holds in the absence dence of the reduced dynamic viscosities. Recall B(a#)

of HI (which was also done in the BD simulationéccord- ~ andl(w) remain unchanged when hydrodynamic rescaling
ing to Fig. 3, the Einstein contribution to the potential part ofaccording to Eq(64) is applied. MCT results for concentra-
7 becomes negligible foi>0.45. tions ®=0.30, 0.45, and 0.53 are presented in Fig. 5 as

At this point, a few remarks are in order concerning thefunctions ofwr, , with the corresponding curves given from
MCT renormalized Va|ud) =0.62 used throughout our cal- I’Ight to |eft In the range Of h|gh VOIUme fraCtIOHS ConSIdered
culations. This value was chosen to obtain optimal agreebere, the frequency,(P) where the maximum of (w)
ment of the MCTDY, with the corresponding hard sphere BD occurs and the curves @t(w) are monotonically shifting
data at largeb [cf. Fig. 13b)]. There is, of course, a certain towards smaller frequencies with increasidg However,
ambiguity in selecting this particular value df,. For in-  @m(%) is @ nonmonotonic function when the whalerange
Stance Choos|ng a valge.=0. 60 a value Somewhat closer Of the ﬂl.“d phase IS COﬂSIdered To make thIS quan“ta“ve we
to the experimentally determined glass transition concentrantroduce the relaxation timey,(®) = w,*(®) correspond-
tion of 0.58%*-3"would yield a MCT 7 in perfect agreement
with the BD # shown in Fig. 3(cf. the thin solid line.
However, the BDDY for concentrated hard spheres are then 10
slightly underestimated. In general, it can be stated that over
all good agreement between MCT and BD data for the dif-
fusional and rheological properties is obtained for any choice®8 [
of ®4e(0.58-0.62).

So far we have disregarded the influence of HI on the
(dynamig viscosity. We account now for the influence of HI 06
on n by using the approximate semi-empirical rescaling pro-
cedure given in Eq(64) in conjunction with Eq.(23). For
7. (®), we use the accurate expression in E24) which 0.4
reduces to the Einstein form at smal. The Hl-rescaled
MCT result for »(®) is displayed in Fig. 4 and compared
with experimental data of Segand co-workersas well as 0.2
with the MCT # without HI. Also shown is theb depen-
dence ofy., according to Eq(24). We find that the rescaling
of the MCT # brings the theory into good accord with the 0.0
experimental data, at least on the semi-logarithmic scale use
in Fig. 4. However, in absolute terms, the scaled Mggan FIG. 5. Frequency dependence of reduced MCT dynamic visco§ifie$
differ from the experimental data by as much as 25% forandl(cu) of colloidal hard spheres & =0.30, 0.45, and 0.5@rom right to
large @. Notice further that the experimenta} is much  left).
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FIG. 7. ® dependence of hard sphere normalized shear relaxation times
m(®) and 7y (P) in comparison with normalized diffusion relaxation
times 75(qm ;@) and 75(®d). All quantities are calculated using MCT with-
out HI, and compared with experimental data fqrof van der Werffet al.

. . (Ref. 4.

ing to the frequencw,,. The timer,,(®) can be regarded as

an order of magnitude estimate of the meamaxwellian

relaxation time:’ stress. At valuesb>0.3 it appears that particle caging be-
= Apt)  d[7"(w) comes important, giving rise to a slower relaxation of the
™m(P)= J dttA—n: lim = (A—ﬂ : (78)  shear stress by particle diffusion with a further increas® of
0 @0 (cf. also the discussion for self diffusion in Ref.)8® Fig.
related to the monotonically decaying shear relaxation func/ we have also included experimental results #Qv 7, ob-
tion, with A% being the time integral oA 7(t) according to  tained for hard sphere dispersions by van der Wetr#l* In
Eqg. (23). To leading order in®, 7, is given exactly by their work, tabulated values for a so-called longest relaxation
v/ Ta=2/9~0.22 without HI, and by, / 7,=0.49 when HI  time 7,(®) are provided. By determining the maximum of
is considered® For comparison, the small density MG, 7" (w) according to Eq(16) in Ref. 4, we find thatr, is
without HI follows from the time integral of Eq(53) and  related tor; by 7,(®)=7,(P)/1.176.
with Eq. (55) as Ty~ '/ 7,=4/21~0.19. The MCTry, is thus It is interesting to compare th& dependence of,, and
rather close to the exact value. of 7, with the ® dependence of the characteristic diffusion
When the frequency dependenceRffo) and|(w) are  times 7&(qm;®) and 75(®). The latter two quantities are
scaled with respect to,(®), all curves essentially collapse related to long-time density relaxationstgt gy, and to long-
on two single master curves. This is shown in Fig. 6 wherdime self-diffusion, respectively, over a distance comparable
MCT results forR(w) andl(w) are plotted versusr,,(®)  to the geometric mean particle distaiicen™Y3xd 13, For
for various volume fractions as indicated. Similar findingsthe definition of these characteristic times consult the inset of
have been obtained by van der Weeffal? on sterically Fig. 7. The constants,;=5.88<10 %7, and c,=9.09
stabilized dispersions, and in the BD results of Heyes and 10 %/ 7, are conveniently chosen so thgt and 75 are of

FIG. 6. MCT results for the reduced dynamic viscosittés) andl () vs
wty(P) for hard sphere systems at varying volume fractions as labeled.

Mitchell .82 comparable magnitude tg,,, since we are only concerned
The relaxation times,,(®) and = (®) of hard spheres here with their functional dependence @n
are nonmonotonic functions of, with their respective The diffusion timer5(®) diverges in the dilute limit,

minima occurring atb~0.3. The nonmonotonic dependence sincer— o andD¥ is a bounded quantity. Notice further that
of 7, and 7y on @ is shown in Fig. 7, where the MCT the characteristic times,, 7y, 7_(d), andrs diverge in a
Tm(P) and 7 (P) curves without HI are included. At small similar fashion when the glass transition concentration is
®, the exact low-density result far, is 7,/ 7,~0.17 with-  approached® The MCT results in Fig. 7 suggest that the
out H1.*® The corresponding MCT result is,/7,~0.16. It  times 7& and 75, related to long-time collective and self-
would be worthwhile to determine,,(¢) and 7,(®) by  diffusion, respectively, behave similar g (P) and7,,(P).
computer simulations or by experiment in a density interval  Having analyzed in detail the viscoelastic behavior of
of ®~0.3 to assess their nonmonotonic behavior. While notolloidal hard spheres, we investigate in the following the
being identical, Fig. 7 reveals that both times have very simiviscoelastic behavior of de-ionized suspensions of highly
lar ® dependence. A physically intuitive explanation for the charged particles. Figure 8 contains MCT results without Hl
nonmonotonic behavior is as follows: the initial decrease ofor the reduced dynamic viscosities of charged particles at
v (P) originates from the increasing number of collisions volume fractiond® =0.04. The remaining system parameters
with increasing®, leading to faster relaxation of the shear Z, ng=0, andLg determining the pair potential in E¢57)
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o N o FIG. 9. ® dependence of charged sphere normalized shear relaxation times
FIG. 8. MCT reduced dynamic viscositi®w) andl(w) (thick lines vs m(®) and 7 (P) in comparison with normalized diffusion relaxation

w7, for a de-ionized charge-stabilized system witk-0.04, charge number  imes 7L (q,,;®) andr5(®), calculated using MCT without HI. Aside from
Z=500, particle radius=50 nm, and Bjerrum lengthg=0.714 nm. Thin ¢ 5| system parameters as in Fig. 8.
lines: corresponding high frequency asymptotic foffyg(w) andl ,o(w).

) ) cient D2(qm) =DoH(qm)/S(qm), respectively. Accurate ex-
are chosen as those stated in the introductory part of Sepressions for the quantities involved in E¢S) and (6) were
V A. For this particular choice of potential parameters theprovided earlier.
MCT idealized glass transition occurs @t=0.1, when the Consider first theP dependence of the hydrodynamic
rescaled mean spherical approximation is usedSay). I fynction H(g,). In Fig. 11a), the hard sphereH(q,,),
Fig. 8, we also show the high frequency asymptotic formseyajuated according to E@68), is plotted in comparison
Rag(@)* (07,) "2 andl ()< (w7,) * of R(w) andl(w).  with experimental data of Sege al? for concentrated dis-
As discussed within the context of EqR0), (21), (58), and  persjons(closed circles and exact low-density calculations
(61), the high frequency asymptotes of charged particles areerossey with the two-body HI accounted for. The linear
qualitatively different from those of hard spheres. The latterjecrease ofH(q,;P), given by Eq.(68), holds up to high
exhibit an asymptotic tail proportional tas) ~*? when the particle concentrations.
HI are neglected. The intersection B{w) andl () in Fig. The corresponding density dependenceHdty,,) for a

8 is caused by the faster asymptotic decayrow). charge-stabilized system, according to the nonanalytic para-
The ® dependence of the characteristic timgg®),

(®), 75(qm; P), andr5(P) for charge-stabilized disper-
sions with the same coefficients andc, as those for the 1.0 .
hard sphere suspensions is displayed in Fig. 9. The charac
teristic times diverge as the glass transition volume fraction

+— @ =0.0001
R(w)

is approached. All four characteristic times exhibit a similar g g | ——— ®=0.003 -
density dependence as that observed also for the hard sphe — ©=0.02
dispersions. For the charge-stabilized system, the minimurn — ®=0.07

of 7, andr, at ®~0.02 is about two orders of magnitude q¢ |
larger than that for the hard sphere dispersions. Contrary tc
hard spheress, (®) is now nearly identical withr,(P). As
seen in Fig. 10R(w) andl(w) essentially collapse on the 4 |
master curves when plotted versuws,,(®). Note that the
maximum of I(w) yields a somewhat larger value for
charged particles than for hard sphefes Fig. 6). 0.2

B. Frequency-independent generalized

Stokes-Einstein relations 0.0

102 100 100 100 100 A0 {0
Proceeding, we analyze next the validity of the short- m

time GSE relations in Eqs(5) and (6), relating the high FIG. 10. MCT results for reduced dynamic viscositRé&w) and | (w) vs

. ., . . .
f!’e_quencsy viscosityy., to the_Short't'me _self-tjn‘fus_lon Coeff wty(®) for de-ionized charge-stabilized suspensions at varying volume
ficient DS and to the short-time collective diffusion coeffi- fractions as labeled. All other parameters are the same as those in Fig. 8.
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FIG. 11. (a) Hydrodynamic functiorH(q,,) of colloidal hard spheres . ()

Solid line: parametric form Eq68); crosses: exact low density calculations;
closed circles: experimental and computer simulational results taken from3.0 T T
Ref. 70. (b) H(qg,) of de-ionized charge-stabilized systems widn [

€(0,0.1). The other parameters are the same as those in Fig. 8. Solid line (b 7/ |
parametric form of Eq(72); crosses: numerical low density results; closed | ’,// |
circles: experimental results taken from Ref. 78. 25 T T i
////
L -

metric form in Eq.(72) with p=1.5, is shown in Fig. 1(b). -

. . . .. r,~ y 1
This parametric form provides a good description of the nu-» g £ — n'./M, i

merical results foH(q,,), calculated with the full two-body s
HI included. As is seen, the calculatét{(q,,) is in good -—=- D,/Dcg,)
agreement with the experimental data ofrtHat al.”® on . D./DS ]
de-ionized suspensions of highly charged particles. The sys1.5 | 7
tem parameters of the charge-stabilized suspensions studie | ]
by Hartl et al.”® are very similar to ours. Notice the qualita-
tively different ® dependence for hard sphere dispersions1 0 I
and charge-stabilized systems. ' 'y '
In Fig. 12a), we test the validity of the short-time GSE 10 10
relations for hard spheres. Herg.,, D3, andD2(q,,) are P
determined from Eqs(24), (67), and (68) with S(q) calcu- g, 12. (a) Calculated normalized high frequency limiting shear viscosity
lated using the Verlet-Weiss correction of the PY approxi-»./4,, reciprocal short-time collective diffusion coefficiebt /DE(q,,) at
mation. According to Fig. 1), 770’0 deviates from the recip- dm. and reciprocal short-time self-diffusion coefficiedty /DS for hard
rocal of DE for all volume fractions. This finding is in SPhere suspensions ds Open circles: Experimentddo /DE(dm); closed
agreement with the calculations of Beenakker®3:% Séres eermenttly Of epraduced fom Ref 01 Coresponang
There is far better agreement betwegnand the recip-  parameters, aside fro, the same as those in Fig. 8, is shown accord-
rocal ong(qm), the coefficients which are involved in the ing to Eq.(28).
second short-time GSE in E¢), at least for volume frac-
tions up to®=0.4. The calculations o[Dg(qm) are in ex-
cellent agreement with the experimental data of Segréor is obtained using the RMSA. As can be seen, bgthsy,
et al,’® which reflects the accuracy of E@8) for H(q,,) of  and DO/D§ barely deviate from unity for concentrations up
hard sphere dispersions. This shows that the short-time GSte8 ®=0.03. The deviation between the two quantities in-
in Eq. (6), which is analogous to the long-time GSE discov-creases with increasing, with #./7, being somewhat
ered by Segret al.? provides a relatively good approxima- aboveD,/ Dg. This agrees qualitatively with the experimen-
tion for hard sphere dispersions. As seBR/D3 according  tal measurements of Bergenholtz and co-workers on charge-
to Eq. (67) is in good agreement with experimental data of stabilized dispersions at intermediate to high ionic streAgth.
Segreet al.” (cf. also to Fig. 11 Contrary to hard sphere dispersions, the GSE relation be-
Figure 12b) contains the corresponding results for de-tween 7. and D2(q,,) is found to be strongly violated for
ionized charge-stabilized systems. He#g,is approximated the present case of de-ionized suspensions of highly charged
by Egs.(28) and (29), respectively, which are practically particles.
equal to the Einstein form even up to the largésof ~0.1. In the following, we use thérescaledd MCT to examine
D3 is approximated by the nonanalytic form in E@0), and  the two long-time GSE relations in Eq4) and(3), relating
H(q,) is determined from Eq(72). The static structure fac- 7 to the long-time self-diffusion coefficier and to the
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________ ° FIG. 13. (a) Experimental results for the normalized shear viscosity,
s 06 | A ] (closed circles and for the normalized reciprocal long-time collective dif-
107 F < = D (g, n,Dy) - fusion coefficientD,/D5(q,,) (open circles of hard sphere suspensions vs
Eo ] nD L/(ﬂ.,D) @ reproduced from Ref. 2. The lines are the corresponding Hl-rescaled
i / 0.2 ; 2 '4 / MCT predictions, including the reciprocal long-time self-diffusion coeffi-
L W, 0.0 0. 0. 0.6 / cient Do/D¥. (b) BD results without HI fory/ 7, (closed circles, taken

from Ref. 66 and for DO/Dg (open circles, taken from Ref. B®f hard
sphere suspensions as functionsbofThe lines are the corresponding MCT
predictions without HI as labeledc) MCT results without HI for the nor-
malized (reciproca) long-time transport coefficients of charge-stabilized
systems with system parameters, aside frbpthe same as those in Fig. 8.
Various definitions of effective radii are displayed in the inset.

long-time collective diffusion coefficienDé(qm), respec- ours, in particular for the so-called discontinuous HI approxi-
tively. mation used in their work.

The Hl-rescaled MCT hard sphere results fof7,, To study the effect of the excluded volume interactions
Do/D§, and Dy/D&(qy) are displayed in Fig. 1), to-  alone, we show the hard sphere MCT results without HI
gether with experimental data of Segeeal? for  and for  rescaling in Fig. 1&). Also shown are Strating’s BD data
D&(gm). On the semi-logarithmic scale in Fig. (#3 thereis  for 7°® and BD data forDg obtained by Cichocki and
good agreement between/ 77, and Do/D5. Close agree- Hinsen® In comparing Fig. 1@) with Fig. 13a), the hydro-
ment between these two quantities was also observed expetynamically induced enhancementpand the more modest
mentally by Imhofet al,*? while Segreet al. found devia- de-enhancement dl)g are clearly observed. Let us recall
tions at high particle concentratioAsThe rescaled MCT that the valueb=0.62 in the MCT® renormalization was
predicts thaty also very crudely obeys a GSE wiltbt(qm). chosen so that the high density part of the BD dataDér
This MCT Dk(q,,) agrees qualitatively with the data ob- agrees well with the MCD5 [cf. Fig. 13b)]. As is seen in
tained by Segret al.for ® e (0.28-0.45). As we will argue  Fig. 13b), the BD data forzn/», and DOIDg are in good
beIow,D(L:(qm) and hence the GSE in E() cease to exist agreement and in accord with the corresponding MCT re-
for hard spheres at small volume fractions. sults. The MCT results fob,/Dg are seen to be somewhat

The GSE relation between and Dg has also been in- closer toz/ 7y than the MCT results foDO/D(L:(qm).
vestigated theoretically for hard spheres by Lionberger and  Notice in Figs. 18a) and 13b) that D&(q,,,) is shown
Russet® using the nonequilibrium HNC closure scheme with only for densitiesh>0.22. For®<0.22, the MCTS(q,y,,t)

HI accounted for in two different ways. Their findings for the ceases to be a purely exponentially decaying function at long
product of 77D§/(710Do) vs @ are qualitatively similar to times. The disappearance of the exponential mode of
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S(qm,t) at smaller® is not an artifact of the MCT, but is monotonic ind and hence cannot be expressed in terms of a
corroborated by hard sphere calculation$gd,,,,t) at inter-  single power law inb. Notice thatS(q,,,) ~2.1 for the small-
mediate concentrations based on the so-called contacest concentratiod =10 * considered in Fig. 1@®).

Enskog approximatiof® It should be kept in mind that

S(q,t) shows, in general, an overall nonexponential time de<C. Frequency-dependent generalized Stokes-Einstein
pendence. For example, for hard sphere suspensions to firgfations

order in®, an asymptotic long-time behavior 8{q,t) pro-
portional tot~3?exd —g¥(Dy/2)t] is obtained from exact
calculations at all wave numberg>02-%" The same
algebraic-exponential long-time decay form&{f,t) is pre-
dicted in MCT, up to a somewhat different prefactor, both
for dilute hard sphere suspensions and in the weak couplin,
limit. The coefficienﬂ:)'é(qm) characterizes the long-time ex-

ponential decay of density fluctuation correlations linked to  £5; hard sphere dispersions, we compare in Figa)l4

the average extensionziZqy,, of a next-neighbor cage. This o | apjace-transformed normalized dynamic  viscosity
so-called collective mode should therefore only occur at con= (8)/ 70= n(iw)/ my with the functionD,y/[sD(s)]. Both
0= 0 0 :

centrations that are large enough that caging effects are sig-

nificantly strong. The occurrence of an exponential coIIectiveEuantities are computed using the Hi-rescaling procedure of
long-time mode inS(q,,,t) at valuesd>0.22 is intimately gs.(62) and (64), with 7., according to Eq(24). The res-

: . caling of the MCT results leads to good agreement in the low
related to the presence of an isolated satellite peak at t . . ;
: . : : Fequency regime, suggesting that the Mason and Weitz GSE
small frequencyi.e., small\) side of the otherwise continu- i valid approximatively over an extendddranae. It should
ous spectral densitypqm()\), related to S(qq,t) by PP Y ge.

. , _ be noted tha®(s) is a monotonically decreasing function of
S(am 1)/ S(Am) = JodN exp(—AD)pg (A). A detailed analysis g gincen (1) is non-negative. The high- and losimits of

of the functional form of the MCT spectral density will be the Mason and Weitz GSE are compatible with the mono-
given elsewhere, since it is not central to the topic presenteghnic decrease o¥(s), sinceD5<D3 is valid independent
in this work. of the pair potential.

Next, we examine whether the long-time GSEs are likely  The MCT results for charged colloidal particles with HI
to hold independent of the pair potential. To this end, Weneglected are shown in Fig. (). As can be seen, the MCT
apply the MCT to the dispersions of highly charged spheregyredicts that the frequency dependent GSE is violated for
for which the interaction pOtential is far from hard SphereCharged colloidal partidES, as was found also for the fre-
like. quency independent long-time GSEs.

The MCT results forg/ 79, Do/Ds, andDo/D¢(dr) as In the remainder of Sec. V, we analyze the frequency
functions of® are shown in Fig. 1@) up to the glass tran- dependence o¥(s) and the Laplace-transformed diffusion

sition volume fraction ¢~0.1). Neither HI rescaling nor function. For this we define the reduced quantities,
the ® renormalization has been employed here for the rea-

sons discussed in the introductory part of Sec. V. T (s)= 7(S) — 72 (79

According to the MCT, both long-time GSEs are vio- K n—n.,
lated for de-ionized systems. The deviations from the two

. and

GSEs are so strongly pronounced that it appears very un-
likely that the inclusion of far-field HI effects will reestablish 1/(3]5(5)) — 1/D§
either of the two relations. A somewhat reassuring aspect of ¥p(s)= ~IDL—1DS (80)
these MCT calculations is that they agree with the two freez- S S
ing criteria proposed by Hansen and Véfteind by Laven  associated witt#(s) and 1{sD(s)]. The functions¥ , (s)
et al;® the former relates the volume fraction at which crys-and W(s) vary between 0 and 1. For fluids, they decay
tallization begins toS(q,,) =2.85, whereas the latter is dy- monotonically from 1 as=0 to 0 fors—«. Since the HI-
namic in nature in that it states thak/D~0.1 at the freez- rescaling procedure in Eq$62)—(65) does not affect the
ing volume fraction. Atd~2.4x10"° the RMSA S(q,,)  time dependence &/MCT(t) andA n(t), ¥, (s) andW(s)
~2.85 corresponds indeed ©5/Dy~0.1 in Fig. 13c).  remain unchanged with and without it.
Thus, according to the MCT calculations, these freezing cri-  Figures 1%a) and 18b) show MCT results ford” ,(s)
teria are consistent, revealing that for concentrations abovand ¥ (s) for colloidal hard spheres and charged spheres,
®~2.4x 103 these dispersions are in an undercooled liquidrespectively, as functions of the reduced frequesicy, and
state. in the hard sphere case, for volume fractions updio

For the charge-stabilized systems in this study, we can=0.57. We observe remarkably good agreement between
formally  write D§=kBT/(6wna§ﬁ) and Dt(qm) ¥, (s) and¥(s) for hard spheres, but even better agree-
=kBT/(6w77agﬁ), which defines two effectivghydrody- ment results for de-ionized systems. For hard spheres, the
namig radii a§ﬁ>a and agﬁ>a. Their @ dependence is dis- agreement betweed,(s) and ¥(s) becomes good for
played in the inset of Fig. 18), and compared with thé  concentrated systems with>0.2, improving further with
dependence af,,~T<d 3 and the Debye screening length increasing® [cf. the inset of Fig. 16)]. Notice that charge-
Ap=k lx® 2 Both effective radiiags andaS; are non-  stabilized systems are effectively concentrated even for the

In the following we investigate the frequency dependent
empirical GSE relation in Eq(7) given by Mason and
Weitz 26 using the rescaled and unscaled MCT for hard
sphere and charge-stabilized dispersions, respectively. As
pointed out in Sec. |, this GSE conforms to the short-time
8 SE betweem;., andD§ and the long-time GSE between
andDs in the limit of s— ands—0, respectively.
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FIG. 14. (8 Comparison of Laplace-transformed normalized dynamic vis- FIG. 15. () MCT hard sphere results for reduced dynamic quantitiegs)
cosity 7(s)/ 5, (solid lineg with Do /[sD(s)] (dashed linesvs st for hard (solid lineg and¥ (s) (dashed linesdefined in Egs(79) and(80), respec-
sphere dispersions. Both quantities are calculated using the HI-rescald@ely, as functions o7, . The volume fractions are as labeled. For clarity,
MCT. The volume fractions are as labelg¢d) MCT results without HI for results ford=0.15 and 0.30 are shown in the ingg). Corresponding MCT
charge-stabilized systems with system parameters, asidedotfine same  results for charge-stabilized systems. The system parameters, asid® from
as those in Fig. 8. are the same as those in Fig. 8. The volume fractions are as labeled.

smallest physical volume fractions considered. Conse:

: . hold to various degrees of approximation for concentrated
ly, the MCT he foll f -
quently, the MCT predicts the following frequency dependand highly correlated dispersions. In addition, this study has

identified new extensions of them for short times and finite
frequencies, which may prove useful for estimating linear
¥, (s)=Vp(s). (81  viscoelastic properties from dynamic light scattering mea-

sphere and charged sphere dispersions:

Computer simulations or experiments can be used to decBUr€Ments, or vice versa. _ _
sively test this new finding. The MCT results can be brought into accord with

Brownian dynamics simulation data for the shear viscosity
VI. CONCLUDING REMARKS and Iong_—n_me self-diffusion cogfﬂment of_hard spheres by
renormalizing the volume fraction. Inclusion of a full ac-
We have examined in detail the linear viscoelastic prop-counting of HI in the MCT calculations is, as for any theory
erties and the diffusion of hard sphere and charge-stabilizedf concentrated suspensions, a daunting task that has not yet
dispersions of colloidal particles. Particular focus has beeteen accomplished. In this work for hard spheres we employ
directed at evaluating the range of validity of several genera simple hydrodynamic rescaling procedure. In this way the
alized Stokes-Einstein relations which have been proposed tdCT results can be quantitatively compared with experi-
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