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Collective diffusion, self-diffusion and freezing criteria of colloidal
suspensions
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In this paper, we examine collective and self-diffusion properties of dispersions of spherically
shaped colloidal particles at intermediate and long times. Our analysis is based on a fully
self-consistent~rescaled! mode coupling theory~MCT! adjusted to describe the overdamped
dynamics in concentrated suspensions of neutral and charged colloidal particles. The dynamical
quantities studied in dependence on various experimentally controllable system parameters are the
particle mean-squared displacement, long-time collective and self-diffusion coefficients, dynamic
structure factors, nonexponentiallity factors and collective and self-memory functions. The results
of our theoretical treatment are compared with Brownian dynamics computer simulation data,
experiment and other existing theories. It is shown that the rescaled MCT can be successfully
applied to a wide range of dynamical properties. Our calculations reveal in particular an exponential
long-time mode of the dynamic structure factor for a limited range of wave numbers and at
sufficiently high concentrations. A dynamic scaling behavior of the dynamic structure factor and
self-intermediate scattering function is predicted for the important case of salt-free charge-stabilized
suspensions. As a consequence of the dynamic scaling, the static freezing criterion for colloids by
Hansen and Verlet@Phys. Rev.184, 151 ~1969!# is shown to be equivalent with the dynamic
criterion by Löwen et al. @Phys. Rev. Lett.70, 1557 ~1993!# related to long-time self-diffusion.
© 2000 American Institute of Physics.@S0021-9606~00!50332-8#
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I. INTRODUCTION

The dynamics of suspensions of spherical colloidal p
ticles has been extensively studied in the past by mean
various light scattering techniques.1–3 Part of the interest in
these systems arises from the fact that these w
characterized dispersions can serve as model system
more complex colloids relevant to the chemical and pharm
ceutical industry. Furthermore, since the relevant length
time scales of colloids are easily accessible experimenta
colloidal model systems are good test beds for scrutiniz
theoretical methods originally developed in atomic co
densed matter physics and adjusted to describe the m
structure and diffusion of Brownian systems.

Unlike simple fluids, in which the molecular motion
ballistic and determined only by the molecular force law, t
colloidal dynamics is dissipative due to the intervening s
vent which gives rise to Brownian particle motion and man
body hydrodynamic interactions~HI!. The presence of long
range HI and, quite frequently, also of polydispersity
particle sizes and interactions complicates the theore
treatment of the colloidal dynamics considerably.

The static and short-time dynamic properties of bulk d
persions of monodisperse and polydisperse colloidal sph
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are well understood both from the experimental1,4–10 and
theoretical7–9,11–15point of view. On the other hand, the the
oretical prediction of dynamic properties at intermediate a
long times is far more difficult due to the occurrence
memory effects which depend both on direct and hydro
namic interparticle forces. Exact analytical results for lon
time diffusional properties are in fact known to date only f
hard-sphere dispersions in the limit of sma
concentrations.16–20For the more interesting case of conce
trated dispersions, approximations have to be introduce
allow for further progress.

In a number of recent articles, we have used a~rescaled!
mode coupling theory~MCT! for the calculation of long-
time rheological and related diffusional properties of collo
dal suspensions.21–24 For concentrated hard-sphere dispe
sions, we employed a short-time hydrodynamic rescal
procedure in the spirit of Medina-Noyola25 and Brady,26,27 to
approximate the strong influence of the HI on the parti
dynamics. The findings from the rescaled MCT have be
compared with experiments and Brownian dynamics~BD!
computer simulations, and good agreement is observed21,22

From our MCT calculations in Ref. 22, we were led to inte
esting predictions concerning the general validity of cert
empirically found generalized Stokes–Einstein~GSE! rela-
tions linking low-shear viscoelastic properties to diffusio
coefficients. Most of the GSE relations investigated in R
22 were shown to hold reasonably well for hard-sphere d
persions, whereas the violation of the same GSE relation

-
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predicted in case of charge-stabilized suspensions.
In this paper, we extend the aforementioned analysis

the performance of the~rescaled! MCT by exploring now its
predictions concerning collective and self-diffusion prop
ties at intermediate and long times. Our results are exem
fied for hard-sphere dispersions and de-ionized cha
stabilized dispersions in order to illustrate the differe
dynamic behavior of systems with short-range and lo
range direct interactions. Although the MCT has been f
mulated recently also for colloidal mixtures with an arbitra
number of components,23,24,28 we restrict ourselves here t
monodisperse and slightly polydisperse systems. We ca
late and analyze various measurable dynamic properties
cluding the dependence of the dynamic structure fac
S(q,t) on the wave numberq and correlation timet, the
particle mean squared displacement~MSD! W(t), and the
nonexponentiallity factorD(q) which characterizes the ove
all nonexponential decay ofS(q,t). In calculatingD(q), we
also account for small size polydispersity effects which
of importance at smallq. Furthermore, the density depe
dence of various long-time diffusion coefficients, and t
density dependence and asymptotic time dependence o
irreducible memory functions related to collective and s
diffusion are investigated.

To assess the accuracy of the MCT results, we comp
with results obtained from experiments, BD simulations a
some other existing theories. From this comparison the~res-
caled! MCT will emerge as a useful approximate method
predicting diffusional properties, without requiring any a
justable parameter. By analyzing the analytical propertie
the dynamic structure factor, we show that in MCT the ha
sphereS(q,t) exhibits an exponentially decaying long-tim
form for volume fractionsF.0.2 and for wave number
near the value,qm , where the maximum of the static stru
ture factorS(q) occurs. The exponential long-time mode c
be characterized by a long-time collective diffusion coe
cient DC

L (qm), which decreases with increasing concent
tion. For de-ionized charge-stabilized suspensions, we
dict a dynamic scaling behavior ofS(q,t) and of the self-
intermediate scattering function,G(q,t), in terms of a
characteristic wave number and relaxation time related to
geometric mean particle distance. The MCT is conseque
shown to map the static Hansen–Verlet freezing criterio29

~cf. also Ref. 30! to the dynamic freezing criterion of Lo¨wen
et al.31

The paper is organized as follows: In Sec. II, we deve
the general framework of the self-consistent~rescaled! MCT
equations forS(q,t) and forG(q,t), and we outline its nu-
merical implementation. In Sec. III we give the details
how collective and self-diffusional properties are determin
in MCT. This section includes further a discussion of t
asymptotic time dependence and scaling ofS(q,t), G(q,t)
and of the associated collective memory functions. Num
cal results for diffusional properties of hard-sphere a
charge-stabilized dispersions are presented and analyz
Sec. IV, in comparison with computer simulations, expe
ment and some other existing theories on colloidal dynam
Our final conclusions are contained in Sec. V.
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II. MODE COUPLING THEORY OF COLLOIDAL
DIFFUSION

We consider a monodisperse suspension of collo
spheres of diameters52a dispersed in a Newtonian so
vent. The correlation of density fluctuations in the equili
rium state is described by the dynamic structure factor,
fined as1,32

S~q,t !5K 1

N (
l ,p51

N

eiq•(Rl (t)2Rp(0))L , ~1!

whereq is the scattering wave vector of modulusq, N is the
number of colloidal particles in the scattering volume,Rl(t)
is the position vector pointing to the center of spherel, and
^•••& denotes an equilibrium ensemble average. The
namic structure factor is the central statistical mechan
quantity describing the collective dynamics of colloidal pa
ticles. For timest much larger than the momentum relaxatio
time tB'1028 s, the colloidal dynamics is governed by th
many-body Smoluchowski equation which describes the
laxation of the particle positions under the presence of dir
and hydrodynamic forces.3 Within the time range where the
Smoluchowski equation applies, HI can be considered to
instantaneously.

By using a projection operator formalism and an app
priate decomposition of the Smoluchowski equation, the f
lowing time evolution equation forS(q,t) has been
derived:23,33–36

]

]t
S~q,t !52q2DC

S~q!S~q,t !

2E
0

t

duMC
irr~q,t2u!

]

]u
S~q,u!, ~2!

where DC
S(q)5D0H(q)/S(q) is a q-dependent short-time

collective diffusion coefficient. Here,D0 is the Stokes–
Einstein diffusion coefficient of a colloidal sphere of radi
a, andH(q) is the hydrodynamic function. The latter qua
tity accounts for the configuration-averaged effect of the
on the short-time dynamics.1,3 Without HI, H(q)51 inde-
pendent of q, whereas undulations inH(q) with a
q-dependence similar to that ofS(q) are indicative of the
influence of HI.7,8,10,37

The first term on the right-hand-side of Eq.~2! deter-
mines the initial exponential decay ofS(q,t), which takes
place within the short-time regimetB!t!ta , where ta

5a2/D0'1024– 1023 s is the time required for a non
interacting particle to diffuse a distance comparable to
own size. The integral term on the right-hand-side of Eq.~2!
containing the irreducible collective memory functio
MC

irr(q,t) accounts for memory effects originating from co
lective particle motion. This memory term gives rise to
overall slower and, in general~cf. Sec. IV!, nonexponential
decay ofS(q,t) at intermediate timest'ta and at long times
t@ta .

An exact microscopic expression forMC
irr(q,t) was de-

rived in Refs. 33, 35 and 38. This expression is used as
starting point for introducing a lowest order mode coupli
approximation, following the work on simple and supe
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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cooled liquids,39,40 resulting in a self-consistent set of equ
tions for calculating the dynamic structure factor of colloid
systems with their overdamped particle dynamics. While t
scheme has been extended very recently to collo
mixtures23 and provides an opportunity for the inclusion
far-field HI, which is the prevailing part of the HI in dilute
charge-stabilized colloids,23,28 the present results are ob
tained from the MCT applied to monodisperse fluid syste
with HI disregarded. For the comparison with experimen
data on concentrated hard-sphere dispersions, where
strong influence of many-body HI has to be accounted
we describe this influence approximately by combining
MCT with a short-time hydrodynamic rescaling procedure
used already in Refs. 21 and 22~cf. Sec. III!. In Refs. 21 and
22, it was shown that that the hydrodynamically resca
MCT of hard-sphere dispersions leads to good agreem
with experimental findings on viscoelastic and diffusion
properties.

In MCT, the collective memory function is approx
mated without HI by

MC
irr~q,t !5

D0

2n~2p!3

3E d3k@VC~q,k!#2S~k,t !S~ uq2ku,t !, ~3!

with the vertex amplitude33,35,39,41,42

VC~q,k!5q̂"knc~k!1q̂•~q2k!nc~ uq2ku!, ~4!

related to collective diffusion. Here,c(q)5@121/S(q)#/n is
the Fourier-transformed two-body direct correlation fun
tion, q̂5q/q, andn denotes the number density of particle
The vertex amplitudeVC(q,k) in Eq. ~4! is derived in the
so-called convolution approximation, where the contribut
of static three-point direct correlations is neglected. The c
volution approximation for the collective vertex amplitude
used in most of the recent applications of the MCT
atomic34,39,40 and colloidal dynamics.21,22,33,36,43,44Its appli-
cation gives rise to a consistent glass transition scenari
form of an ergodic–nonergodic transition of the partic
dynamics.39,40,42,45It should be mentioned that an approx
mation for VC(q,k) different from Eq. ~4! has been sug
gested by Hess and Klein.46 However, as pointed out alread
in Ref. 35, the Hess and Klein vertex approximation leads
poor results for collective dynamic properties in comparis
with experimental and computer simulation data on char
and neutral colloidal particles.

The mode coupling scheme has been developed also
self-diffusional properties, related to the self-intermedi
scattering function

G~q,t !5^eiq•(R1(t)2R1(0))&. ~5!

The time evolution of the scattering functionG(q,t) is de-
scribed by the memory equation28,34,35
Downloaded 06 Aug 2004 to 128.104.68.125. Redistribution subject to AI
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]

]t
G~q,t !52q2DS

SG~q,t !

2E
0

t

duMS
irr~q,t2u!

]

]u
G~q,u!, ~6!

where the irreducible memory function,MS
irr(q,t), describ-

ing self-diffusion is approximated in MCT by

MS
irr~q,t !5

D0

~2p!3n

3E d3k@VS~q,k!#2S~k,t !G~ uq2ku,t !. ~7!

In Eq. ~6!, DS
S is the short-time self-diffusion coefficien

which is equal to the initial slope of the particle mea
squared displacement. For vanishing HI,DS

S reduces toD0,
and the vertex amplitudeVS(q,k) is approximated by

VS~q,k!5q̂"kS 12
1

S~k! D . ~8!

Notice that VC(q,k) according to Eq.~4! corresponds to
2VS(q,k) in the limit of largeq. This limiting behavior is to
be expected physically sinceS(q,t)'G(q,t) whenq@qm .
Eqs. ~2!–~4! constitute a self-consistent set of nonline
equations determiningS(q,t) for given static structure facto
S(q). The latter can be calculated independently for giv
pair potential using, e.g., well-established integral equat
schemes.47 Once S(q,t) has been determined,G(q,t) fol-
lows from solving Eqs.~6!–~8!. A well-known feature of the
MCT equations presented here is that they predict an id
ized glass transition scenario. This scenario is character
by the appearance of nonergodicity in Brownian syste
above a certain concentration threshold, whereS(q,t) and
G(q,t) do not relax to zero and where the suspension v
cosity diverges,23,40 consistent with experimental measur
ments on hard sphere43,48 and charge-stabilized particl
systems.49

In the following, we briefly outline the numerica
method used in solving the coupled Eqs.~2!–~8!. After re-
expressing the integrals in the memory function expressi
in Eqs.~3! and ~7! in bipolar coordinates, the coupled MC
equations are solved numerically in discretized form us
an algorithm developed by Fuchset al.50 A uniform wave
number grid with typically 500 grid points,q5 iDq, is em-
ployed with a grid spacingDq5qm/40. The resulting MCT
integral-difference equations are integrated forward in ti
starting from the known short-time behavior ofS(q,t) and
G(q,t). In performing the time derivative, the logarithms
S(q,t) andG(q,t) are used instead of these quantities the
selves to improve on the numerical accuracy. As discusse
more detail in the following section, the irreducible memo
functions of hard-sphere dispersions show at21/2 singularity
for t→0 arising from the singular nature of the pair pote
tial. Advantage is taken of the analytically known short-tim
forms of MS

irr(q,t) and of MC
irr(q,t) for the integration over

the first time steps whereS(k,t) andG(k,t) can be described
by their short-time forms.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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The MCT equations presented so far have been obta
without HI. For concentrated hard-sphere dispersions, str
many-body HI effects have to be accounted for to be able
compare with experimental results. The incorporation
many-body HI into long-time diffusion is a very difficult tas
and has been accomplished so far only approximately.
therefore, use a hydrodynamic rescaling procedure of
MCT results for concentrated hard-sphere dispersions w
allows for quantitative comparison with experimen
data.21,22 This procedure derives from the assumption t
diffusion properties with HI can be factorized in a hydrod
namic part, given by the corresponding short-time prope
with HI included, and a purely structural part. The latter
calculated using the MCT equations@Eqs.~2!–~8!#.

For the case of self-diffusion, the rescaling proced
amounts to approximating the particle mean-squared
placementW(t)5^@R1(t)2R1(0)#2&/6 and the long-time
self-diffusion coefficientDS

L , with HI included, by

W~ t !'S DS
S

D0D W~ t !MCT, ~9!

corresponding to

DS
L'S DS

S

D0D DS
L,MCT . ~10!

The factorization approximation forDS
L in Eq. ~10! has been

proposed initially by Medina-Noyola25 and developed in
more detail by Brady.26 For the short-time self-diffusion co
efficient of hard spheres, we use a semiempirical result s
gested by Lionberger and Russel51

DS
S~F!

D0
5~121.56F!~120.27F!, ~11!

which conforms to the rigorous dilute limitDS
S/D051

21.83F, and which givesDS
S50 at random close packin

F'0.64.
A similar rescaling can be performed for the long-tim

collective diffusion coefficientDC
L (qm) of hard spheres, de

fined by21,22,52

DC
L ~qm!52

1

qm
2

lim
t→`

]

]t
logS~qm ,t !, ~12!

in the concentration regime whereS(qm ,t) exhibits an ex-
ponential long-time mode. A collective long-time mode
S(qm ,t) has indeed been observed in dynamic light scat
ing experiments on colloidal hard-sphere dispersions.52 The
rescaling relation forDC

L (qm) is explicitly given by

DC
L ~qm!'H~qm!DC

L,MCT , ~13!

whereH(qm) is the value of the hydrodynamic function
the wave numberqm characterizing the extent of the neare
neighbor shell around a particle. As shown in Refs. 21 a
22, the concentration dependence ofH(qm) for hard spheres
is well represented by the linear form

H~qm!5121.35F, ~14!

for volume fractions up to the freezing transition.
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We notice that the rescaled expression forDC
L (qm) in

Eq. ~13!, with qm replaced byq, reduces to that forDS
L in Eq.

~10! in the long wave number regimeq@qm . It is further
observed that the exact short-time form ofW(t) is recovered
from Eq. ~9! in the short-time regime.

The hydrodynamic rescaling procedure for colloidal ha
spheres is semiempirical and does not reproduce the kn
exact dilute limits of the long-time transport coefficients. O
physical grounds, one can expect Eq.~9! to apply only at
sufficiently high concentrations, where each particle is s
rounded by a well-defined dynamic cage of neighboring p
ticles. A particle diffusing out of its cage very likely wil
pass one of the cage particles very closely, since the h
sphere radial distribution function attains its maximum
contact distance. Due to the strongly reduced relative hyd
dynamic mobility of two colloidal spheres near contact, t
tracer particle will diffuse very slowly in the immediat
neighborhood of its cage neighbor for a considerable amo
of time, as adequately described by short-time self-diffusi
before leaving the cage leading to structural relaxation. T
intuitive picture of cage diffusion provides a rationale for E
~9!. The factorization approximation in Eq.~9! should not
hold for charge-stabilized dispersions according to this p
ture, since long-range double layer repulsion prevents p
ticles from diffusing so close to each other that lubricati
forces come into play. On the contrary, the far-field part
the HI prevailing in dilute charge-stabilized dispersions
expected to promote the diffusion of the tracer particle ou
its momentary cage, leading thus to a hydrodynamic
hancement of long-time self-diffusion. This enhancem
should be contrasted with hard sphere dispersions wher
qualitative accord with Eq.~9!, near-field HI causes the par
ticles to diffuse slower at long times. The hydrodynamic e
hancement of long-time self-diffusion in de-ionized charg
stabilized dispersions was predicted in Ref. 35 on the b
of simplified MCT calculations and exact low-density r
sults. It should occur in all colloidal systems with long-ran
repulsive pair forces. Hydrodynamic enhancement of s
diffusion has been observed meanwhile in experiments
computer simulations on charge-stabilized dispersions,53 and
on quasi-two-dimensional colloids confined near a liqui
gas interface54,55 or between two closely spaced plates.56

Since a rescaling procedure for charge-stabilized s
tems is not known to date, we will neglect in our calculatio
the influence of HI on these systems. For charge-stabili
systems, we expect the diffusional properties to be o
moderately affected by HI, as supported by exact lo
density effective hard-sphere calculations and simplifi
MCT calculations ofDS

L .35 Our findings for the diffusional
properties of charge-stabilized systems will be mainly co
pared with BD simulations. In these simulations, the infl
ence of HI is disregarded due to the considerable difficul
in incorporating HI into simulations. We point out that th
calculation of diffusional properties in MCT with HI disre
garded is important to assess the accuracy of the treatme
many-body direct interactions.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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III. CALCULATION OF DIFFUSIONAL PROPERTIES

Having reviewed the basic MCT equations, we addr
now the calculation of various diffusional properties. Fu
thermore, we discuss the asymptotic time behavior ofS(q,t)
and related irreducible memory functions. Dynamic scal
relations are proposed for salt-free charge-stabilized dis
sions, which relate the Hansen–Verlet static freezing cr
rion to a dynamical one proposed by Lo¨wen et al.

The mean-squared displacement~MSD! can be deter-
mined fromG(q,t) according to

W~ t !52 lim
q→0

logG~q,t !

q2
. ~15!

At short times,W(t) increases linearly in time with a slop
DS

S , followed by a sub-linear increase at intermediate tim
due to the retarding influence of the cage of neighbor
particles. At long times,W(t) is again linear with slope equa
to the long-time self-diffusion coefficientDS

L . The coeffi-
cient DS

L follows thus from:

DS
L5 lim

t→`

W~ t !

t
. ~16!

Using Eq.~6!, DS
L can be calculated alternatively from

DS
L5

DS
S

11M̃S
irr~q→0,s→0!

, ~17!

whereM̃S
irr(q,s) is the Laplace transform ofMS

irr(q,t).
A suitable measure of the overall nonexponential de

of S(q,t) for correlated particles is the nonexponentiall
factor,D(q), defined as35,46,57,58

D~q!512
tC

S~q!

t̄~q!
. ~18!

The relaxation timetC
S(q)5S(q)/(q2D0H(q)) characterizes

the short-time decay ofS(q,t), whereas

t̄~q!5E
0

`

dt fC~q,t !5f̃C~q,s50!, ~19!

is the mean relaxation time of the normalized dynamic str
ture factorfC(q,t)5S(q,t)/S(q), with Laplace transform
f̃C(q,s). Using Eq.~2!, D(q) can be expressed in terms
the zero-frequency limit of the Laplace-transformed irred
ible memory function,M̃C

irr(q,s), as

D~q!5
M̃C

irr~q,s50!

11M̃C
irr~q,s50!

, ~20!

from which it follows that 0<D(q)<1. For weakly corre-
lated particles with small deviations offC(q,t) from its
short-time form exp@2t/tC

S(q)#, D(q) attains values close to
zero, whereas values close to one indicate strong par
correlations with a slow decay ofS(q,t).

Whereas theory predicts for monodisperse systems
pairwise additive HI thatD(q→0)50, experimental data ex
trapolate to finite values ofD(q→0). This apparent contra
diction was resolved in Refs. 57 and 58, where it was sho
Downloaded 06 Aug 2004 to 128.104.68.125. Redistribution subject to AI
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that even tiny amounts of size polydispersity can give rise
values of the measuredD(q!qm) significantly larger than
zero. For dispersions with a narrow size distribution, the
perimentally determined dynamic structure factor is well a
proximated by the decoupling approximation form35

SD~q,t !5X~q!GI~q,t !1@12X~q!#SI~q,t !, ~21!

with the scattering coefficientX(q)'9s2 essentially inde-
pendent ofq for wave numbersqs̄,0.5. The size distribu-
tion is determined by the mean particle diameters̄ and the
relative standard deviations!1. The quantitiesSI(q,t) and
GI(q,t) are the dynamic structure factor and se
intermediate scattering function of the idealized monod
perse system of particles of diameters̄. In Refs. 57 and 59 it
was shown for weakly polydisperse systems of strongly c
related particles that the first term on the right-hand-side
Eq. ~21!, which originates from self-diffusion, dominates th
temporal decay ofSD(q,t) at smallq, sinceSD(0)!1 and
SD(q,t)<SD(q). As a consequence nonzero values for t
nonexponentiallity factorDD(q) related toSD(q,t) are ob-
tained forq→0. By accounting for size polydispersity on th
basis of the decoupling approximation and using a simplifi
~i.e., not fully self-consistent! MCT solution forSI(q,t) and
GI(q,t), good agreement was found for smallq with experi-
mentally determined nonexponentially factors.35,57 In Sec.
IV, fully self-consistent MCT results forD(q) are presented
resulting in improved agreement with experimental and B
simulation data at intermediate values ofq.

We proceed now with a general discussion of t
asymptotic time dependence ofS(q,t). Consider first a hard-
sphere dispersion with HI ignored. The singular hard c
potential leads to a nonanalytical behavior of the irreduci
memory functionsMC

irr(q,t) and MS
irr(q,t) for t→0. Within

the MCT, we can deduce the asymptotic short-time dep
dence of the irreducible memory functions by employing
the vertex amplitudes in Eqs.~4! and ~8! the large-q
asymptotic form

S~q!'1212Fg~2a1!
j 1~2qa!

qa
1O~q23!, ~22!

of the hard-sphere static structure factorS(q). Here,j 1(x) is
the first-order spherical Bessel function, andg(2a1)>1 is
the contact value of the hard-sphere radial distribution fu
tion g(r ). From an asymptotic short-time analysis of Eq.~3!,
we obtain with Eq.~22! the following result for the short-
time form of MC

irr(q,t) ~cf. Ref. 60 for details!

ta MC
irr~q,t !'Ap~qa!2AC

MCT~q;F!t21/2, ~23!

ast!1, where we have introduced the wave number dep
dent dimensionless timet5q2D0t. The coefficientAC

MCT is
given by

AC
MCT~q;F!5

A2F g~2a1!2

pqad~2qa!
, ~24!

with the function

d~x!5
1

12 j 0~x!12 j 2~x!
, ~25!
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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wherej n(x) denotes the spherical Bessel function of ordern.
The contact value of the hard-sphere radial distribution fu
tion is given to good accuracy by the Carnahan–Star
formula

g~2a1!5
12F/2

~12F!3
, ~26!

within the fluid regime. The short-time divergence
MC

irr(q,t) proportional tot21/2 leads to the following short-
time asymptotic form of the dynamic structure factor:

S~q,t !'S~q!2t1 4
3ApAC

MCT~q;F!t3/21O~t2!, ~27!

as can be deduced from a short-time expansion of Eq.~2!
with Eq. ~23! as input.

The related short-time asymptotics of the self-diffusi
properties are easily derived from Eqs.~23! and~27! by em-
ploying that G(q,t)'S(q,t), d(2qa)'1, and S(q)'1 in
the limit of large-q:

taMS
irr~q,t !'Ap~qa!2AS

MCT~q;F!t21/2 ~28!

and

G~q,t !'12t1 4
3ApAS

MCT~q;F!t3/21O~t2!, ~29!

valid for t!1. The coefficientAS
MCT is equal to the right-

hand-side of Eq.~24!, with d(2qa) replaced by one. The
irreducible memory functions remain finite fort→0 in case
of charge-stabilized dispersions, since the physical hard
is masked by soft long-range repulsive interactions. Th
are thus no terms in the short-time forms of the scatter
functions proportional tot3/2.

We have taken advantage of the short-time forms~23!
and~28! in our numerical solution of the MCT equations fo
colloidal hard spheres. The MCT results for the short-ti
asymptotics should be compared with the exact asympt
results20 for S(q,t) andG(q,t), and for the associated irre
ducible memory functions. The exact asymptotic forms
hard spheres differ from the MCT results~23!–~29! only in
the somewhat different coefficientsAC and AS , which are
given in terms of the MCT coefficients asAC,S

52 AC,S
MCT/g(2a1). While not reproducing accurately the co

efficients of the exact short-time forms of hard spheres,
MCT is at least qualitatively correct in predicting the exa
asymptotict-dependence. This is quite a remarkable find
since the approximations made in the MCT are aimed
describing diffusion effects at long times. We mention in th
context that the transverse shear stress correlation func
Dh(t), of colloidal hard spheres also exhibits at21/2 diver-
gence fort→0, in accord with MCT results forDh(t),22,24

which differ from the exact short-time asymptotics51 again
by a factor ofg(2a1)/2.

Whereas the short-time forms ofS(q,t) andG(q,t) for
colloidal hard spheres are determined only by two-body
fects and are thus obtained analytically for all physically
lowed densities, the large-t asymptotics of these quantities
known analytically only up to linear order inF. In Refs. 18
and 20 it is shown that bothS(q,t) and G(q,t) exhibit an
algebraic-exponential long-time tail proportional
Downloaded 06 Aug 2004 to 128.104.68.125. Redistribution subject to AI
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t23/2exp@2t/2# to first order inF. While the long-time tail
is too small to be of experimental relevance, its mere ex
tence illustrates thatS(q,t) and G(q,t) are in general non-
exponentially decaying functions at long times.

Using in Eqs.~3! and ~7! the small-q form of S(q) to
linear order inF, the same asymptotic long-time tails fo
S(q,t) and G(q,t) are recovered in MCT as in the exa
low-density calculations, again up to somewhat differe
prefactors.

To linear order inF, it follows further from Eqs.~2! and
~6! that thet23/2exp@2t/2# tail of the dynamic scattering
functions corresponds to the same long-time tail in the as
ciated irreducible memory functions. This illustrates the ge
eral observation that memory functions do not decay s
stantially faster than their associated scattering functions

If MC
irr(q,t) would decay sufficiently faster thanS(q,t),

then the memory integral in Eq.~2! could be de-convoluted
for t@ta as

E
0

t

duMC
irr~q,t2u!

]

]u
S~q,u!'M̃C

irr~q,0!
]

]t
S~q,t !.

~30!

This would imply thatS(q,t) decays exponentially at long
times according to

fC~q,t !5e2q2D̃C
L (q)t, t@ta , ~31!

with a collective diffusion coefficient,D̃C
L (q), determined by

D̃C
L ~q!5D̃C~q,s50!5

DC
S~q!

11M̃C
irr~q,0!

. ~32!

We have introduced here a wave number and frequency
pendent diffusion kernel,D̃C(q,s), related to the normalized
dynamic structure factor by32

f̃C~q,s!5
1

s1q2D̃C~q,s!
. ~33!

The coefficientD̃C
L (q) is closely related toD(q) and t̄(q),

since

D̃C
L ~q!5DC

S~q!@12D~q!#. ~34!

As pointed out already in Refs. 18–20,D̃C
L (q) as defined by

Eq. ~32! is actually a measure for the mean relaxation a
not for the long-time relaxation ofS(q,t). An exponential
long-time mode ofS(q,t) is characterized byD̃C

L (q) only
when de-convolution ~30! applies. However, we re
emphasize that this de-convolution is in general not valid
that D̃C

L (q) has to be distinguished from the genuine lon
time collective diffusion coefficientDC

L (q), defined in Eq.
~12!, in the regime of volume fractions and wave numbe
where the latter quantity exists. Hard-sphere results
D̃C

L (qm) andDC
L (qm) are presented in Sec. IV.

From a long-time MCT analysis ofS(qm ,t) for colloidal
hard spheres without HI, we find an exponential long-tim
mode for concentrationsF.0.22 where caging effects ar
sufficiently strong. This collective mode describes the de
of density fluctuations linked to the average extensi
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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2p/qm , of a nearest neighbor cage. The associated co
cient DC

L (qm) can be determined by analyzing the analy
properties of the Laplace-transformed dynamic structure
tor, f̃C(q,z), in terms of the reduced frequency variablez
5stC

S(q). In the q- and F- regime where the collective
mode exists,DC

L (q) is determined by the valuez5z0(q)
52DC

L (q)/DC
S(q), with 21<z0(q),0, corresponding to a

pole in f̃C(q,z). According to Eqs.~32! and ~33!, z0(q) is
numerically obtained from the intercept ofM̃C

irr(q,z) with the
monotonically increasing functionf (z)52@11z21#. No-
tice here thatM̃C

irr(q,z) is positively valued and monotoni
cally decaying for real values ofz where the Laplace integra
of MC

irr(q,t) exists. In contrast toDC
L (q), D̃C

L (q) is deter-
mined by the valuez5 z̃0(q)52D̃C

L (q)/DC
S(q), where

f (z)5M̃C
irr(q,z50). This gives rise to the inequalit

D̃C
L (q)>DC

L (q) due to the monotonicz-dependence o
M̃C

irr(q,z) and f (z). The coefficientD̃C
L (q) obviously exists

for any value ofF and q. Our numerical analysis furthe
reveals, e.g., that the collective long-time mode cease
exist, even for valuesF.0.22, for wave numbers close t
the first minimum ofS(q) located to the right ofqm .

A long-time analysis of the hard-sphereS(q,t) similar to
ours has been performed by Cichocki and Felderhof,19,20 on
the basis of the so-called contact Enskog approxima
~CEA!. According to the CEA, a collective long-time mod
of S(qm ,t) appears forF.0.15, in qualitative accord with
the MCT finding.

An exponential long-time decay ofS(q,t) for concen-
trated charged colloidal dispersions at wave numbers neaqm

was proposed further by Cohen, de Schepper,
co-workers.61,62 Neglecting possible HI contributions, thes
authors approximateDC

L (q) by the so-called cage-diffusio
coefficient,Dc(q), defined by

Dc~q!5
D0d~2qa!

g~2a1!S~q!
. ~35!

The factord(2qa)/S(q) describes the structural relaxatio
of a particle in its nearest-nearest neighbor cage. The con
valueg(2a1) in Eq. ~35! is equal to the contact value of a
equivalent effective hard-sphere system, with an effec
particle radiusa determined from a best fit forq5qm of the
experimentally observedS(q) with the S(q) of the equiva-
lent hard sphere system.62 Notice that the contact value o
the actualg(r ) is essentially equal to zero. Contrary to th
MCT and CEA long-time results, which are based on
many-body Smoluchowski equation describing the dynam
of colloidal suspensions, the estimate~35! for DC

L (q) was
proposed in analogy with results from the theory of den
atomic liquids. Therefore, the approach of Cohen, de Sch
peret al.does not permit predicting theF-range andq-range
where a collective long-time mode ofS(q,t) exists.

In recent work, Verberg, de Schepper and Cohen44,63use
expression~35! for Dc(q) as an approximation for the shor
time collective diffusion coefficientDC

S(q) of colloidal hard
spheres, proposed to be valid forq'qm and F.0.4. They
argue that the factorD0/g(2a1) in Eq. ~35!, with a denoting
now the actual hard-sphere radius, is useful as a phenom
Downloaded 06 Aug 2004 to 128.104.68.125. Redistribution subject to AI
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logical approximation for the short-time self-diffusion coe
ficient DS

S . According to their reasoning, the hydrodynam
function H(q) is then approximated nearqm by
d(2qa)/g(2a1). Using F50.5, this results inH(qm)
'0.20, whereasH(qm)'0.33 according to the semiempir
ical expression in Eq.~14!, in agreement with simulation
data.64 Moreover,d(2qa)/g(2a1) with g(2a1) as given in
Eq. ~26!, has aF-dependence different from the linear one
Eq. ~14!. The quantityd(2qma)/g(2a1) is thus seen to be a
rather poor approximation forH(qm).

The mean collective diffusion coefficientD̃C
L (q) of con-

centrated hard-sphere dispersions is calculated by Ver
et al. using a simplified MCT scheme.44 This scheme
amounts to approximatingS(k,t) and G(k,t) in the MCT
integral of Eq.~3! for all times and all wave numbers by th
approximate short-time formsfC(k,t)'exp@2k2Dct# and
G(k,t)'exp@2k2(D0/g(2a1))t#. Moreover, the bare Stokes
Einstein diffusion coefficientD0 in Eq. ~3! is replaced in
their scheme byDS

S'D0/g(2a1), approximating the influ-
ence of HI in a mean-fieldlike way similar to earlier sugge
tions of Medina–Noyola25 and Brady.26 The exponential ap-
proximation used forS(k,t) is rather crude, since the
dynamic structure factor is nonexponential at intermedi
and long times for wave numbersk different fromqm . Using
thatG(k,t)'exp@2k2W(t)#, with small non-Gaussian effect
neglected,48 G(k,t) is further seen to be nonexponential
intermediate times due to the sub-linear behavior ofW(t)
~cf. Fig. 7!. Contrary to the scheme of Verberget al., no a
priori assumptions are made in the self-consistent MCT
the time dependence of the dynamic correlation functions
the right-hand-side of Eqs.~3! and ~7!. The self-consistent
MCT is straightforwardly applicable also to moderately co
centrated hard-sphere dispersions withF,0.4, and to sys-
tems with long-range soft potentials whereg(2a1)'0, with-
out the necessity of introducing an approximate effect
hard-sphere picture@cf. Eq. ~35! ff # for the latter case. The
lack of self-consistency in the scheme of Verberget al. and
in the CEA excludes the possibility of obtaining a
ergodicity–nonergodicity transition whereD̃S

L(q) vanishes.
Hard-sphere results forDS

L(qm) andD̃S
L(qm) are discussed in

Sec. IV.
In the remaining part of this section we address in MC

without HI the scaling behavior ofS(q,t) and G(q,t) for
fluid systems with strong and long-range particle repulsi
Such systems are characterized in terms of a single ph
cally relevant length scale, given by the geometric mean p
ticle distancer̄ 5n21/3. Important examples are de-ionize
i.e., salt-free, suspensions of charge-stabilized particles1,32

and quasi-two-dimensional dispersions of sup
paramagnetic particles exposed to a perpendicular magn
field.54,55

The radial distribution function,g(r ), of these systems
reveals a well-developed principal peak located at a ra
distance,r m , which is nearly equal tor̄ .14 Sincer m' r̄ , g(r )
depends essentially only on the reduced distancer̃ 5r /r m .
Likewise, sinceqm3r m'2p, S(q) is only a function of the
dimensionless wave numberq̃5q/qm . This scaling implies
that static structure factors of systems with equal pe
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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height, S(qm), should nearly superimpose on top of ea
other when plotted vsq̃ ~cf. Sec. IV!.

It is crucial to realize that the MCT equations@Eqs.~2!–
~4! and~6!–~8!# determiningS(q,t) andG(q,t) depend onq
and t only through the reduced wave numberq̃ and the re-
duced time t̃ 5t/tqm

, with tqm
5(qm

2 D0)21, when scaled
with respect tor m . We demonstrate this scaling for sel
diffusion. The scaling forS(q,t) can be shown in a simila
way. Introducing the dimensionless quantitiesq̃, k̃5k/qm ,
t̃ , andũ5u/tqm

, Eqs.~6! and ~7! are readily rewritten as

]

] t̃
G~ q̃, t̃ !52q̃2G~ q̃, t̃ !

2tqm
E

0

t̃
dũMS

irr~ q̃, t̃ 2ũ!
]

]ũ
G~ q̃,ũ!, ~36!

with

tqm
MS

irr~ q̃, t̃ !5E d3k̃@VS~ q̃,k̃!#2S~ k̃, t̃ !G~ uq̃2 k̃u, t̃ !,

~37!

where we have used thatqm
3 /n'(2p)3 for the systems unde

consideration.
According to the reduced MCT equations, systems w

equalS(qm) exhibit the same shapes ofS(q,t) and G(q,t)
as functions ofq/qm and t/tqm

. Provided thatr m is the only
relevant length, the scaling of the dynamic correlation fu
tions predicted in MCT appears to be physically reasona
although we are not able to provide a general proof. It wo
be of interest to examine the scaling predictions further us
BD simulations.

An immediate consequence of the dynamic scaling p
posed in the MCT is that systems with identicalS(qm) also
have the same long-time self-diffusion coefficient. This on
to-one correspondence betweenS(qm) and DS

L implies that
the Hansen–Verlet static freezing criterion29 and the dy-
namic criterion of Lo¨wen et al.31 are equivalent. According
to the Hansen–Verlet criterion, a monodisperse colloi
suspension freezes whenS(qm)'2.85, whereas the freezin
transition is characterized by the dynamic criterion throug
value of DS

L/D0 close to 0.1. The dynamic criterion wa
found empirically from experiments and BD simulatio
~without HI! of systems with Yukawa-type repulsive pa
potentials including the one-component plasma and h
sphere dispersions as opposite limiting cases. In Sec. IV
shown that the MCT applied to de-ionized charge-stabiliz
suspensions gives results in good agreement with the fr
ing values ofS(qm) andDS

L stated in the two criteria, which
speaks in favor of the self-consistent MCT description of
simple liquid and colloidal dynamics.

The equivalence of the static and dynamic freezing
teria within MCT is a consequence of the single syst
length scale, which permits rescaling of the governing
namic equations. Approximate agreement between the s
and dynamic freezing criteria can be expected also for s
tems in which the primary static structure factor peak is
dominant feature of the static correlations.34 Since the MCT
Downloaded 06 Aug 2004 to 128.104.68.125. Redistribution subject to AI
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is an approximate theory for the dynamics, this finding m
not provide any fundamental connections between the s
and dynamic viewpoints of the freezing process, althou
studies65 and suggestions66 on this topic have been made.

In our discussion of the dynamic scaling behavior f
systems with long-range repulsion, we have disregarded
possible influence of HI. The inclusion of HI effects inevit
bly introduces the~hydrodynamic! diameters as a second
relevant length scale, through the appearance of hydro
namic mobility tensors in quantities like the hydrodynam
functionH(q) ~cf. Refs. 3, 32, and 67!. As discussed before
far-field HI cause only a modest increase inDS

L above its
value without HI, so that the dynamic criterion can still b
expected to hold qualitatively. Our expectation is suppor
by the work of Löwenet al., where BD computer simulation
results forDS

L without HI are compared with experimenta
data.31

IV. RESULTS AND DISCUSSION

Numerical results for self- and collective dynamic
properties of charge-stabilized and hard-sphere suspens
are presented in this section, and are compared with exp
mental work, BD simulations and other existing theories
colloidal dynamics. We first investigate charge-stabiliz
dispersions; hard-sphere systems are analyzed subsequ

The effective pair potential,u(r ), acting between two
charged particles is modeled as the superposition o
masked hard-core part of diameters with the repulsive part
of the well-known Derjaguin–Landau–Verwey–Overbe
~DLVO! potential. The latter reads explicitly

u~r !

kBT
52Ka

e2k(r 22a)

r
, r .2a. ~38!

Here,K is a dimensionless coupling parameter given by

K5
LB

2a S Z

11kaD 2

, ~39!

whereLB5e2/(ekBT) is the Bjerrum length for a suspendin
fluid of dielectric constante, and Z is the effective charge
number of a colloidal particle in units of the elementa
chargee. The screening parameterk is determined byk2

54pLB@nuZu12ns#5kc
21ks

2 wherens is the number den-
sity of added 1-1 electrolyte. The parameterk consists of a
contribution,kc , due to counter-ions, which are assumed
be monovalent, and a second contribution,ks , arising from
added electrolyte. Equation~38! is a good approximation for
the effective pair potential of strongly charged particle
where the effective chargeZ accounts for nonlinear screen
ing effects.68,69

We employ the well-established rescaled mean spher
approximation~RMSA! for calculating the static structur
factor of charge-stabilized dispersions described by the
tential in Eq.~38!. The system parameters used in our MC
calculations and summarized in Table I describe vario
charge-stabilized systems studied in experimental,52,70–72

computer simulation71,73–75 and theoretical work.20,44,74,76

The parameters in Table I for the charged system~CS! are
typical, e.g., for salt-free aqueous dispersions of hig
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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TABLE I. System parameters of charge-stabilized systems used in the RMSA/MCT calculations. The p
eters describe systems studied by Ha¨rtl et al. ~Ref. 71! ~H!, Gaylor et al. ~Ref. 73! and López-Esquivelet al.
~Ref. 76! ~G1L!, and Müller ~Ref. 77! ~M-ST, M-WX, and M-YZ! . The data set CS models a typical macroio
system, analyzed at various concentrations. The effective charge numberZ and coupling parameterK are chosen
such that the RMSAS(qm) is equal to the experimental or computer simulated peak height.

Parameters

Systems

H G1L M-ST M-WX M-YZ CS

s @nm# 80 46 100 100 100 100
f3103 0.52 0.44 1.15 1.28 1.3 131025–90
Z 500 ¯ 329 475 364 500
ns @mmol/l# 0.1 ¯ 6.9 3.6 0.0 0.0
LB @nm# 0.71 ¯ 0.71 0.71 0.71 0.714
ks 0.25 0.149 0.9 0.7 0.28 0.0009–2.78
K 1754 752 366 879 721 312– 1782
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charged polystyrene spheres withr m'n21/3. The effective
charge numbersZ in the table are determined for the aqueo
suspensions studied by Ha¨rtl et al.71 from matching the peak
height of the RMSAS(q) to the experimentally determine
one. Likewise, for the systems studied by Gayloret al.,73 the
RMSA S(qm) is fitted to the corresponding BD data by a
justing the coupling parameterK as described by Lo´pez-
Esquivelet al.76 In this way, an optimized static inputS(q)
is obtained for the coupled MCT equations.

The q-dependence ofS(q,t) for system G1L is shown
in Fig. 1 to illustrate the relaxation of density fluctuatio
correlations. Our MCT results forS(q,t) are compared with
BD data of Gaylor et al.,73 and with results of Lo´pez-
Esquivelet al.76 derived from a single exponential approx
mation~SEXP! of the collective memory functionMC

irr(q,t).
The MCT S(q,t) is seen to be in excellent agreement w
the BD results even at the largest correlation timet51.6 ms
considered, whereas the SEXP predicts that the struc
relaxation proceeds too rapidly. The self-consistent MCT
thus a better approximation for intermediate and long tim
than the SEXP.

FIG. 1. Dynamic structure factor of charge-stabilized system G1L. Solid
line: MCT results; dashed line: SEXP results from Ref. 76; open squa
BD data of Gayloret al. ~Ref. 73!. System parameters as in Table I, wi
D059.5310212 m2/s.
 2004 to 128.104.68.125. Redistribution subject to AI
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ral
s
s

We discuss next results for the time-dependence
S(q,t), at fixed q, and for the nonexponentiallity facto
DD(q) of charge-stabilized dispersions. In Fig. 2~a!, the
RMSA S(q) for system H is shown together with the corr
sponding experimental and BD results by Ha¨rtl et al.71 While
the RMSAS(q) is matched only atqm , there is good agree
ment with the BD data for all values ofq. The experimental
S(q) is slightly larger than the RMSA and BD results
smallq. This difference can be ascribed to a small amoun
size polydispersity in the experimental sample with relat
standard deviations'0.06. As indicated by the arrow, th
principal peak ofS(q) is located atqms50.69'q2s.

Figure 2~b! displays MCT, BD, and experimental find
ings ofS(q,t) versus time for wave numbersq1 andq2 , the
second one located at the peak ofS(q) and the first one at
q1'0.87qm .The MCT predictions are in good qualitativ
agreement with the BD and experimentalS(q). The relax-
ation of density fluctuations of wavelength comparable w
the extent of the nearest-neighbor cage, as described
S(qm ,t), is seen to be considerably slower. Both curves
veal significant deviations from a single exponential fo
due to strong particle correlations.

The nonexponential decay ofS(q,t) is quantified by the
nonexponentiality factorsDD(q) and D(q), introduced in
Sec. III. Results for these quantities for system H and for
systems M-ST, M-WX, and M-YZ of Mu¨ller77 are displayed
in Figs. 3~a! and 3~b!, respectively. Considering the statist
cal fluctuations in Fig. 3~a! in the experimental and BD data
good agreement is observed between the MCT and BD
of DD(q), calculated both without HI and using a size pol
dispersity ofs50.06 according to the experimental estima
Further shown in Fig. 3~a! is the MCT result forD(q) using
s50, which illustrates the importance of size polydispers
effects at smallq.

In Fig. 3~b!, we compare MCT results forDD(q), using
s50.05, with the corresponding experimental data
Müller. Samples M-WX and M-ST are less correlated th
sample M-YZ, due to the presence of residual electrol
which screens the electrostatic interactions. The agreem
with the experiment is good, regarding the fact that the M
contains no adjustable parameter. For the most strongly
related samples M-YZ and H,DD(q) is somewhat overesti
mated in MCT. This can be at least partially attributed

s:
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far-field hydrodynamic effects, present in the experimen
samples and neglected both in the MCT and BD calculatio
As shown in Ref. 35 on the basis of a simplified and not fu
self-consistent MCT scheme, far-field HI promotes the de
of density fluctuation correlations, leading thus to a mod
decrease inDD(q). The inclusion of far-field HI effects into
a fully self-consistent MCT scheme is a very demanding
merical task~cf. Refs. 23 and 35! and is thus left to future
work. It should be noted that the present MCT results
DD(q) are in significantly better agreement with experime
and computer simulation data than the simplified MCT
sults published earlier in Ref. 35.

The scaling behavior ofS(q,t) and G(q,t) for the de-
ionized charge-stabilized systems CS and G1L with identi-
cal peak heightsS(qm) is analyzed in Figs. 4~a! and 4~b!.
These systems are characterized by a single length scar̄ .
RMSA results forS(q) versus reduced wave numberq/qm

FIG. 2. S(q) and normalizedS(q,t) for charge-stabilized system H~cf.
Table I!. ~a! RMSA static structure factor in comparison with experimen
and BD data ofS(q) taken from Ha¨rtl et al. ~Ref. 71!. The arrows locate the
wave numbersq1s50.60 andq2s50.69. ~b! S(q,t)/S(q) at wave numbers
q1 andq2 vs reduced time. Comparison between MCT results, and BD
experimental data from~Ref. 71!.
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are depicted in Fig. 4~a!. The static structure factors o
samples CS and G1L are nearly identical when plotted ver
susq̃. The inset in the figure reveals differences at smalq,
which become visible only whennc(q) is plotted versusq̃
instead of S(q). However, due to the smallness ofS(k
!qm) and due to the appearance of the factork4 in the
integrals in Eqs.~3! and~7! defining the irreducible memory
functions, these small-k differences are of no relevance i
determiningS(q,t) andG(q,t). This can be seen from Fig
4~b!, where MCT results forfC(q,t) are shown for three
different wave numbers as a function of the reduced ti
t/tq . This figure clearly illustrates the scaling ofS(q,t) dis-
cussed in Sec. III, according to which systems with lon
range particle repulsion and identicalS(qm) possess equa
dynamic structure factors as functions of the reduced par
etersq̃ and t̃ .

d

FIG. 3. Measurable nonexponentiallity factorDD(q) vs normalized wave
number.~a! DD(q) for system H with size polydispersitys50.06. Solid
line: MCT result; BD~dashed line! and experimental data~filled circles! are
reproduced from Ref. 71. Dotted line:D(q) in MCT for s50. ~b! Compari-
son between MCT results~lines, as labeled! and experimental data of Mu¨ller
~Ref. 77! for samples M-ST (1), M-WX ( s), and M-YZ ~filled h) ~cf.
Table I!, usings50.05.
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The dependence of the MCT long-time self-diffusion c
efficientDS

L on the corresponding RMSAS(qm) is shown in
Fig. 5 for the prototypical system CS. The coefficientDS

L is a
monotonically decaying function inS(qm) due to cage dif-
fusion. For comparison, MCT results forDS

L versusS(qm) of
the remaining charge-stabilized systems listed in Table I
included additionally in the figure. Nearly all results lie o
the master curve for system CS, in accordance with the s
ing properties ofG(q,t). Only samples M-ST and M-WX
which contain residual electrolyte, are located slightly abo
the master curve.

According to the dotted lines shown in Fig. 5, the MC
master curve for de-ionized systems has a value ofDS

L/D0

50.1 atS(qm)52.85, in agreement with the freezing criter
of Hansen and Verlet and of Lo¨wen et al. The scaling of
S(q,t) and DS

L has been demonstrated in this work f
charge-stabilized systems with DLVO-type pair potenti
We reemphasize that the same scaling can be expecte

FIG. 4. MCT/RMSA results forS(q) and fC(q,t) of system CS, withF
5531025, and system G1L ~cf. Table I!. ~a! S(q) and direct correlation
function nc(q) ~inset! vs q/qm as labeled in the figure.~b! Normalized
S(q,t) vs reduced time, forq-values as indicated.
Downloaded 06 Aug 2004 to 128.104.68.125. Redistribution subject to AI
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hold, at least approximately, for all systems with long-ran
repulsive forces and masked excluded volume interactio

In the following, we focus on the predictions of th
MCT with regard to hard-sphere dispersions. The static in
S(q) is calculated using the Verlet–Weiss corrected Percu
Yevick approximation.47 The MCT locates the~idealized!
glass transition of hard-sphere dispersions atF50.525,39,78

which is lower than the experimentally determined volum
fraction.43,79The caging of particles as described by the no
linear feedback terms in Eqs.~3! and ~7! is thus overesti-
mated in the MCT. While the MCT does not reproduce e
actly the experimental glass transition concentration, it d
reproduce the special dynamic features of the hard-sp
glass transition scenario.39,43,48,49We follow, therefore, the
work of Götze and co-workers in renormalizing the conce
tration dependence of the MCT-calculated dynamic ha
sphere properties according toF→F3Fg/0.525. Here,Fg

is not set equal to the experimental value of;0.58, but is
estimated instead such that the MCT results forDS

L(F) con-
form well at large concentrations with BD data obtain
without HI in Ref. 75. This procedure givesFg50.62, with
DS

L/D050.1 at the freezing transition concentrationF f

50.49, in accordance with the dynamic freezing criteri
~cf. Fig. 6!. The F-renormalization is used for all MCT re
sults shown in Figs. 7–10 . Whether or not a colloidal gla
ultimately crystallizes and the rate at which it does so
pends on the particle size distribution80 and on gravitational
effects.81,82 A study on suspensions of hard-spherelike p
ticles found the glass to remain so indefinitely on earth bu
crystallize under microgravity.81 Crystallization effects and
gravitational influences are not incorporated into the ide
ized MCT, which is applied in this work to the fluid regime

We remark that a value ofDS
L/D050.085 rather close to

0.1 at freezing volume fractionF f was obtained also by
Fuchs83 using MCT hard-sphere asymptotic laws, valid clo
to the glass transition concentration. The work of Fuchs c

FIG. 5. Long-time self-diffusion coefficientDS
L in MCT vs RMSA S(qm)

for system CS~solid line!, and remaining charge-stabilized systems listed
Table I ~symbols!. Dotted lines: freezing valuesDS

L/D050.1 andS(qm)
52.85, respectively.
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rects earlier work of Indrani and Ramaswamy84 who at-
tempted to relate the freezing criteria of Hansen–Verlet
the one of Lo¨wen et al. using simplified mode-coupling
ideas.

For comparison with experimental hard-sphere resu
we use the semiempirical hydrodynamic rescaling proced
described in Sec. III. According to Fig. 6, HI-rescaling usi
Eqs.~10! and~11! brings the MCTDS

L into good agreemen
with the experimental data. The fact that experimental a
HI-rescaled MCT values ofDS

L/D0 at F f are numerically

FIG. 6. Long-time self-diffusion coefficient for hard spheres as function
volume fraction. Filled circles: BD data of Cichocki and Hinsen~Ref. 75!;
open circles: BD data of Moriguchi~Ref. 89!; dashed line: MCT results
without F-renormalization and without HI-rescaling; solid line
F-renormalized MCT result; dashed–dotted line:F-renormalized and HI-
rescaled MCT result; filled triangles: experimental data of van Megen
Underwood~Ref. 70!; filled squares: experimental data of van Blaader
et al. ~Ref. 72!.

FIG. 7. Reduced MSDW(t)/(D0t) for hard spheres atF50.3 ~upper two
curves! andF50.5 ~lower two curves!. Comparison between MCT results
and BD data taken from Ref. 75. The two horizontal line segments at
right ordinate indicate the values of the MCT reduced long-time s
diffusion coefficients.
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similar and consistently lower than 0.05 suggests the num
0.1 to be universal with HI included, i.e., to be independe
of the pair potential, only whenDS

L is normalized by the
short-time self-diffusion coefficientDS

S instead ofD0. For
de-ionized charge-stabilized systems withF<0.05, DS

S is
well parameterized by the nonlinear formDS

S/D051
22.5F4/3 so that the short-time self-diffusion coefficient
insignificantly smaller thanD0.13,32,85

Hard-sphere MCT results for the reduced MS
W(t)/(D0t) without HI are shown in Fig. 7 for two values o
F, together with the corresponding BD results of Cichoc
and Hinsen.75 As seen, the agreement between MCT and B
improves with increasing concentration, with nearly coin
dent results even at intermediate times forF50.5.

f

d

e
-

FIG. 8. Dynamic structure factor of hard spheres without HI forF50.5.
Solid line: MCT result; dashed line: contact-Enskog approximation~CEA!
result of Cichocki and Felderhof~Ref. 20!; crosses: BD data from Ref. 20

FIG. 9. Time-integrated irreducible memory functionsM̃ c
irr(q,0) and

M̃s
irr(q,0) of hard spheres. Solid lines: MCT results. Symbols: BD data

M̃ c
irr(q,0) ~open squares! andM̃ s

irr(q,0) ~open circles! of Cichocki and Hin-
sen~Ref. 74!.
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Figure 8 includes MCT results forfC(q,t) without HI,
at qs59.8 andF50.5, in comparison with BD and CEA
results taken from Ref. 20. The BD and MCT results co
pare very well, whereas the relaxation ofS(q,t) is strongly
overestimated in CEA. As pointed out already by
originators,20 the CEA is designed for semidilute to mode
ately concentrated hard-sphere dispersions, where it i
good agreement with BD results. Its accuracy decreases
increasing concentration when mode coupling effects
come strong.

BD data for the time-integrated irreducible memo
functions have been reported in Ref. 74 and are include
Fig. 9 ~for F50.3) together with the MCT predictions. Th

FIG. 10. ~a! Hard-sphere normalized long-time and mean collective dif

sion coefficientsDC
L (qm) and D̃C

L (qm), respectively, as functions ofF.
Comparison between MCT and CEA results without HI. Notice th
S(qm ,t) ceases to be an exponentially decaying function at long times

lower volume fractions.~b! NormalizedDC
L (qm) andD̃C

L (qm) vs F with HI.
Open circles: exp. data forDS

L(qm)/D0 from Segre` et al. ~Ref. 52!. Bold

solid line: DC
L (qm)/D0 in HI-rescaled MCT. Bold dashed line:D̃C

L (qm)/D0

in HI-rescaled MCT. Dotted line:D̃S
L(qm)/D0 according to Verberget al.

~Ref. 44!.
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function M̃C
irr(q,0) can be expressed in terms of the no

exponentiality factorD(q) as M̃C
irr(q,0)5D(q)/(12D(q)),

implying for monodisperse systems thatM̃C
irr(q,0)}q2 and

D(q)}q2 for qa!1. Contrary toM̃C
irr(q,0), M̃S

irr(q,0) is a
monotonically decaying function. The overa
q-dependencies are well reproduced by the MCT mem
functions, with their values being consistently lower than t
BD data. We expect the accuracy of the MCT predictions

M̃C
irr(q,0) andM̃S

irr(q,0) to improve for largerF, in accord
with an analogous observation in Fig. 7 forW(t). To our
knowledge, however, there are so far no hard-sphere BD
for M̃C,S

irr (q,0) available at higher volume fractions to com
pare with. Inclusion of HI increases the hard-sphere irred
ible memory functions above its curves shown in Fig.
since near-field HI lead to an additional slowing down
particle diffusion.

In Fig. 10~a!, we compare MCT and CEA results for th
hard-sphere long-time collective diffusion coefficie
DC

L (qm), and for the mean collective diffusion coefficien

D̃C
L (qm), obtained without HI. The CEA findings have bee

obtained by us following the CEA solution scheme describ
in Refs. 19 and 20. According to both theories,DC

L (qm)
ceases to exist below the concentration thresholdsFMCT

50.22 andFCEA50.15, respectively. While the CEA pre
diction for DC

L (qm) is expected to be more accurate at low
F ~being exact to first order inF), the MCT is a better
approximation forF>0.4, where both diffusion coefficient
are overestimated in the CEA. In accord with physical e
pectation, the long-time collective diffusion coefficient
seen in both theories to be smaller than the mean collec

diffusion coefficientD̃C
L (qm), since the latter is related to th

mean relaxation ofS(qm ,t).

HI-rescaled MCT results forDC
L (qm) and D̃C

L (qm), ob-
tained from multiplying the MCT coefficients byH(qm) @cf.
Eqs.~13! and ~14!# are compared in Fig. 10~b! with experi-
mental data forDC

L (qm) of Segrèet al.52 There is good quali-
tative agreement between theory and experiment in the ra
of F-values where, according to the MCT,DC

L (qm) exists.

Figure 10~b! displays also results forD̃S
L(qm) calculated by

us using the nonself-consistent MCT scheme proposed
Verberg et al.44 ~cf Sec. III!. Notice that the HI-rescaled

MCT D̃C
L (qm) is substantially larger than the coefficient ca

culated using the scheme of Verberget al.44

Since the short-time self- and collective diffusion coe
ficients DC

S(qm)5D0H(qm)/S(qm) and DS
S of hard spheres

according to Eqs.~14! and ~11!, respectively, are used a
input in the hydrodynamic rescaling scheme, it is worthwh
to examine their concentration dependence in compar
with experimental results, and with approximations for the
quantities proposed by Verberg and co-workers. The p
heightS(qm) of the hard-sphereS(q) is calculated using the
Verlet–Weiss correction of the Percus–Yevick approxim
tion. As seen from the inset in Fig. 11,S(qm) is contrary to
H(qm) a distinctively nonlinear function ofF, parametrized
for 0,F,0.55 within 1% of accuracy by the formS(qm)
'11CFg(2a1), with C50.664 andg(2a1) according to
Eq. ~26!.
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The result forDC
S(qm)5D0H(qm)/S(qm) in Fig. 11 is in

excellent agreement with the experimental data of Se`
et al.,8 which reflects the accuracy of Eq.~14! for H(qm). It
is further seen thatDS

S according to Eq.~11! is in good agree-
ment with the experimental data from 8. The approximatio
DC

S(qm)'Dc(qm) and DS
S'D0/g(2a1) suggested by Ver-

berg and co-workers according to Eqs.~35! and~26!, respec-
tively, compare less favorable with the experimental fin
ings, even in the limited concentration regime ofF>0.4
where these empirical approximations have been propose
apply.

V. CONCLUSIONS

In this paper we have presented and analyzed theore
predictions for collective and self-diffusional properties
monodisperse and slightly polydisperse colloidal dispersio
Our results have been obtained from the self-consistent
merical solution of the~rescaled! MCT based on the many
particle Smoluchowski equation and applied to suspens
of charged and neutral colloidal spheres.

The dynamic structure factor and the mean-squared
placement of charge-stabilized systems calculated in M
compare well with BD simulations and experimental resu
The nonexponentiallity factor of charged suspensions, w
small polydispersity effects included, is remarkably well p
dicted by the theory, as demonstrated in comparison w
experimental and BD results ofD(q). For de-ionized sus-
pensions of strongly repelling charged particles with we
developed nearest-neighbor shells, a dynamic scaling be
ior of S(q,t) and G(q,t) is predicted in the fluid regime
From this scaling behavior, the equivalence of two see

FIG. 11. Normalized short-time diffusion coefficients with HI. Bold sol
line: DC

S(qm)/D05H(qm)/S(qm) with H(qm) according to Eq.~14!; bold
dashed line:DS

S/D0 according to Eq.~11!. Open circles: experimenta
DC

S(qm)/D0 from Ref. 8; filled squares: experimentalD0 /DS
S reproduced

from Ref. 8. Dotted line: cage-diffusion coefficientDc(qm)/D0 defined in
Eq. ~35!. Dashed line: approximation forDS

S according to Eq.~26!. Inset:
peak height of hard-sphereS(q) according to Verlet–Weiss correcte
Percus–Yevick approximation ~solid line! and corresponding
F-parametrization~dashed line!.
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ingly unrelated criteria for the onset of freezing is deduc
The proposed dynamic scaling of the dynamic scatter
functions is based on the MCT, with HI disregarded, and
the scaling of the static structure factor with respect to
peak position qm . We have confirmed the scaling o
S(q/qm) as predicted in the RMSA using the accura
Rogers–Young integral equation scheme.32,86 It would be of
interest to examine the dynamic scaling predictions furt
with the help of dynamic computer simulations.

For hard spheres, our MCT analysis reveals an expon
tial long-time mode ofS(qm ,t) for volume fractionsF
>0.22 well below the~idealized! glass transition concentra
tion. This collective mode is associated with the long-tim
collective diffusion coefficientDC

L (qm), which is smaller

than the collective diffusion coefficientD̃C
L (qm) related to

the mean decay ofS(qm ,t). A long-time exponential decay
of S(qm ,t) has been predicted also for charge-stabilized d
persions of strongly correlated particles.22

Our MCT results for colloidal hard spheres with reno
malized volume fraction are in good qualitative accord w
BD data forS(q,t), W(t), and for the time-integrated irre
ducible memory functions. The comparison with the BD da
is even in quantitative agreement for the largest volume fr
tion F50.5 considered. The asymptotic short-time and lon
time forms of the hard sphereS(q,t) and G(q,t) are cor-
rectly predicted by the MCT, with amplitudes which ar
however, not equal to the exact ones. It is possible to ext
the good performance of the MCT for concentrated syste
to hard-sphere dispersions at intermediate and small con
trations by combining the MCT with an Enskog-type gen
alized kinetic theory approach as proposed by Cichocki
Hinsen.74 We are currently analyzing the predictions of th
hybrid method.

A first-principles inclusion of~many-body! HI effects is
to date a daunting task for any theory of concentrated dis
sions. For colloidal hard spheres we have employed thu
semiempirical hydrodynamic rescaling of the MCT resul
which allows for quantitative comparison with experime
tally determined diffusional and viscoelastic propertie
Physical arguments based on the cage picture have been
vided to explain why the rescaling scheme is not applica
to systems with long-range repulsive pair forces. An appro
mate incorporation of leading order far-field HI in the MC
equations of monodisperse systems was provided by Na¨gele
and Baur35 and subsequently generalized to colloid
mixtures.23,28This approach aims at describing the dynam
of charge-stabilized suspensions in the fluid regime. It diff
from alternative attempts by Fuchs and Mayr36 and by Ver-
berg et al.44 of incorporating many-body HI for colloida
hard spheres, in that theq-dependence of the MCT verte
functions is affected. That far-field HI should affect th
structural relaxation ofS(q,t) and G(q,t) in the liquid re-
gime not only through the short-time coefficientsDC

S(q) @cf.
Eq. ~2! ff # andDS

S but also through a modifiedk-dependence
of the vertex functionsVC(q,k) andVS(q,k) is indicated by
the weak coupling form of the self memory function in th
limit of small potential and hydrodynamic forces.87 How-
ever, the question whether HI influences not only the coll
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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dal dynamics within the fluid regime but also the glass tr
sition scenario remains unresolved.

The multicomponent version of the MCT with far-fiel
HI included has been used for successfully predict
electro-hydrodynamic effects on the self-diffusion of a c
loidal particle arising from the collective motion of sma
ions constituting its electric double layer.88

In conclusion, our analysis has shown that the~rescaled!
MCT is applicable not only close to the glass transition, b
also to fluid colloidal systems with significant particle corr
lations. The self-consistent MCT provides at least qual
tively correct predictions of diffusional and viscoelas
properties of colloidal dispersions with a variety of intera
tion potentials.
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23G. Nägele, J. Bergenholtz, and J. K. G. Dhont, J. Chem. Phys.110, 7037

~1999!.
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28G. Nägele and J. K. G. Dhont, J. Chem. Phys.108, 9566~1998!.
29J. P. Hansen and L. Verlet, Phys. Rev.184, 151 ~1969!.
30M. O. Robbins, K. Kremer, and G. S. Grest, J. Chem. Phys.88, 3286

~1988!.
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