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In this paper, we examine collective and self-diffusion properties of dispersions of spherically
shaped colloidal particles at intermediate and long times. Our analysis is based on a fully
self-consistent(rescaledd mode coupling theory(MCT) adjusted to describe the overdamped
dynamics in concentrated suspensions of neutral and charged colloidal particles. The dynamical
quantities studied in dependence on various experimentally controllable system parameters are the
particle mean-squared displacement, long-time collective and self-diffusion coefficients, dynamic
structure factors, nonexponentiallity factors and collective and self-memory functions. The results
of our theoretical treatment are compared with Brownian dynamics computer simulation data,
experiment and other existing theories. It is shown that the rescaled MCT can be successfully
applied to a wide range of dynamical properties. Our calculations reveal in particular an exponential
long-time mode of the dynamic structure factor for a limited range of wave numbers and at
sufficiently high concentrations. A dynamic scaling behavior of the dynamic structure factor and
self-intermediate scattering function is predicted for the important case of salt-free charge-stabilized
suspensions. As a consequence of the dynamic scaling, the static freezing criterion for colloids by
Hansen and VerlefPhys. Rev.184, 151 (1969] is shown to be equivalent with the dynamic
criterion by Lowven et al. [Phys. Rev. Lett70, 1557 (1993] related to long-time self-diffusion.
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I. INTRODUCTION are well understood both from the experimehfaf® and
theoretical~®*'~%point of view. On the other hand, the the-
The dynamics of suspensions of spherical colloidal paryetical prediction of dynamic properties at intermediate and
ticles has been extensively studied in the past by means ¢fq times is far more difficult due to the occurrence of
various light scatter_ing techniqu&s’® Part of the interest in memory effects which depend both on direct and hydrody-
these systems arises from the fact that these wellyymic interparticle forces. Exact analytical results for long-
characterized dispersions can serve as model systems fghe giffusional properties are in fact known to date only for
more complex colloids relevant to the chemical and pharmahard—sphere dispersions in the limit of small

ceutical industry. Furthermore, since the relevant length a”goncentrationée‘zoFor the more interesting case of concen-

time _scales of colloids are easily accessible eXpe”m?n.ta}”%’rated dispersions, approximations have to be introduced to
colloidal model systems are good test beds for scrutinizin

th tical thod ginally developed in atomi QUllow for further progress.
eoretical methods onginally developed In alomic con- . 5 hymper of recent articles, we have usddescaled

densed matter physics and adjusted to describe the micr?ﬁode coupling theorfMCT) for the calculation of long-

structure and diffusion of Brownian systems. time rheological and related diffusional properties of colloi-

Unlike simple fluids, in which the molecular motion is dal suspensiod=24 For concentrated hard-sphere disper-
ballistic and determined only by the molecular force law, the P X P P

. S : . sions, we employed a short-time hydrodynamic rescaling
colloidal dynamics is dissipative due to the intervening sol- : - . 6.27
g : ; ) . procedure in the spirit of Medina-Noydfaand Brady?®2"to
vent which gives rise to Brownian particle motion and many-

. . approximate the strong influence of the HI on the particle
body hydrodynamic interactior{$ll). The presence of long- . -
range HI and, quite frequently, also of polydispersity indynam|cs. The findings from the rescaled MCT have been

particle sizes and interactions complicates the theoreticaﬁompamd with experiments and Brownian dynanie®)

treatment of the colloidal dynamics considerably. Ic:omputer Ial(n;lL_Jlatllonls, _and go%d fagzrzeement 'S (ljb;%'
The static and short-time dynamic properties of bulk dis- rom our calculations In Ref. 22, we were led to inter-

persions of monodisperse and polydisperse colloidal spheréasc’tin_g_ predictions concerr_1ing the genera_ll validity of certain
empirically found generalized Stokes—Einsté®SE rela-

) tions linking low-shear viscoelastic properties to diffusion
Present Address: Division of Chemistry and Chemical Engineering, 210- s~ ; ; ; ;

41, California Institute of Technology, Pasadena, CA 91125, USA. coefficients. Most of the GSE relations investigated in Reff'
YAuthor to whom correspondence should be addressed. Electronic maig2 were shown to hold reasonably well for hard-sphere dis-
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predicted in case of charge-stabilized suspensions. II. MODE COUPLING THEORY OF COLLOIDAL
In this paper, we extend the aforementioned analysis oR!FFUSION

the performance of thgescalesMCT by exploring now its We consider a monodisperse suspension of colloidal

predlctl'ons concerning collect!ve and self-diffusion proper-Spheres of diametesr=2a dispersed in a Newtonian sol-
ties at intermediate and long times. Our results are exempli-

fied for hard-sphere dispersions and de-ionized charge\{.ent' The (;orrelatiqn of density fluctu'ations in the equilib-
stabilized dispersions in order to illustrate the diﬁerent;ilggnd s;[ztgez 's described by the dynamic structure factor, de-
dynamic behavior of systems with short-range and long-

range direct interactions. Although the MCT has been for- 1 N

mulated recently also for colloidal mixtures with an arbitrary S(g,t)= N IZl e'q'(R'(t)Rp(o))>’
number of components;**?8we restrict ourselves here to P

monodisperse and slightly polydisperse systems. We calcivhereq is the scattering wave vector of modulgsN is the

late and analyze various measurable dynamic properties ifiumber of colloidal particles in the scattering volurfg(t)
cluding the dependence of the dynamic structure factolS the position vector pointing to the center of sphrand
S(q,t) on the wave numbeq and correlation time, the () denotes an equilibrium ensemble average. The dy-
particle mean squared displaceméMSD) W(t), and the namic structure factor is the central statistical mechanical
nonexponentiallity factod (g) which characterizes the over- quantity de_scribing the collective dynamics of colloidal par-
all nonexponential decay &(q,t). In calculatingA(q), we t!cles. For timeg much Iarger than the_ mqmentum relaxation
also account for small size polydispersity effects which aré'M€ 75~10"°s, the colloidal dynamics is governed by the
of importance at smal. Furthermore, the density depen- Many-body Smoluchowski equation which describes the re-
dence of various long-time diffusion coefficients, and thelaxanon of the pa_rt|cle posmpn; unde_r the presence of direct
density dependence and asymptotic time dependence of tﬁ@d hydrodyngmlc fqrce%wnhm the time range yvhere the
irreducible memory functions related to collective and self.sm°|UChOWSk' equation applies, HI can be considered to act
diffusion are investigated. |nstantan¢ously. L .

To assess the accuracy of the MCT results, we compare . By using a pf‘_’lec“"” operator formahgm anq an appro-
with results obtained from experiments, BD simulations ano{;r \I/atne det?rﬁ;npg\slg'ﬁgoo: tk;e S{Tﬂgl:c?grvskl Squr?:gn,b?:nfol-
some other existing theories. From this comparison(tes- derivg (23.33-36 q 9
caled MCT will emerge as a useful approximate method for '
predicting diffusional properties, without requiring any ad- d s
justable parameter. By analyzing the analytical properties of ~ 3; 9(d:1)=—0d"Dc(@)S(a,t)
the dynamic structure factor, we show that in MCT the hard- t ;
sphereS(q,t) exhibits an exponentially decaying long-time _ irr _nZ
form for volume fractionsd®>0.2 and for wave numbers fodUMC(q’t " sta.u), @
near the valueg,,, where the maximum of the static struc-
ture factorS(q) occurs. The exponential long-time mode can
be characterized by a long-time collective diffusion coeffi-

cient D¢(gy,), which decreases with increasing concentraa andH(q) is the hydrodynamic function. The latter quan-

tl(.)n' For de-lpnlzed. Charge-st'ablllzed stspensions, we prefi'ty accounts for the configuration-averaged effect of the HI
.dICt a dy_namlc Sca"f‘g behav!or &(a.t) a_md of the self- on the short-time dynamics® Without HI, H(gq)=1 inde-
intermediate scattering functiorG(q,t), in terms of a pendent of q, whereas undulations inH(q) with a
characteristic wave number and relaxation time related to tha-dependence similar to that &(q) are indicative of the

geometric mean particle distance. The MCT is consequentl}ﬁﬂuence of HI7810.37

shown to map the static Hansen—Verlet freezing critéfion The first term on the right-hand-side of E@®) deter-
(cf. also Ref. 3Dto the dynamic freezing criterion of keen
et al®!

(€

where Dg(q)zDOH(q)/S(q) is a g-dependent short-time
collective diffusion coefficient. HereD® is the Stokes—
Einstein diffusion coefficient of a colloidal sphere of radius

mines the initial exponential decay &q,t), which takes

] ] place within the short-time regimeg<t<rt,, where 7,
The paper is organized as follows: In Sec. Il, we develop— 32/p%~1074-10"3 s is the time required for a non-

the general framework of the self-consistémscaled MCT  jnteracting particle to diffuse a distance comparable to its
equations forS(q,t) and forG(q,t), and we outline its nu-  own size. The integral term on the right-hand-side of @y.
merical implementation. In Sec. Ill we give the details of containing the irreducible collective memory function
how collective and self-diffusional properties are determinedv| g(qi) accounts for memory effects originating from col-
in MCT. This section includes further a discussion of thelective particle motion. This memory term gives rise to an
asymptotic time dependence and scalingStd,t), G(q,t)  overall slower and, in generétf. Sec. I\), nonexponential
and of the associated collective memory functions. Numeridecay ofS(q,t) at intermediate times~ 7, and at long times
cal results for diffusional properties of hard-sphere and>r,.

charge-stabilized dispersions are presented and analyzed in An exact microscopic expression fMig(q,t) was de-
Sec. IV, in comparison with computer simulations, experi-rived in Refs. 33,35 and 38. This expression is used as the
ment and some other existing theories on colloidal dynamicsstarting point for introducing a lowest order mode coupling
Our final conclusions are contained in Sec. V. approximation, following the work on simple and super-
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cooled liquids®#°resulting in a self-consistent set of equa- g
tions for calculating the dynamic structure factor of colloidal = G(,t)= —g?D3G(q.t)
systems with their overdamped particle dynamics. While this
scheme has been extended very recently to colloidal t . d
mixture$® and provides an opportunity for the inclusion of - joduMS(q,t—u)%G(q,u), ©
far-field HI, which is the prevailing part of the HI in dilute A
charge-stabilized colloids:?® the present results are ob- where the irreducible memory functioi <(q,t), describ-
tained from the MCT applied to monodisperse fluid systemsng self-diffusion is approximated in MCT by
with HI disregarded. For the comparison with experimental
data on concentrated hard-sphere dispersions, where the ..
strong influence of many-body HI has to be accounted for, s(q.b)= m
we describe this influence approximately by combining the
MCT with a short-time hydrodynamic rescaling procedure as
used already in Refs. 21 and @4. Sec. Il). In Refs. 21 and Xf dk[Vs(a.0)1°S(kHG(a =K. (D
22, it was shown that that the hydrodynamically rescaled s . ] o o
MCT of hard-sphere dispersions leads to good agreemef EG. (6), Ds is the short-ime self-diffusion coefficient
with experimental findings on viscoelastic and diffusionalWhich is equal to the initial slope of the particle mean-
properties. squared dlsplaceme_nt. For van|§h|ng B@_reduces taD°,

In MCT, the collective memory function is approxi- and the vertex amplitudes(q,k) is approximated by

mated without HI by

0

S(k))'

Notice thatV(g,k) according to Eq.(4) corresponds to
2V4(q,k) in the limit of largeq. This limiting behavior is to
be expected physically sinc&q,t)~G(q,t) wheng>q,.
Xf d*k[Vc(a,k)12S(k,H)S(|g—k[.t), (3) Egs. (2)—(4) constitute a self-consistent set of nonlinear
equations determining(q,t) for given static structure factor
f3:95.39.41,42 S(q). The latter can be calculated independently for given
pair potential using, e.g., well-established integral equation
A A scheme$’ Once S(q,t) has been determine@(q,t) fol-
Ve(g,k)=g-knc(k)+qg-(g—k)nc(|g—k|), (4)  lows from solving Eqs(6)—(8). A well-known feature of the
MCT equations presented here is that they predict an ideal-
related to collective diffusion. Here(q)=[1—1/S(q)]/nis  ized glass transition scenario. This scenario is characterized

the Fourier-transformed two-body direct correlation func-Py the appearance of nonergodicity in Brownian systems
tion, (i:q/q, andn denotes the number density of particles.above a certain concentration threshold, whé(q,t) a_md .
The vertex amplitud&/(q,k) in Eq. (4) is derived in the G(g,t) do not relax to zero and where the suspension vis-

; ; 3,40 ; ; ; _
so-called convolution approximation, where the contribution®®S'YY diverges;*? consistent with experimental measure

48 T .
of static three-point direct correlations is neglected. The conMents on hard sphet¥® and charge-stabilized particle

9
volution approximation for the collective vertex amplitude is systems!

used in most of the recent applications of the MCT to In the fol_lowing., we briefly outline the numerical
atomi*3%%%and colloidal dynamic&!?233:364344ts appli- method used in solving the coupled E@8)—(8). After re-

cation gives rise to a consistent glass transition scenario iﬁxpéressmg th; ;ntgg[)gls Im the n:jgmory fur:lCtIOI’l elx%reI\:S|_c|3ns
form of an ergodic—nonergodic transition of the particleIn q§.(3) and(7) in bipolar coordinates, the couple C.
dynamics®#04245|t should be mentioned that an approxi- equatlon_s are solved numerically in ggscretlged form using
mation for V(q,k) different from Eq.(4) has been sug- an algorithm developed by Fuclet al> A uniform wave

gested by Hess and KlefiHowever, as pointed out already number gnd W'th typlca!Iy 500 grid p0|ntsq=|Aq., IS em-

in Ref. 35, the Hess and Klein vertex approximation leads td)loyed W'.th a grid spaC|r)@q=qm/_AfO. The resulting MCT
poor results for collective dynamic properties in comparison'meg_r"’u'd"cferenCe equations are mtegrated forward in time
with experimental and computer simulation data on charge(:cftartlng from the k_nown short—nm(_a bghawor S(q,t) and
and neutral colloidal particles. G(q,t). In performing the time derivative, the logarithms of

The mode coupling scheme has been developed also f(§(q't) andG(q,t) are used instead of these quantities them-
selves to improve on the numerical accuracy. As discussed in

self-diffusional properties, related to the self-intermediate o . ) . ;
scatterin ; more detail in the following section, the irreducible memory
g function . 4 ) 1o .
functions of hard-sphere dispersions show &2 singularity
19 (Ra(D)— Ry (0)) for t—0 arising from the singular nature of the pair poten-
G(g,t)= (e, (5 tial. Advantage is taken of the analytically known short-time
forms of MZ'(q,t) and of M{(q,t) for the integration over
The time evolution of the scattering functi@(q,t) is de- the first time steps whe®g(k,t) andG(k,t) can be described

scribed by the memory equatii*=° by their short-time forms.

- 1
Vs(q,k):q-k(l—— (8
DO

Micr:r(q,t):m

with the vertex amplitu
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The MCT equations presented so far have been obtained We notice that the rescaled expression Iﬂ)g(qm) in
without HI. For concentrated hard-sphere dispersions, strongg. (13), with g,,, replaced byg, reduces to that fab in Eq.
many-body HI effects have to be accounted for to be able t910) in the long wave number regimeg>q,,. It is further
compare with experimental results. The incorporation ofgpserved that the exact short-time formWitt) is recovered
many-body Hl into long-time diffusion is a very difficult task fom Eq. (9) in the short-time regime.
and has been accomplished so far only approximately. We, g hydrodynamic rescaling procedure for colloidal hard

therefore, use a hydrodynamic rescaling p_roced_ure of t_hgpheres is semiempirical and does not reproduce the known
MCT results for concentrated hard-sphere dispersions whic . - . .
exact dilute limits of the long-time transport coefficients. On

allows for quantitative comparison with experimental hvsical around N n expect E8) t v onlv at
data?"?2 This procedure derives from the assumption that® Y>'cal 9rounds, oné can expec 8) to apply only a

diffusion properties with HI can be factorized in a hydrody- SUfficiently high concentrations, where each particle is sur-
namic part, given by the corresponding short-time propertyounded by a well-defined dynamic cage of neighboring par-
with HI included, and a purely structural part. The latter isticles. A particle diffusing out of its cage very likely will
calculated using the MCT equatiofisgs. (2)—(8)]. pass one of the cage particles very closely, since the hard-
For the case of self-diffusion, the rescaling proceduresphere radial distribution function attains its maximum at
amounts to approximating the particle mean-squared dissontact distance. Due to the strongly reduced relative hydro-
placementW(t) =([R,(t)—R4(0)]?)/6 and the long-time dynamic mobility of two colloidal spheres near contact, the

self-diffusion coefficienD%, with HI included, by tracer particle will diffuse very slowly in the immediate
DS neighborhood of its cage neighbor for a considerable amount
W(t)~ ( _S> wW(t)MeT, (9) of time, as adequately described by short-time self-diffusion,
DO before leaving the cage leading to structural relaxation. This
corresponding to intuitive picture of cage diffusion provides a rationale for Eq.

(9). The factorization approximation in E@9) should not
hold for charge-stabilized dispersions according to this pic-
ture, since long-range double layer repulsion prevents par-
ticles from diffusing so close to each other that lubrication

proposed initially by Medina-Noyofa and developed in Iﬁrce'_i come .|Ir_1to pla;(/j._lotn th;]e contr?ryéfl_thedfzr-ﬂeld _part (.)f
more detail by Brady® For the short-time self-diffusion co- € prevailing in dilute charge-stabilized diSpersions 1S

efficient of hard spheres, we use a semiempirical result Suge_xpected to promote the dlffu3|on of the tracer particle put of
gested by Lionberger and Rus¥el Its momentary cage, leading thus to a hydrodynamic en-

hancement of long-time self-diffusion. This enhancement
Dg(fb) should be contrasted with hard sphere dispersions where, in
DO =(1-1.56P)(1-0.27), (11) qualitative accord with Eq9), near-field HI causes the par-
ticles to diffuse slower at long times. The hydrodynamic en-
hancement of long-time self-diffusion in de-ionized charge-
stabilized dispersions was predicted in Ref. 35 on the basis
of simplified MCT calculations and exact low-density re-
sults. It should occur in all colloidal systems with long-range
repulsive pair forces. Hydrodynamic enhancement of self-
diffusion has been observed meanwhile in experiments and

— |DyMeT, (10)

The factorization approximation mg in EqQ. (10) has been

which conforms to the rigorous dilute limiDg/D%=1
—1.83P, and which givengzo at random close packing
$~0.64.

A similar rescaling can be performed for the long-time
collective diffusion coefficienDé(qm) of hard spheres, de-

fined by?2252

Lo .0 computer simulations on charge-stabilized dispersidasd
De(Gm) ==~ lim —10g S(qm, 1), 12 4y quasi-two-dimensional colloids confined near a liquid—
m t—e | 55
. . . o gas interfac¥>° or between two closely spaced platés.
in the concentration regime whegq,,t) exhibits an ex- Since a rescaling procedure for charge-stabilized sys-

ponential long-time mode. A collective long-time mode of {gms js not known to date, we will neglect in our calculations
S(Qm.1) has indeed beltleqdotl)sr(]arv(;ad '?] dyng_rmc I'gﬁgt _;?atterfhe influence of HI on these systems. For charge-stabilized
ng ex.penmen.ts on ch) oldal hard-sphere diSpersionsie systems, we expect the diffusional properties to be only
rescaling relation foD¢(dm) is explicitly given by moderately affected by HI, as supported by exact low-

D&(gm) ~H(qmDEMCT, (13)  density effective hard-sphere calculations and simplified

whereH(q,,) is the value of the hydrodynamic function at MCT cglculatlons ofDg. ”Our findings for. the d|ffq3|onal
the wave numbeq,, characterizing the extent of the nearest Properties of charge-stabilized systems will be mainly com-
neighbor shell around a particle. As shown in Refs. 21 andp@red with BD simulations. In these simulations, the influ-

22, the concentration dependenceHd,,) for hard spheres €nce of Hi is disregarded due to the considerable difficulties
is well represented by the linear form in incorporating HI into simulations. We point out that the

H —1—1.35D 14 calculation of diffusional properties in MCT with HI disre-
() = 171,35, (149 garded is important to assess the accuracy of the treatment of
for volume fractions up to the freezing transition. many-body direct interactions.
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IIl. CALCULATION OF DIFFUSIONAL PROPERTIES that even tiny amounts of size polydispersity can give rise to
) i ) ) values of the measuredl(q<q,,) significantly larger than
Having reviewed the basic MCT equations, we address g For dispersions with a narrow size distribution, the ex-

now the calculation of various diffusional properties. Fur-erimentally determined dynamic structure factor is well ap-
thermore, we d|scu§s the asymptotic t_|me behav@(qf,t) ~ proximated by the decoupling approximation f3fm
and related irreducible memory functions. Dynamic scaling

relations are proposed for salt-free charge-stabilized disper- Sp(0,t)=X(q)G,(q,t)+[1—X(q)]1S/(q,1), (21)

slons, which relgte the Hansen—Ve[Iet static freezing Crt€ith the scattering coefficienX(q)~9s? essentially inde-
rion to a dynamical one proposed bywen et al.

The mean-squared displacemdMSD) can be deter- pendent ofg for wave number$13<0.5. The size distribu-

mined fromG(q,t) according to tion 'is determined by. the mean particle Qigmegeand the
relative standard deviatiogp<1. The quantitiess;(qg,t) and
W= — | logG(q,t) 15 G,(q,t) are the dynamic structure factor and self-
(1= q'ino 92 ' (15 intermediate scattering function of the idealized monodis-

) ) ] o ] perse system of particles of diameterIn Refs. 57 and 59 it
Atsshort times,W(t) increases linearly in time with a slope a5 shown for weakly polydisperse systems of strongly cor-
Ds, followed by a sub-linear increase at intermediate timesg|ated particles that the first term on the right-hand-side of
due to the retarding influence of the cage of neighboring=q (21, which originates from self-diffusion, dominates the
particles. At long timesW(t) is again linear with slope equal temporal decay 08y(q,t) at smallg, sinceSp(0)<1 and

to the long-time self-diffusion coefficierdg. The coeffi- So(a,t)<Sp(q). As a consequence nonzero values for the

cient Dg follows thus from: nonexponentiallity factoA(q) related toSp(q,t) are ob-
COW() tained forq— 0. By accounting for size polydispersity on the
Dg= “mT - (16)  basis of the decoupling approximation and using a simplified
e (i.e., not fully self-consistemtMCT solution forS,(q,t) and
Using Eq.(6), D5 can be calculated alternatively from G(g,t), good agreement was found for smalvith experi-
< mentally determined nonexponentially factd?s’ In Sec.
DL Ds 17 IV, fully self-consistent MCT results foA(q) are presented,

resulting in improved agreement with experimental and BD
o . simulation data at intermediate valuesgpf
whereMg'(q,s) is the Laplace transform d¥lg'(q,t). We proceed now with a general discussion of the
A suitable measure of the overall nonexponential decaysymptotic time dependence $fq,t). Consider first a hard-
of S(q,t) for correlated particles is the nonexponentiallity sphere dispersion with HI ignored. The singular hard core

S_l+iﬂisrr(q—>0,s—>0) ’

factor, A(q), defined a¥°"°8 potential leads to a nonanalytical behavior of the irreducible
S memory functionsM {(q,t) andM{'(q,t) for t—0. Within
A(q)=1— E(Q)_ (18) the MCT, we can deduce the asymptotic short-time depen-
7(q) dence of the irreducible memory functions by employing in

the vertex amplitudes in Eqsi4) and (8) the largeg

: e Sl — 210 i
The relaxation timer2(q)=S(q)/(q°D"H(q)) characterizes asymptotic form

the short-time decay d§(q,t), whereas

_ oo L J1(29a) _
r<q>=f0 dt ée(a,0)=$c(0,5=0), (19 S()~1-120g(2a" )= 2=+ 0(q ™), 22

of the hard-sphere static structure facggqg). Here,j(x) is
the first-order spherical Bessel function, ap®a*)=1 is

is the mean relaxation time of the normalized dynamic struc
ture factor ,1)=95(q,t)/S(q), with Laplace transform (IR T
dela.)=(q.0/S(a) P the contact value of the hard-sphere radial distribution func-

¢c(0,s). Using Eq.(2), A(q) can be expressed in terms of tion g(r). From an asymptotic short-time analysis of E3),

the zero-frequency I|m|tirrof the Laplace-transformed |rreduc-We obtain with Eq.(22) the following result for the short-

ible memory functionMc(q.s), as time form ofMig(q,t) (cf. Ref. 60 for details
Ag)= _ME@s=0) oo TME@O~=Vr(aa) A (@) 23
1+Mc(q,s=0) ast<1, where we have introduced the wave number depen-

from which it follows that G=A(qg)<1. For weakly corre- dent dimensionless time=qD°t. The coefficientA’"" is
lated particles with small deviations abc(q,t) from its ~ given by
short-time form exp—t/rg(q)], A(q) attains values close to

+\2
zero, whereas values close to one indicate strong particle AQCT(q@):—\EqD 9(2a’) ! (24
correlations with a slow decay &(q,t). mad(2qa)
Whereas theory predicts for monodisperse systems witlyith the function
pairwise additive HI that\ (q— 0)=0, experimental data ex-
trapolate to finite values ak(q—0). This apparent contra- d(x)= (25)

diction was resolved in Refs. 57 and 58, where it was shown 1—jo(X)+2jx(x)’
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wherej,(x) denotes the spherical Bessel function of onder  7~32ex — /2] to first order ind®. While the long-time tail
The contact value of the hard-sphere radial distribution funcis too small to be of experimental relevance, its mere exis-

tion is given to good accuracy by the Carnahan-Starlingence illustrates tha®(q,t) andG(q,t) are in general non-

formula exponentially decaying functions at long times.
Using in Egs.(3) and (7) the smallg form of S(q) to
g(2a™)= 1-®/2 , (26) linear order in®, the same asymptotic long-time tails for
(1—®)3 S(qg,t) and G(q,t) are recovered in MCT as in the exact

low-density calculations, again up to somewhat different
prefactors.
To linear order ind, it follows further from Eqs(2) and
(6) that the 7~ %2exf — 2] tail of the dynamic scattering
S(q,1)~S(q)— 7+ HTAYCT(q;0) 2+ O(12),  (27) functions corresponds to the same long-time tail in the asso-
ciated irreducible memory functions. This illustrates the gen-
as can be deduced from a short-time expansion of(Bq. eral observation that memory functions do not decay sub-
with Eq. (23) as input. stantially faster than their associated scattering functions.
The related short-time asymptotics of the self-diffusion If MZ(q,t) would decay sufficiently faster the®(q,t),
properties are easily derived from E¢23) and(27) by em-  then the memory integral in E42) could be de-convoluted
ploying thatG(q,t)~S(q,t), d(2qa)~1, andS(q)~1 in  for t>r, as
the limit of largeq:

within the fluid regime. The short-time divergence of
M (q,t) proportional tor~ Y2 leads to the following short-
time asymptotic form of the dynamic structure factor:

t ) J ~ J
7ME(q,t) = Jm(qa)?A¥T(q;d) 712 (28) foduM'ér(q,t—u)%S(q,uwl\/l'ér(q,o)ﬁs(q,t)-
and (30
This would imply thatS(q,t) decays exponentially at long
G(q,t)~1— 71+ 2JTAYCT(q;®) 72+ O( ), (29)  times according to
_a2pL
valid for 7<1. The coefficientA¥“T is equal to the right- be(q,t)=e 9D t>r (31

hand-side of Eq(24), with d(2ga) replaced by one. The
irreducible memory functions remain finite for-0 in case
of charge-stabilized dispersions, since the physical hard core _ _ Dg(q)
is masked by soft long-range repulsive interactions. There Dg(q)=Dc(q,5=0)=

are thus no terms in the short-time forms of the scattering

functions proportional ta>'2. We have introduced here a wave number and frequency de-

We have taken advantage of the short-time foX@3  pendent diffusion kereDc(q,s), related to the normalized
and(28) in our numerical solution of the MCT equations for dynamic structure factor 6?/

colloidal hard spheres. The MCT results for the short-time
asymptotics should be compared with the exact asymptotic -
result€? for S(q,t) andG(q,t), and for the associated irre- ¢c(a.s)
ducible memory functions. The exact asymptotic forms for
hard spheres differ from the MCT resul@3)—(29) only in  The coefficienD&(q) is closely related ta\(q) and 7(q),
the somewhat different coefficiens. and Ag, which are  since
given in terms of the MCT coefficients ascs -
=2 A¥S/g(2a™). While not reproducing accurately the co- De(a)=D(@)[1-A(q)]. (34)
efficients of the exact short-time forms of hard spheres, th
MCT is a.t least qualltanvely_cqrrect_ in predicting the .eX&.ICtEq. (32) is actually a measure for the mean relaxation and
asymptotict-dependence. This is quite a remarkable finding ; . .
since the approximations made in the MCT are aimed aPOt fo'r the long-time rela?<at|on o$(q,.t). An~exponent|al
L

describing diffusion effects at long times. We mention in this/0ng-time mode ofS(q,t) is characterized bpc(q) only
context that the transverse shear stress correlation functiohen de-convolution (30) applies. However, we re-
A7(t), of colloidal hard spheres also exhibits 22 diver- empbasme that this de-convolution is in general not valid so
gence fort—0, in accord with MCT results foa 7(t),22%4  thatD¢(q) has to be distinguished from the genuine long-
which differ from the exact short-time asymptofitegain  time collective diffusion coefficienD¢(q), defined in Eq.
by a factor ofg(2a*)/2. (12), in the regime of volume fractions and wave numbers

Whereas the short-time forms 8{q,t) andG(q,t) for ~ where the latter quantity exists. Hard-sphere results for
colloidal hard spheres are determined only by two-body efﬁé(qm) and D(L:(qm) are presented in Sec. IV.
fects and are thus obtained analytically for all physically al-  From a long-time MCT analysis &(q,,,t) for colloidal
lowed densities, the largeasymptotics of these quantities is hard spheres without HI, we find an exponential long-time
known analytically only up to linear order . In Refs. 18 mode for concentration®>0.22 where caging effects are
and 20 it is shown that botB(qg,t) and G(q,t) exhibit an  sufficiently strong. This collective mode describes the decay
algebraic-exponential long-time tail proportional to of density fluctuations linked to the average extension,

with a collective diffusion coefficienD&(q), determined by

v (32)
1+M¢(q,0)

. S 33
s+q°D¢(q,s) 33

As pointed out already in Refs. 18-2D%(q) as defined by
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27lq,,, of a nearest neighbor cage. The associated coefflogical approximation for the short-time self-diffusion coef-
cient D'é(qm) can be determined by analyzing the analyticficient Dg. According to their reasoning, the hydrodynamic
properties of the Laplace-transformed dynamic structure faclunction H(qg) is then approximated nearq, by
tor, $c(q,2), in terms of the reduced frequency variale d(2ga)/g(2a™). Using ®=0.5, this results inH(qy)
=s72(q). In the g- and ®- regime where the collective ~0.20, whereasd(qy,)~0.33 according to the semiempir-
mode exists,D(L:(q) is determined by the value=zy(q) ical expression in Eq(14), in agreement with simulation
=—DL(q)/DE(q), with —1=z,(q) <0, corresponding to a data™ Moreover,d(2ga)/g(2a") with g(2a*) as given in
pole in ?ﬁc(quz)- According to Eqs(32) and (33), z,(q) is Eqg.(26), has aCD-dependence different from the linear one in
Eqg. (14). The quantityd(2q,,a)/g(2a") is thus seen to be a
rather poor approximation faf (q,,).

The mean collective diffusion coefficieﬁl'(:(q) of con-
centrated hard-sphere dispersions is calculated by Verberg

numerically obtained from the intercept ﬁlfi{{(q,z) with the
monotonically increasing functiori(z)=—[1+z *]. No-

tice here thatVl ig g,2) is positively valued and monotoni-
cally decaying for real values afwhere the Laplace integral
y ying P g etal. using a simplified MCT schenfé. This scheme

ire R L ~L ;

Of_ Mc(q.t) exists. In contrast t(DE(ﬂ)’ Dcs(q) Is deter- mounts to approximatin@(k,t) and G(k,t) in the MCT
mined Dby the valuez=zy(q)=—Dc(q)/Dc(a), where inteqral of Eq.(3) for all times and all wave numbers by the
f(2=Mc(q,z=0). This gives rise to the inequality approximate short-time formspc(k,t)~exd—k?Dt] and
f)(L:(q)zDé(q) due to the monotonicz-dependence of G(k,t)~exd—k’D%g(2a*))t]. Moreover, the bare Stokes—
MT(q,z) and f(z). The coefficienDk(q) obviously exists ~ Einstein diffusion coefficienD® in Eq. (3) is replaced in
for any value of® and g. Our numerical analysis further their scheme byDg~Dg(2a"), approximating the influ-
reveals, e.g., that the collective long-time mode ceases ténce of Hl in a mean-fieldlike way similar to earlier sugges-
exist, even for value>0.22, for wave numbers close to tions of Medina—Noyol& and Brady-® The exponential ap-
the first minimum ofS(q) located to the right ofy,,. proximation used forS(k,t) is rather crude, since the

A long-time analysis of the hard-sphe®gg,t) similarto  dynamic structure factor is nonexponential at intermediate
ours has been performed by Cichocki and Feldethéton  and long times for wave numbekglifferent fromg,,. Using
the basis of the so-called contact Enskog approximatiotthatG(k,t)~exd —k?W(t)], with small non-Gaussian effects
(CEA). According to the CEA, a collective long-time mode neglected?® G(k,t) is further seen to be nonexponential at
of $(q,,,t) appears foxd>0.15, in qualitative accord with intermediate times due to the sub-linear behavioM(t)
the MCT finding. (cf. Fig. 7. Contrary to the scheme of Verbeeg al, no a

An exponential long-time decay @&(q,t) for concen- priori assumptions are made in the self-consistent MCT for
trated charged colloidal dispersions at wave numbersagar the time dependence of the dynamic correlation functions on
was proposed further by Cohen, de Schepper, anthe right-hand-side of Eqg3) and (7). The self-consistent
co-workers?®2 Neglecting possible HI contributions, these MCT is straightforwardly applicable also to moderately con-
authors approximat@é(q) by the so-called cage-diffusion centrated hard-sphere dispersions wltk<0.4, and to sys-

coefficient,D.(q), defined by tems with long-range soft potentials wher@a ™)~ 0, with-
out the necessity of introducing an approximate effective
D.(q) D%(2qa) (35 hard-sphere picturfcf. Eq. (35) ff] for the latter case. The
Cc

- g(2a")s(q) lack of self-consistency in the scheme of Verbetgl. and
in the CEA excludes the possibility of obtaining an

of a particle in its nearest-nearest neighbor cage. The contagf, .4 L =L ; ;
. : -sphere results fd andD are discussed in
valueg(2a™) in Eq. (35) is equal to the contact value of an ¢ . |Vp s(Am) s(Am)

equivalent effective hard-sphere system, with an effective
particle radiusa determined from a best fit fag=q,,, of the
experimentally observe8(q) with the S(q) of the equiva-

In the remaining part of this section we address in MCT

without HI the scaling behavior 0%(q,t) and G(q,t) for

; fluid systems with strong and long-range particle repulsion.

lent hard sphere systefA.Notice that the contact value of Such systems are characterized in terms of a single physi-

the actualg(r) is esse'nt|ally equal to ZET0. Contrary 10 the cally relevant length scale, given by the geometric mean par-
MCT and CEA long-time results, which are based on the . — i _
icle distancer=n""". Important examples are de-ionized,

many-body Smoluchowski equation describing the d namic§ . -
of cglloidasf suspensions thg estima@s) for IgL(q) \}//vas i.e., salt-free, suspensions of charge-stabilized particles,
: c and quasi-two-dimensional  dispersions of  super-

proposed in analogy with results from the theory of dense . : . .
atomic liquids. Therefore, the approach of Cohen, de Schepﬁaﬁlgggnet'c particles exposed to a perpendicular magnetic

peret al. does not permit predicting the-range andj-range el
where a collective long-time mode &q,t) exists.

In recent work, Verberg, de Schepper and Céfiftuse - D LA S
expression(35) for D.(q) as an approximation for the short- distanceym, which is nearly equal te.™ Sincer ,~r, g(r)
time collective diffusion coefficienb2(q) of colloidal hard ~ depends essentially only on the reduced distanee/r .
spheres, proposed to be valid fgr=q,, and®>0.4. They Likewise, sinceq,xr,~2m, S(q) is only a function of the
argue that the factdp®/g(2a™) in Eq.(35), with adenoting  dimensionless wave numbge=q/q,,. This scaling implies
now the actual hard-sphere radius, is useful as a phenomentitat static structure factors of systems with equal peak

The radial distribution functiong(r), of these systems
reveals a well-developed principal peak located at a radial
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height, S(q,,), should nearly superimpose on top of eachis an approximate theory for the dynamics, this finding may

other when plotted vg (cf. Sec. I\). not provide any fundamental connections between the static
It is crucial to realize that the MCT equatiofsgs.(2)—  and .dyg]amic viewpoints of the freezing process, although

(4) and(6)—(8)] determiningS(q,t) andG(q,t) depend ory studie$§® and suggestiofi& on this topic have been made.

andt only through the reduced wave numizrnd the re- In our discussion of the dynamic scaling behavior for

systems with long-range repulsion, we have disregarded the
, ) , possible influence of HI. The inclusion of HI effects inevita-
W,'th r'espect torm.' We demonstrate this scaI!ng fo.r gelf- bly introduces thghydrodynami¢ diametero as a second
diffusion. The scaling foiS(q,t) can be shown in-a similar \qjeant length scale, through the appearance of hydrody-
way. Introducing the dimensionless quantitgsk=k/dm,  namic mobility tensors in quantities like the hydrodynamic
t, andu=u/7y , Eqgs.(6) and(7) are readily rewritten as  functionH(q) (cf. Refs. 3,32, and 67 As discussed before,
far-field HI cause only a modest increaseDrg above its
value without HI, so that the dynamic criterion can still be
expected to hold qualitatively. Our expectation is supported
by the work of Lavenet al, where BD computer simulation

~~ results fong without HI are compared with experimental
G(qu), (38  data®

duced time'f:tqum, with Tqmz(qﬁqDO)*l, when scaled

G(g,1)=—0°G(q,1)

SN

T~  ee - 0
- duM®(q,t—u) —
Tquo s(q )o'?TJ

with IV. RESULTS AND DISCUSSION
74 M isrr(aj):J d3k[Vs(9.K) 125k, H)G(|g—k|.1), Numerical results for_ _self- and collective dynamica_ll
3 properties of charge-stabilized and hard-sphere suspensions
(37) are presented in this section, and are compared with experi-
where we have used thaf/n~ (2)> for the systems under mental work, BD simulations and other existing theories on

consideration. colloidal dynamics. We first investigate charge-stabilized
According to the reduced MCT equations, systems withdispersions; hard-sphere systems are analyzed subsequently.
equalS(qg,,) exhibit the same shapes 8{q,t) and G(q,t) The effective pair potentialu(r), acting between two

as functions ofy/q, andt/Tqm. Provided that ,, is the only ~ charged particles is mode_led as _the superpo_sition of a
relevant length, the scaling of the dynamic correlation func-nasked hard-core part (_)f d'{imetf“’\"th the repulsive part
tions predicted in MCT appears to be physically reasonable?f the well-known Derjaguin—Landau—Verwey—Overbeek
although we are not able to provide a general proof. It would DLVO) potential. The latter reads explicitly
be of interest to examine the scaling predictions further using u(r) g K(r—2a)
BD simulations. - =2Ka ; ,  r>2a. (38

An immediate consequence of the dynamic scaling pro- B
posed in the MCT is that systems with identi§h,,,) also  Here,K is a dimensionless coupling parameter given by
have the same long-time self-diffusion coefficient. This one- L 7 \2
to-one correspondence betwe$fy,,,) and Dg implies that K=_2 , (39
the Hansen—Verlet static freezing critefdrand the dy- 2a\l+«a
namic criterion of Laven et al3' are equivalent. According wherel z=e?/(ekgT) is the Bjerrum length for a suspending
to the Hansen—Verlet criterion, a monodisperse colloidafluid of dielectric constant, andZ is the effective charge
suspension freezes wh&(q,,,) ~2.85, whereas the freezing number of a colloidal particle in units of the elementary
transition is characterized by the dynamic criterion through ahargee. The screening parameter is determined byk?
value of DY/D° close to 0.1. The dynamic criterion was =4xLg[n|Z|+2n.]= x>+ k2 wheren, is the number den-
found empirically from experiments and BD simulations sity of added 1-1 electrolyte. The paramekeconsists of a
(without HI) of systems with Yukawa-type repulsive pair contribution,«., due to counter-ions, which are assumed to
potentials including the one-component plasma and hardse monovalent, and a second contributieq, arising from
sphere dispersions as opposite limiting cases. In Sec. |V it iadded electrolyte. Equatid88) is a good approximation for
shown that the MCT applied to de-ionized charge-stabilizedhe effective pair potential of strongly charged particles,
suspensions gives results in good agreement with the freervhere the effective chargé accounts for nonlinear screen-
ing values ofS(qy,,) andD¥ stated in the two criteria, which ing effects®®°
speaks in favor of the self-consistent MCT description of the ~ We employ the well-established rescaled mean spherical
simple liquid and colloidal dynamics. approximation(RMSA) for calculating the static structure

The equivalence of the static and dynamic freezing crifactor of charge-stabilized dispersions described by the po-
teria within MCT is a consequence of the single systemtential in Eq.(38). The system parameters used in our MCT
length scale, which permits rescaling of the governing dy-calculations and summarized in Table | describe various
namic equations. Approximate agreement between the statitharge-stabilized systems studied in experimetitdl; "2
and dynamic freezing criteria can be expected also for syssomputer simulatioft:’*~"> and theoretical work%#47476
tems in which the primary static structure factor peak is theThe parameters in Table | for the charged syst&8) are
dominant feature of the static correlatiolsSince the MCT  typical, e.g., for salt-free aqueous dispersions of highly
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TABLE |. System parameters of charge-stabilized systems used in the RMSA/MCT calculations. The param-
eters describe systems studied byrtHat al. (Ref. 71 (H), Gayloret al. (Ref. 73 and Lgpez-Esquivekt al.

(Ref. 76 (G+L), and Muler (Ref. 77 (M-ST, M-WX, and M-Y2) . The data set CS models a typical macroion
system, analyzed at various concentrations. The effective charge ndrabdrcoupling parametét are chosen

such that the RMSAS(q,,) is equal to the experimental or computer simulated peak height.

Systems
Parameters H G+L M-ST M-WX M-YZ Cs
o [nm] 80 46 100 100 100 100
dX10° 0.52 0.44 1.15 1.28 1.3 3107°-90
z 500 S 329 475 364 500
ng [ wmolll] 0.1 6.9 3.6 0.0 0.0
Lg [nm] 0.71 0.71 0.71 0.71 0.714
Ko 0.25 0.149 0.9 0.7 0.28 0.0009-2.78
K 1754 752 366 879 721 312-1782
charged polystyrene spheres with~n~3. The effective We discuss next results for the time-dependence of

charge numberz in the table are determined for the aqueousS(q,t), at fixed g, and for the nonexponentiallity factor
suspensions studied by Hlaet al.”* from matching the peak Ap(q) of charge-stabilized dispersions. In Fig(a2 the
height of the RMSAS(q) to the experimentally determined RMSA S(q) for system H is shown together with the corre-
one. Likewise, for the systems studied by Gaydoal,”*the  sponding experimental and BD results byrtiat al”™ While
RMSA S(q,,,) is fitted to the corresponding BD data by ad- the RMSAS(q) is matched only at],,, there is good agree-
justing the coupling parametet as described by lmez-  ment with the BD data for all values of The experimental
Esquivelet al.”® In this way, an optimized static inp®(q)  S(q) is slightly larger than the RMSA and BD results at
is obtained for the coupled MCT equations. smallg. This difference can be ascribed to a small amount of
The g-dependence 08(q,t) for system G-L is shown  sjze polydispersity in the experimental sample with relative
in Fig. 1 to illustrate the relaxation of density fluctuation standard deviatiors~0.06. As indicated by the arrow, the
correlations. Our MCT results fd&(q,t) are compargd with  principal peak ofS(q) is located ag,o=0.69~q,0.
BD data of Ga.yloret al.,73 and with results of Lpez- Figure ab) disp|ays MCT, BD, and experimenta| find-
Esquivelet al.”® derived from a single exponential approxi- ings of S(q,t) versus time for wave numbegg andgs, the
mation(SEXP of the collective memory functioM¢(d.t).  second one located at the peakSgfy) and the first one at
The MCT S(q,t) is seen to be in excellent agreement with 4,~0.87,,.The MCT predictions are in good qualitative
the BD results even at the largest correlation timel.6 ms agreement with the BD and experimeng&{q). The relax-
considered, whereas the SEXP predicts that the structurgkion of density fluctuations of wavelength comparable with
relaxation proceeds too rapidly. The self-consistent MCT ishe extent of the nearest-neighbor cage, as described by
thus a better approximation for intermediate and long timess(qm,t)' is seen to be considerably slower. Both curves re-

than the SEXP. veal significant deviations from a single exponential form
due to strong particle correlations.
20 The nonexponential decay 8{q,t) is quantified by the
0 01 ms nonexponentiality factord\p(q) and A(qg), introduced in
15 i Sec. lll. Results for these quantities for system H and for the

systems M-ST, M-WX, and M-YZ of Miler’” are displayed
1.0 mm in Figs. 3a) and 3b), respectively. Considering the statisti-
— mer W cal fluctuations in Fig. @) in the experimental and BD data,
0.5 good agreement is observed between the MCT and BD data

---- SEXP
oBD of Ap(q), calculated both without HI and using a size poly-

§ 00 dispersity ofs=0.06 according to the experimental estimate.

5 1=0.6 ms 1=1.6ms Further shown in Fig. @) is the MCT result forA (q) using
s=0, which illustrates the importance of size polydispersity

1.0 effects at smalj.

In Fig. 3(b), we compare MCT results fakp(q), using
05 s=0.05, with the corresponding experimental data of
AR Muller. Samples M-WX and M-ST are less correlated than
00, % 08 12 o4 os 12 16 sample M-YZ, due to the presence of residual electrolyte

g6 which screens the electrostatic interactions. The agreement
with the experiment is good, regarding the fact that the MCT

FIG. 1. Dynamic structure factor of charge-stabilized systemLGSolid ; ; _
line: MCT results; dashed line: SEXP results from Ref. 76; open squares(::ontalns no adjustable parameter. For the most strongly cor

BD data of Gayloret al. (Ref. 73. System parameters as in Table I, with '€lated samples M-YZ and H\p(q) is somewhat overesti-
D%=9.5x 1072 m%s. mated in MCT. This can be at least partially attributed to
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FIG. 2. S(q) and normalizedS(q,t) for charge-stabilized system Kf. FIG. 3. Measurable nonexponentigllity-factA[)(q) VS nprmalized wave
Table ). (a) RMSA static structure factor in comparison with experimental Number.(@ Ap(q) for system H with size polydispersity=0.06. Solid
and BD data 05(q) taken from Hatl et al. (Ref. 7. The arrows locate the line: MCT result; BD(dashed lineand experimental dafdilled circles are

wave numbersj;o-=0.60 andg,o=0.69. (b) S(q,t)/S(q) at wave numbers reproduced from Ref. 71. Dotted linA(q) in MCT for s=0. (b) Compari-

g, andd, vs reduced time. Comparison between MCT results, and BD and©" between MCT resultfines, as labeledand experimental_data of Mar
experimental data fronfRef. 7). (Ref. 77 for samples M-ST ), M-WX (O), and M-YZ (filled ) (cf.

Table )), usings=0.05.

far-field hydrodynamic effects, present in the experimental ) ) ) ]

samples and neglected both in the MCT and BD calculations'® depicted in Fig. @. The static structure factors of
As shown in Ref. 35 on the basis of a simplified and not fullySamples CS and €L are nearly identical when plotted ver-
self-consistent MCT scheme, far-field HI promotes the decapusd. The inset in the figure reveals differences at srgall
of density fluctuation correlations, leading thus to a modestvhich become visible only whenc(q) is plotted versus
decrease iM\p(q). The inclusion of far-field HI effects into instead of S(q). However, due to the smallness &k

a fully self-consistent MCT scheme is a very demanding nu<<q,,) and due to the appearance of the fadtérin the
merical task(cf. Refs. 23 and 3band is thus left to future integrals in Eqs(3) and(7) defining the irreducible memory
work. It should be noted that the present MCT results forfunctions, these smak-differences are of no relevance in
Ap(q) are in significantly better agreement with experimentdeterminingS(q,t) andG(q,t). This can be seen from Fig.
and computer simulation data than the simplified MCT re-4(b), where MCT results forpc(q,t) are shown for three

sults published earlier in Ref. 35. different wave numbers as a function of the reduced time
The scaling behavior 08(q,t) and G(q,t) for the de-  t/74. This figure clearly illustrates the scaling $¢q,t) dis-
ionized charge-stabilized systems CS andlGwith identi-  cussed in Sec. lll, according to which systems with long-

cal peak heights$(q,,) is analyzed in Figs. &) and 4[:& range particle repulsion and identicg{q,,) possess equal
These systems are characterized by a single length scale dynaTic stLucture factors as functions of the reduced param-
RMSA results forS(q) versus reduced wave numbetq,, etersq andt.
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FIG. 5. Long-time self-diffusion coefficierﬁ’)é in MCT vs RMSA S(q,,,)

for system CSsolid line), and remaining charge-stabilized systems listed in
Table | (symbolg. Dotted lines: freezing value@é/D°=O.1 and S(q,,)

(b) =2.85, respectively.

0.8 -

hold, at least approximately, for all systems with long-range
repulsive forces and masked excluded volume interactions.
In the following, we focus on the predictions of the
MCT with regard to hard-sphere dispersions. The static input
S(q) is calculated using the Verlet—Weiss corrected Percus—
Yevick approximatioft” The MCT locates thdidealized
glass transition of hard-sphere dispersionsbat 0.5253%78
which is lower than the experimentally determined volume
fraction*>"°The caging of particles as described by the non-
0 - - . . linear feedback terms in Eq$3) and (7) is thus overesti-
10 0, 10 10 10 mated in the MCT. While the MCT does not reproduce ex-
qD,t . . . .
actly the experimental glass transition concentration, it does
FIG. 4. MCT/RMSA results forS(q) and ¢¢(q,t) of system CS, withd reproduce the special dynamic features of the hard-sphere
=5x10"%, and system GL (cf. Table ). (a) S(q) and direct correlation ~ glass transition scenarig:*>#®4°We follow, therefore, the
function nc(q) (insgt} vs g/qn, as Iabe]ed_ in the figure(b) Normalized work of G'dze and co-workers in renorma“zing the concen-
S(a,1) vs reduced time, fog-values as indicated. tration dependence of the MCT-calculated dynamic hard-
sphere properties according 40— ® X ®4/0.525. Hered,
is not set equal to the experimental value-69.58, but is
The dependence of the MCT long-time self-diffusion co-estimated instead such that the MCT resultsD@((D) con-
eﬁicienth on the corresponding RMS&(q,,,) is shown in  form well at large concentrations with BD data obtained
Fig. 5 for the prototypical system CS. The coefficiajgis a  without HI in Ref. 75. This procedure givek,=0.62, with
monotonically decaying function i8(q,,) due to cage dif- Dng°=0.1 at the freezing transition concentratich;
fusion. For comparison, MCT results fmg versusS(q,) of =0.49, in accordance with the dynamic freezing criterion
the remaining charge-stabilized systems listed in Table | arécf. Fig. 6). The ®-renormalization is used for all MCT re-
included additionally in the figure. Nearly all results lie on sults shown in Figs. 7—10 . Whether or not a colloidal glass
the master curve for system CS, in accordance with the scaldtimately crystallizes and the rate at which it does so de-
ing properties ofG(q,t). Only samples M-ST and M-WX, pends on the particle size distributf8rand on gravitational
which contain residual electrolyte, are located slightly aboveeffects®#? A study on suspensions of hard-spherelike par-
the master curve. ticles found the glass to remain so indefinitely on earth but to
According to the dotted lines shown in Fig. 5, the MCT crystallize under microgravit§* Crystallization effects and
master curve for de-ionized systems has a valué)gy‘ﬂi)o gravitational influences are not incorporated into the ideal-
=0.1 atS(g,,) = 2.85, in agreement with the freezing criteria ized MCT, which is applied in this work to the fluid regime.
of Hansen and Verlet and of 'ke@n et al. The scaling of We remark that a value ds/D°=0.085 rather close to
S(g,t) and D has been demonstrated in this work for 0.1 at freezing volume fractiod®; was obtained also by
charge-stabilized systems with DLVO-type pair potential.Fuch§® using MCT hard-sphere asymptotic laws, valid close
We reemphasize that the same scaling can be expected twthe glass transition concentration. The work of Fuchs cor-

S(q.t)/S(q)

5

— CS: d=5x10"
———G+L

02 r
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FIG. 8. Dynamic structure factor of hard spheres without Hl dor0.5.
FIG. 6. Long-time self-diffusion coefficient for hard spheres as function of Solid line: MCT result; dashed line: contact-Enskog approximat®BA)
volume fraction. Filled circles: BD data of Cichocki and Hing@&ef. 75; result of Cichocki and Felderh@Ref. 20; crosses: BD data from Ref. 20.
open circles: BD data of MoriguchiRef. 89; dashed line: MCT results
without ®-renormalization and without Hl-rescaling; solid line:
d-renormalized MCT result; dashed—dotted lide:renormalized and HI-
rescaled MCT result; filled triangles: experimental data of van Megen an
Underwood(Ref. 70; filled squares: experimental data of van Blaaderen
et al. (Ref. 72.

similar and consistently lower than 0.05 suggests the number
9.1 to be universal with HI included, i.e., to be independent
of the pair potential, only Wherng is normalized by the
short-time self-diffusion coefficienD3 instead ofD°. For

) ) de-ionized charge-stabilized systems with<0.05, D3 is
rects earlier work of Indrani and Ramaswac‘rdnyvho at- el parameterized by the nonlinear forrﬁ)ngozl

tempted to relate the freezing criteria of Hansen—Verlet to_ 5 55413 gg that the shori-time self-diffusion coefficient is
the one of Laven et al. using simplified mode-coupling insignificantly smaller thaiD®, 13:32.85

ideas. Hard-sphere MCT results for the reduced MSD
For comparison with experimental hard-sphere resultsyy(t)/(D°t) without HI are shown in Fig. 7 for two values of

we use the semiempirical hydrodynamic rescaling procedurq)’ together with the corresponding BD results of Cichocki

described in Sec. . According to Fig. 6, HI-rescaling using 3nd Hinser’® As seen, the agreement between MCT and BD

Egs.(10) and(11) brings the MCTDs into good agreement  improves with increasing concentration, with nearly coinci-
with the experimental data. The fact that experimental angjent results even at intermediate times do=0.5.

Hi-rescaled MCT values oD5/D° at ®; are numerically

14 T T T T T T T T T
1 I T T
0.9 —— MCT ®=0.3 1ol o MeT
—-—BD il 0,0 BD
08 oo o
——= MCT ®=0.5 1} % o o i
0.7 b ol o
------------- BD %0, ©
o8} 1 o8l Lo =030 -
kT a
X o5 Tt P
g 04 } ] 06
!
] 04 |
0.2 |
0 L L L L 0 1 1 1 1 1 1 1 1 1
0 0.5 1 15 2 2.5

FIG. 7. Reduced MSIW(t)/(D°) for hard spheres ab=0.3 (upper two L . . Lo~
curves and® =0.5 (lower two curves Comparison between MCT results, EIG 9. Time-integrated irreducible memory functiod'(q,0) and
and BD data taken from Ref. 75. The two horizontal line segments at thd¥ls (0.0) of hard spheres. Solid lines: MCT results. Symbols: BD data for
right ordinate indicate the values of the MCT reduced long-time self-M'C"(q,O) (open squaresandmg'(q,O) (open circleg of Cichocki and Hin-
diffusion coefficients. sen(Ref. 74.
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1.0 . . . . . L .
AN — D gD’ MCT function M (qg,0) can be expressed in terms of the non-

N 540 VD’ exponentiality factorA (q) as MY (q,0)=A(q)/(1—A(q)),
N == D.(g, D" MCT . . . irm 2
08 k SN 4o VD' CEA implying for monodisperse systems thilt- (q,0)«<q“ and

. AN ¢ a,) A(q)g? for ga<1. Contrary toM¥(q,0), M¥(q,0) is a

N —— D/(g,)D° CEA i - -

N g monotonically ~ decaying function. The overall
N 4 g-dependencies are well reproduced by the MCT memory
NN functions, with their values being consistently lower than the
I N BD data. We expect the accuracy of the MCT predictions for
04 F AN - M (q,0) andM¥(q,0) to improve for largex, in accord
I S with an analogous observation in Fig. 7 féf(t). To our
I NN knowledge, however, there are so far no hard-sphere BD data
0.2 | - . for M g(q,0) available at higher volume fractions to com-
I (@) N pare with. Inclusion of HI increases the hard-sphere irreduc-
I X ible memory functions above its curves shown in Fig. 7,
0-000 0'1 0'2 0'3 0'4 0'5 06 since near-field HI lead to an additional slowing down of

' ' ' @ ' ' ' particle diffusion.

In Fig. 10[@), we compare MCT and CEA results for the

1.0 - ' - - ' hard-sphere long-time collective diffusion coefficient
N\ — D/(q,)D" MCT DL(g.), and for the mean collective diffusion coefficient

sl O\ —— D)0’ MCT ] ﬁé(qm), obtained without HI. The CEA findings have been
RN . 0 obtained by us following the CEA solution scheme described

N T D;(q, D" Verberg etal in Refs. 19 and 20. According to both theori@35(qy,)

. NN oD, (q,)D" EXP ceases to exist below the concentration threshdgt

06 i N ] =0.22 and®gp=0.15, respectively. While the CEA pre-

N diction for Dt(qm) is expected to be more accurate at lower

® (being exact to first order ib), the MCT is a better

] approximation ford=0.4, where both diffusion coefficients

are overestimated in the CEA. In accord with physical ex-

pectation, the long-time collective diffusion coefficient is

7 seen in both theories to be smaller than the mean collective

diffusion coefficienlf)é(qm), since the latter is related to the
- mean relaxation o8(q,,,t).
9% .0 04 0.2 03 04 05 06 Hi-rescaled MCT results fob&(q,,) andDE(qy), ob-
L] tained from multiplying the MCT coefficients bt(q,,) [cf.

FIG. 10. (a) Hard-sphere normalized long-time and mean collective diffu- Eqs.(lS) and (142] are compqred mslz:'g' Ib)_W'th experl-_
sion coefficientsDé(qm) and Bé(qm), respectively, as functions ob. mental data fODC(qm) of Segreet al>*There .IS goofj qua“'
Comparison between MCT and CEA results without HI. Notice that tative agreement between theory and experiment in the range
S(am,t) ceases to be an exponentially decaying function at long times forof d-values where, according to the MCID,I(‘;(qm) exists.
. . L L P . . o

lower vqlume fractions(b) Noerahzech(qm) angiDc(qm) vs @ with HI. Figure 1ab) displays also results fdbg(qm) calculated by
Open circles: exp. data fdb5(q,,)/D° from Segreet al. (Ref. 52. Bold . .

us using the nonself-consistent MCT scheme proposed by

solid line: D&(qy)/DC in Hi-rescaled MCT. Bold dashed lin@%(q,)/D° a4 .
in Hi-rescaled MCT. Dotted lineD5(q,,)/D° according to Verbergt al. Verberg etal™ (cf Sec. ll). Notice that the Hi-rescaled

(Ref. 44). MCT D&(qy) is substantially larger than the coefficient cal-
culated using the scheme of Verbergal *
Since the short-time self- and collective diffusion coef-

Figure 8 includes MCT results fapc(q,t) without HI,  ficients D2(q,,) =D°H(a)/S(dy) and DE of hard spheres
at qo=9.8 and®=0.5, in comparison with BD and CEA according to Eqgs(14) and (11), respectively, are used as
results taken from Ref. 20. The BD and MCT results com-input in the hydrodynamic rescaling scheme, it is worthwhile
pare very well, whereas the relaxation $(fg,t) is strongly to examine their concentration dependence in comparison
overestimated in CEA. As pointed out already by itswith experimental results, and with approximations for these
originators?® the CEA is designed for semidilute to moder- quantities proposed by Verberg and co-workers. The peak
ately concentrated hard-sphere dispersions, where it is iheightS(q,,) of the hard-spher&(q) is calculated using the
good agreement with BD results. Its accuracy decreases witlierlet—Weiss correction of the Percus—Yevick approxima-
increasing concentration when mode coupling effects betion. As seen from the inset in Fig. 1$(q,,) is contrary to
come strong. H(q,,) a distinctively nonlinear function ob, parametrized

BD data for the time-integrated irreducible memory for 0<®<0.55 within 1% of accuracy by the forig(q,,)
functions have been reported in Ref. 74 and are included ir=1+Cdg(2a+), with C=0.664 andy(2a*) according to
Fig. 9 (for ®=0.3) together with the MCT predictions. The Eg. (26).

irr

04

02 |
I (b)
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1.0

ingly unrelated criteria for the onset of freezing is deduced.
The proposed dynamic scaling of the dynamic scattering
functions is based on the MCT, with HI disregarded, and on
the scaling of the static structure factor with respect to the
peak positionqg,. We have confirmed the scaling of
S(g/q,,) as predicted in the RMSA using the accurate
Rogers—Young integral equation scheffi® It would be of
interest to examine the dynamic scaling predictions further
with the help of dynamic computer simulations.

For hard spheres, our MCT analysis reveals an exponen-
tial long-time mode ofS(q,,,t) for volume fractions®
=0.22 well below theidealized glass transition concentra-
02 N T tion. This collective mode is associated with the long-time

—-- Vg(2a") R ce collective diffusion coefficientDé(qm), which is smaller

. . . . than the collective diffusion coefficiedg(q,,) related to
0.0 0.1 0.2 0.3 0.4 05 the mean decay d&(q,,,t). A long-time exponential decay
0] of S(gn,,t) has been predicted also for charge-stabilized dis-
FIG. 11. Normalized short-time diffusion coefficients with HI. Bold solid persions of strongly correlategl partlcl?és. .
line: Dﬁ(qm)/D":H(qm)/S(qm) with H(q,,) according to Eq(14); bold Our MCT results for colloidal hard spheres with renor-
dashed line:DYD° according to Eq.(11). Open circles: experimental Malized volume fraction are in good qualitative accord with
DZ(q)/D° from Ref. 8; filled squares: experimentaly/D reproduced  BD data forS(q,t), W(t), and for the time-integrated irre-
from Ref. 8. Dotted line: cage-diffusion coefficiet(qn)/D° defined in 4, ;cihje memory functions. The comparison with the BD data
Eq. (35). Dashed line: approximation fdb3 according to Eq(26). Inset: . . o )
peak height of hard-spherg(q) according to Verlet—Weiss corrected '_S evenin quantlt_atlve agreement for the Iarges_t volume frac
Percus—Yevick approximation (solid line and corresponding tion ®=0.5 considered. The asymptotic short-time and long-
®-parametrizatioridashed ling time forms of the hard spher§(q,t) and G(q,t) are cor-
rectly predicted by the MCT, with amplitudes which are,
s 0 o o however, not equal to the exact ones. It is possible to extend
The result foD&(dm) =D H(Am)/S(Am) in Fig. 11isin 6 4604 performance of the MCT for concentrated systems
exceléent agreement with the experimental data of Segrg, hard-sphere dispersions at intermediate and small concen-
et al,” which reflects the accuracy of EG4) for H(qp). It trations by combining the MCT with an Enskog-type gener-

'S furthe_zr seen tthS. according to Eq(11) is in good agree-  jlized kinetic theory approach as proposed by Cichocki and
ment with the experimental data from 8. The apprOX|mat|0nsi_”nsen74 We are currently analyzing the predictions of this

DE(gm)~D¢(gm) and DE~D%g(2a™) suggested by Ver- .
b q K dina to E 4(26) hybrid method.
erg and co-workers according to E¢85) an » respec- A first-principles inclusion ofmany-body HI effects is

tively, compare less favorable with the experimental find- : .
. . . . . to date a daunting task for any theory of concentrated disper-
ings, even in the limited concentration regime ®&=0.4 . .

. - ions. For colloidal hard spheres we have employed thus a
where these empirical approximations have been proposed o o . :
apply semiempirical hydrodynamic rescaling of the MCT results,

' which allows for quantitative comparison with experimen-
tally determined diffusional and viscoelastic properties.

V. CONCLUSIONS Physical arguments based on the cage picture have been pro-

In this paper we have presented and analyzed theoretic¥/d€d o explain why the rescaling scheme is not applicable
predictions for collective and self-diffusional properties of 1O Systems with long-range repulsive pair forces. An approxi-
monodisperse and slightly polydisperse colloidal dispersiondhate incorporation of leading order far-field HI in the MCT
Our results have been obtained from the self-consistent niduations of monodisperse systems was provided lgela
merical solution of therescaledd MCT based on the many- and Bauf®> and subsequently generalized to colloidal
particle Smoluchowski equation and applied to suspension@ixtures?***This approach aims at describing the dynamics
of charged and neutral colloidal spheres. of charge-stabilized suspensions in the fluid regime. It differs

The dynamic structure factor and the mean-squared digfom alternative attempts by Fuchs and M&yand by Ver-
placement of charge-stabilized systems calculated in MCerg et al** of incorporating many-body HI for colloidal
compare well with BD simulations and experimental resultshard spheres, in that th@dependence of the MCT vertex
The nonexponentiallity factor of charged suspensions, witdunctions is affected. That far-field HI should affect the
small polydispersity effects included, is remarkably well pre-structural relaxation 05(q,t) and G(q,t) in the liquid re-
dicted by the theory, as demonstrated in comparison witlgime not only through the short-time coefficie®g(q) [cf.
experimental and BD results df(q). For de-ionized sus- Eq.(2) ff] andD3 but also through a modifiekkdependence
pensions of strongly repelling charged particles with well-of the vertex function®/(q,k) andV¢(q,k) is indicated by
developed nearest-neighbor shells, a dynamic scaling behathe weak coupling form of the self memory function in the
ior of S(q,t) and G(q,t) is predicted in the fluid regime. limit of small potential and hydrodynamic forc&sHow-
From this scaling behavior, the equivalence of two seemever, the question whether HI influences not only the colloi-

— Slg,) .
-- 14+0.664®g(2a’)

08

04

0.0
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dal dynamics within the fluid regime but also the glass tran<2G.

sition scenario remains unresolved.
The multicomponent version of the MCT with far-field

HI included has been used for successfully predictings,,
electro-hydrodynamic effects on the self-diffusion of a col-

loidal particle arising from the collective motion of small
ions constituting its electric double lay&.
In conclusion, our analysis has shown that @fescaled
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